The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×
Published Online:https://doi.org/10.1176/appi.ajp.20220271

Objective:

The weak link between subjective symptom-based diagnostic methods for posttraumatic psychopathology and objectively measured neurobiological indices forms a barrier to the development of effective personalized treatments. To overcome this problem, recent studies have aimed to stratify psychiatric disorders by identifying consistent subgroups based on objective neural markers. Along these lines, a promising 2021 study by Stevens et al. identified distinct brain-based biotypes associated with different longitudinal patterns of posttraumatic symptoms. Here, the authors conducted a conceptual nonexact replication of that study using a comparable data set from a multimodal longitudinal study of recent trauma survivors.

Methods:

A total of 130 participants (mean age, 33.61 years, SD=11.21; 48% women) admitted to a general hospital emergency department following trauma exposure underwent demographic, clinical, and neuroimaging assessments 1, 6, and 14 months after trauma. All analyses followed the pipeline outlined in the original study and were conducted in collaboration with its authors.

Results:

Task-based functional MRI conducted 1 month posttrauma was used to identify four clusters of individuals based on profiles of neural activity reflecting threat and reward reactivity. These clusters were not identical to the previously identified brain-based biotypes and were not associated with prospective symptoms of posttraumatic psychopathology.

Conclusions:

Overall, these findings suggest that the original brain-based biotypes of trauma resilience and psychopathology may not generalize to other populations. Thus, caution is warranted when attempting to define subtypes of psychiatric vulnerability using neural indices before treatment implications can be fully realized. Additional replication studies are needed to identify more stable and generalizable neuroimaging-based biotypes of posttraumatic psychopathology.