The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

Objective:

The N-methyl-d-aspartate receptor antagonist ketamine produces rapid and sustained antidepressant actions even in patients with treatment-resistant depression. Vascular endothelial growth factor (VEGF) has been implicated in the effects of conventional monoamine-based antidepressants, but the role of VEGF in the rapid antidepressant actions of ketamine remains unclear. The authors examined whether neuronal VEGF signaling in the medial prefrontal cortex (mPFC) mediates the rapid antidepressant actions of ketamine.

Methods:

The authors used a combination of approaches, including conditional, neuron-specific knockout of VEGF or its receptor, Flk-1; antibody neutralization; viral-mediated knockdown of Flk-1; and pharmacological inhibitors. Further in vitro and in vivo experiments were performed to examine whether neuronal VEGF signaling was required for the neurotrophic and synaptogenic actions of ketamine that underlie its behavioral actions.

Results:

The behavioral actions of systemic ketamine are blocked by forebrain excitatory neuron-specific deletion of either VEGF or Flk-1 or by intra-mPFC infusion of a VEGF neutralizing antibody. Moreover, intra-mPFC infusions of VEGF are sufficient to produce rapid ketamine-like behavioral actions, and these effects are blocked by neuron-specific Flk-1 deletion. The results also show that local knockdown of Flk-1 in mPFC excitatory neurons in adulthood blocks the behavioral effects of systemic ketamine. Moreover, inhibition of neuronal VEGF signaling blocks the neurotrophic and synaptogenic effects of ketamine.

Conclusions:

Together, these findings indicate that neuronal VEGF–Flk-1 signaling in the mPFC plays an essential role in the antidepressant actions of ketamine.