The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

OBJECTIVE: Pediatric populations, including those with autistic disorder or other pervasive developmental disorders, increasingly are being prescribed selective serotonin reuptake inhibitors (SSRIs). Little is known about the age-related brain pharmacokinetics of SSRIs; there is a lack of data regarding optimal dosing of medications for children. The authors used fluorine magnetic resonance spectroscopy (19F MRS) to evaluate age effects on whole-brain concentrations of fluvoxamine and fluoxetine in children taking SSRIs. METHOD: Twenty-one pediatric subjects with diagnoses of autistic disorder or other pervasive developmental disorders, 6–15 years old and stabilized with a consistent dose of fluvoxamine or fluoxetine, were recruited for the study; 16 successfully completed the imaging protocol. Whole-brain drug levels in this group were compared to similarly acquired data from 28 adults. RESULTS: A significant relationship between dose and brain drug concentration was observed for both drugs across the age range studied. Brain fluvoxamine concentration in the children was lower, consistent with a lower dose/body mass drug prescription; when brain concentration was adjusted for dose/mass, age effects were no longer significant. Brain fluoxetine concentration was similar between age groups; no significant age effects on brain fluoxetine drug levels remained after adjustment for dose/mass. Observations of brain fluoxetine bioavailability and elimination half-life also were similar between age groups. CONCLUSIONS: These findings suggest that fluvoxamine or fluoxetine prescriptions adjusted for dose/mass are an acceptable treatment approach for medicating children with autistic disorder or other pervasive developmental disorders. It must be determined whether these findings can be generalized to other pediatric populations.