The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×
Site maintenance Monday, July 8th, 2024. Please note that access to some content and account information will be unavailable on this date.

Objective

Identification of biomarkers for cognitive dysfunction in schizophrenia is a priority for psychiatry research. Functional imaging studies suggest that intrinsic “resting state” hippocampal hyperactivity is a characteristic feature of schizophrenia. The relationships between this phenotype and symptoms of the illness, however, are largely unexplored. The authors examined resting hippocampal activity in schizophrenia patients and healthy comparison subjects and analyzed the relationship between intrinsic hippocampal activity and cognitive function in patients as measured by the MATRICS Consensus Cognitive Battery (MCCB).

Method

Twenty-eight schizophrenia patients and 28 age-matched healthy comparison subjects underwent functional “resting state” 3-T MR scanning. Hippocampal activity was extracted by group independent component analysis. Correlation analyses were used to examine the relationship between hippocampal activity and MCCB composite and domain scores in patients, as well as between hippocampal activity and positive and negative symptoms.

Results

Greater activity of the right hippocampus at rest was observed in patients relative to comparison subjects. In patients, a significant negative correlation was observed between right hippocampal activity and composite MCCB T-score. The correlation was driven by the MCCB domains of attention/vigilance, working memory, and visual learning. Hippocampal activity was positively correlated with negative symptoms. MCCB scores were inversely correlated with negative symptoms.

Conclusions

These findings suggest that greater intrinsic hippocampal activity is a characteristic feature of schizophrenia that is broadly associated with cognitive dysfunction, and they support hippocampal activity as a candidate biomarker for therapeutic development.