The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

OBJECTIVE: There has been a convergence of models describing schizophrenia as a disconnection syndrome, with a focus on the temporal connectivity of neural activity. Synchronous gamma-band (40-Hz) activity has been implicated as a candidate mechanism for the binding of distributed neural activity. To the authors’ knowledge, this is the first study to investigate “gamma synchrony” in first-episode schizophrenia. METHOD: Forty medicated first-episode schizophrenia patients and 40 age- and sex-matched healthy comparison subjects participated in a conventional auditory oddball paradigm. Gamma synchrony, time-locked to target stimuli, was extracted from an ongoing EEG. The magnitude and latency of both early (gamma 1: –150 msec to 150 msec poststimulus) and late (gamma 2: 200 to 550 msec poststimulus) synchrony were analyzed with multiple analysis of variance. RESULTS: First-episode schizophrenia patients showed a decreased magnitude and delayed latency for global gamma 1 synchrony in relation to healthy comparison subjects. By contrast, there were no group differences in gamma 2 synchrony. CONCLUSIONS: These findings suggest that first-episode schizophrenia patients have a global decrease and delay of temporal connectivity of neural activity in early sensory response to task-relevant stimuli. This is consistent with cognitive evidence of perceptual integration deficits in this disorder and raises the possibility that a breakdown in the early synchrony of distributed neural networks is a marker for the onset of schizophrenia.