The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

Objective:

The interpretability of results in psychiatric neuroimaging is significantly limited by an overreliance on correlational relationships. Purely correlational studies cannot alone determine whether behavior-imaging relationships are causal to illness, functionally compensatory processes, or purely epiphenomena. Negative symptoms (e.g., anhedonia, amotivation, and expressive deficits) are refractory to current medications and are among the foremost causes of disability in schizophrenia. The authors used a two-step approach in identifying and then empirically testing a brain network model of schizophrenia symptoms.

Methods:

In the first cohort (N=44), a data-driven resting-state functional connectivity analysis was used to identify a network with connectivity that corresponds to negative symptom severity. In the second cohort (N=11), this network connectivity was modulated with 5 days of twice-daily transcranial magnetic stimulation (TMS) to the cerebellar midline.

Results:

A breakdown of connectivity in a specific dorsolateral prefrontal cortex-to-cerebellum network directly corresponded to negative symptom severity. Restoration of network connectivity with TMS corresponded to amelioration of negative symptoms, showing a statistically significant strong relationship of negative symptom change in response to functional connectivity change.

Conclusions:

These results demonstrate that a connectivity breakdown between the cerebellum and the right dorsolateral prefrontal cortex is associated with negative symptom severity and that correction of this breakdown ameliorates negative symptom severity, supporting a novel network hypothesis for medication-refractory negative symptoms and suggesting that network manipulation may establish causal relationships between network markers and clinical phenomena.