The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

References

  • 1 Lewis DA, Curley AA, Glausier JR, et al.: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 2012; 35:57–67 Crossref, MedlineGoogle Scholar
  • 2 Ayalew M, Le-Niculescu H, Levey DF, et al.: Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887–905 Crossref, MedlineGoogle Scholar
  • 3 Straub RE, Lipska BK, Egan MF, et al.: Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry 2007; 12:854–869 Crossref, MedlineGoogle Scholar
  • 4 Menzies L, Ooi C, Kamath S, et al.: Effects of gamma-aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia. Arch Gen Psychiatry 2007; 64:156–167 Crossref, MedlineGoogle Scholar
  • 5 Uhlhaas PJ, Singer W: Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 2010; 11:100–113 Crossref, MedlineGoogle Scholar
  • 6 Verhoeff NP, Soares JC, D’Souza CD, et al.: [123I]Iomazenil SPECT benzodiazepine receptor imaging in schizophrenia. Psychiatry Res 1999; 91:163–173 Crossref, MedlineGoogle Scholar
  • 7 Frankle WG, Cho RY, Narendran R, et al.: Tiagabine increases [11C]flumazenil binding in cortical brain regions in healthy control subjects. Neuropsychopharmacology 2009; 34:624–633 Crossref, MedlineGoogle Scholar
  • 8 Stokes PR, Myers JF, Kalk NJ, et al.: Acute increases in synaptic GABA detectable in the living human brain: a [¹¹C]Ro15-4513 PET study. Neuroimage 2014; 99:158–165 Crossref, MedlineGoogle Scholar
  • 9 Frankle WG, Cho RY, Prasad KM, et al.: In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am J Psychiatry 2015; 172:1148–1159 LinkGoogle Scholar
  • 10 Tayoshi S, Nakataki M, Sumitani S, et al.: GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 2010; 117:83–91 Crossref, MedlineGoogle Scholar
  • 11 Rowland LM, Kontson K, West J, et al.: In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophr Bull 2013; 39:1096–1104 Crossref, MedlineGoogle Scholar
  • 12 Stan AD, Ghose S, Zhao C, et al.: Magnetic resonance spectroscopy and tissue protein concentrations together suggest lower glutamate signaling in dentate gyrus in schizophrenia. Mol Psychiatry 2015; 20:433–439. Crossref, MedlineGoogle Scholar
  • 13 Yoon JH, Maddock RJ, Rokem A, et al.: GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 2010; 30:3777–3781 Crossref, MedlineGoogle Scholar
  • 14 Kelemen O, Kiss I, Benedek G, et al.: Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: the potential impact of GABA concentration in the visual cortex. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:13–19 Crossref, MedlineGoogle Scholar
  • 15 Marsman A, Mandl RC, Klomp DW, et al.: GABA and glutamate in schizophrenia: a 7 T ¹H-MRS study. Neuroimage Clin 2014; 6:398–407 Crossref, MedlineGoogle Scholar
  • 16 Rowland LM, Krause BW, Wijtenburg SA, et al.: Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study. Mol Psychiatry (Epub ahead of print, March 31, 2015) Google Scholar
  • 17 Goto N, Yoshimura R, Moriya J, et al.: Reduction of brain gamma-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T proton MRS study. Schizophr Res 2009; 112:192–193 Crossref, MedlineGoogle Scholar
  • 18 Savostyanova AA, van der Veen JW, Stern A, et al.: GABA levels in medial prefrontal cortex of patients with schizophrenia: a proton magnetic resonance spectroscopy (1H-MRS) study. Biol Psychiatry 2007; 61:77S Google Scholar
  • 19 Kegeles LS, Mao X, Stanford AD, et al.: Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2012; 69:449–459 Crossref, MedlineGoogle Scholar
  • 20 Ongür D, Prescot AP, McCarthy J, et al.: Elevated gamma-aminobutyric acid levels in chronic schizophrenia. Biol Psychiatry 2010; 68:667–670 Crossref, MedlineGoogle Scholar
  • 21 Goto N, Yoshimura R, Kakeda S, et al.: No alterations of brain GABA after 6 months of treatment with atypical antipsychotic drugs in early-stage first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1480–1483 Crossref, MedlineGoogle Scholar
  • 22 Marenco S, Geramita M, van der Veen JW, et al.: Genetic association of ErbB4 and human cortical GABA levels in vivo. J Neurosci 2011; 31:11628–11632 Crossref, MedlineGoogle Scholar
  • 23 Marenco S, Savostyanova AA, van der Veen JW, et al.: Genetic modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychopharmacology 2010; 35:1708–1717 Crossref, MedlineGoogle Scholar
  • 24 Meyer-Lindenberg A, Weinberger DR: Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006; 7:818–827 Crossref, MedlineGoogle Scholar
  • 25 Kay SR, Fiszbein A, Opler LA: The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13:261–276 Crossref, MedlineGoogle Scholar
  • 26 Wallwork RS, Fortgang R, Hashimoto R, et al.: Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophr Res 2012; 137:246–250 Crossref, MedlineGoogle Scholar
  • 27 Geramita M, Van der Veen JW, Barnett AS, et al.: Reproducibility of prefrontal γ-aminobutyric acid measurements with J-edited spectroscopy. NMR Biomed 2011; 24:1089–1098 Crossref, MedlineGoogle Scholar
  • 28 Kegeles LS, Mao X, Gonsalez R, et al.: Evaluation of anatomic variation in macromolecule contribution to the GABA signal using metabolite nulling and the J-editing technique at 3.0 T. Proc Intl Soc Mag Reson Med 2007; 15:1391 Google Scholar
  • 29 Ashburner J, Friston K: Multimodal image coregistration and partitioning: a unified framework. Neuroimage 1997; 6:209–217 Crossref, MedlineGoogle Scholar
  • 30 Bustillo J, Barrow R, Paz R, et al.: Long-term treatment of rats with haloperidol: lack of an effect on brain N-acetyl aspartate levels. Neuropsychopharmacology 2006; 31:751–756 Crossref, MedlineGoogle Scholar
  • 31 See RE, Lynch AM: Chronic haloperidol potentiates stimulated glutamate release in caudate putamen, but not prefrontal cortex. Neuroreport 1995; 6:1795–1798 Crossref, MedlineGoogle Scholar
  • 32 Konopaske GT, Bolo NR, Basu AC, et al.: Time-dependent effects of haloperidol on glutamine and GABA homeostasis and astrocyte activity in the rat brain. Psychopharmacology (Berl) 2013; 230:57–67 Crossref, MedlineGoogle Scholar
  • 33 McLoughlin GA, Ma D, Tsang TM, et al.: Analyzing the effects of psychotropic drugs on metabolite profiles in rat brain using 1H NMR spectroscopy. J Proteome Res 2009; 8:1943–1952 Crossref, MedlineGoogle Scholar
  • 34 Grimm JW, See RE: Chronic haloperidol-induced alterations in pallidal GABA and striatal D(1)-mediated dopamine turnover as measured by dual probe microdialysis in rats. Neuroscience 2000; 100:507–514 Crossref, MedlineGoogle Scholar
  • 35 See RE, Chapman MA: The consequences of long-term antipsychotic drug administration on basal ganglia neuronal function in laboratory animals. Crit Rev Neurobiol 1994; 8:85–124 MedlineGoogle Scholar
  • 36 Osborne PG, O’Connor WT, Beck O, et al.: Acute versus chronic haloperidol: relationship between tolerance to catalepsy and striatal and accumbens dopamine, GABA, and acetylcholine release. Brain Res 1994; 634:20–30 Crossref, MedlineGoogle Scholar
  • 37 Lipska BK, Lerman DN, Khaing ZZ, et al.: Gene expression in dopamine and GABA systems in an animal model of schizophrenia: effects of antipsychotic drugs. Eur J Neurosci 2003; 18:391–402 Crossref, MedlineGoogle Scholar
  • 38 Zink M, Schmitt A, May B, et al.: Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression. Schizophr Res 2004; 66:151–157 Crossref, MedlineGoogle Scholar
  • 39 Epperson CN, O’Malley S, Czarkowski KA, et al.: Sex, GABA, and nicotine: the impact of smoking on cortical GABA levels across the menstrual cycle as measured with proton magnetic resonance spectroscopy. Biol Psychiatry 2005; 57:44–48 Crossref, MedlineGoogle Scholar
  • 40 Michels L, Martin E, Klaver P, et al.: Frontal GABA levels change during working memory. PLoS One 2012; 7:e31933 Crossref, MedlineGoogle Scholar