The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

OBJECTIVE: The authors’ goal was to test in humans the hypothesis that N-methyl-d-aspartate receptor (NMDAR) antagonism results in increased cortical glutamate activity, as proposed by the NMDAR hypofunction model of schizophrenia. METHOD: 4-T 1H proton magnetic resonance spectroscopy (1H-MRS) was used to acquire in vivo spectra from the bilateral anterior cingulate of 10 healthy subjects while they received a subanesthetic dose of either placebo or ketamine, an NMDAR antagonist. Assessments given before and after ketamine or placebo administration included the Brief Rating Psychiatric Rating Scale, the Scale for the Assessment of Negative Symptoms, the Clinician-Administered Dissociative States Scale, and the Stroop task. RESULTS: As predicted, there was a significant increase in anterior cingulate glutamine, a putative marker of glutamate neurotransmitter release, with ketamine administration. This increase was not related to schizophrenia-like positive or negative symptoms but was marginally related to Stroop performance. CONCLUSIONS: In humans as in animals, an acute hypofunctional NMDAR state is associated with increased glutamatergic activity in the anterior cingulate.