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Supplementary Methods 

Samples 

It has previously been shown that, for methods based on GWAS summary statistics, statistical power 

depends on the product of SNP-based heritability (h2
SNP) and sample size.1 We therefore included mental 

disorder GWAS which had the equivalent statistical power of neffective > 100,000 when h2
SNP > 0.06 (i.e. 

neffective*h2
SNP > 100,000*0.06). This threshold was derived from simulations showing required sample sizes 

for robust MiXeR estimates (Tables S2, S3). We also excluded lifetime anxiety disorder2 since this sample 

used self-reported diagnoses to define cases. Minimal phenotyping procedures have been shown to affect 

the genetic architecture of complex mental traits.3 General intelligence, educational attainment, neuroticism 

and subjective well-being were selected as additional mental traits as they capture a range of different traits 

and well-powered GWAS for these traits were publicly available. These traits were not intended to represent 

an exhaustive list. For detailed descriptions of individual samples, please refer to Table S1. 

Prior to commencing analysis, we QCed all summary statistics. In addition to following the recommended 

QC steps for the respective consortia from which the data was accessed, we filtered all variants with 

MAF<0.05 and all variants within the MHC region (6:26000000-34000000) (see 

https://github.com/precimed/mixer)  

Gaussian mixture models 

Gaussian mixture models assume that a given dataset can be described as a “mixture” of pre-defined 

components, each with their own Gaussian (normal) distribution. After defining the mathematical 

framework of the model, the unknown features of interest for each component, or “model parameters”, are 

estimated using maximum likelihood estimation. This procedure compares observed data with modelled 

data based on thousands of different potential values for the model parameters. The “likelihood” that the 

GWAS data is captured by each set of trialled parameters is estimated using a Bayesian statistical 

https://github.com/precimed/mixer
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framework, and the set of parameters with the greatest likelihood is identified, representing the model’s 

best-fitting estimates. To test the reliability of the model parameters, model-fit is further quantified using 

the Akaike Information Criterion (AIC), which measures how much information is lost by the model 

compared to the observed data. Analogous to traditional “significance testing”, the difference in AIC 

between a “reference” model and the best-fitting model is used as a test of how well the best-fitting model 

can be distinguished from the reference, with a positive AIC difference indicating that the best-fitting model 

can be distinguished from the reference. See Figure S1 for a conceptual illustration of how gaussian mixture 

models are applied in MiXeR.  

Bivariate causal mixture model 

MiXeR first constructs a univariate mixture model for each phenotype. This assumes that the additive 

genetic effect of a given variant on a trait (βj) can be modelled as a mixture of 1) non-causal and 2) causal 

effects, defined by the trait’s polygenicity (π1 – proportion of variants with causal effects) and 

discoverability (σ2
β -

 variance of effect size per causal variant):  

βj ∼ π0N(0,0) + π1N(0,σ2
β) 

The model parameters π1 and σ
2
β are estimated using maximum likelihood estimation which identifies the 

“best-fitting” values from thousands of potential values by comparing model predictions to observed data. 

Since it is a function of a trait’s polygenicity and discoverability, SNP-based heritability was estimated 

from univariate MiXeR model parameters using the following formula, in which Htotal is the combined 

heterozygosity of all variants in the reference: 

h2
SNP = π1Htotalσ

2
β 

Polygenicity is further expressed as the number of causal variants with strongest effects required to explain 

90% h2
snp. A threshold of 90% is applied to prevent extrapolating model parameters into variants with 

infinitesimally small effects. 
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MiXeR is extended to a bivariate context by assuming that the additive genetic effect of a given variant on 

two traits (β1j,β2j) can be described as a mixture of four components – 1) shared ‘causal’ effects, 2) unique 

‘causal’ effects for trait 1, 3) unique ‘causal’ effects for trait 2 and 4) non-causal effects. Informed by the 

model parameters from univariate MiXeR (polygenicity and discoverability: π1, σ
2
1 – trait 1; π2, σ

2
2 – trait 

2), bivariate MiXeR uses maximum likelihood estimation to estimate the polygenicity (π12) and correlation 

of effect sizes (rgs) for the shared component using the following formula, in which the covariance matrices 

Σ1 and Σ2 are defined by σ2
1 and σ2

2, and the covariance matrix Σ12 is defined by σ2
1, σ

2
2 and rgs: 

(β1j,β2j) ∼ π0N(0,0) + π1N(0,Σ1) + π2N(0,Σ2) + π12N(0,Σ12) 

 

rg is derived from these model parameters as follows: 

rg =  rgsπ12/√(π1 + π12)(π2 + π12) 

AIC differences for bivariate MiXeR are calculated by comparing the best-fitting model to minimum 

possible overlap, constrained by rg and maximum possible overlap, constrained by the polygenicity of the 

least polygenic trait. 

Bayesian Information Criterion (BIC) is an alternative method for model selection.4 However, BIC is a 

more conservative measure which has been shown to be overly stringent in scenarios of moderate statistical 

power. 4 We demonstrated that the AIC was a more appropriate test for the reliability of MiXeR estimates 

using simulations, showing that the BIC was overly conservative for scenarios of statistical power 

equivalent to ADHD, DEP and MDD (Table S3).  

Each analysis comprised 20 iterations, with each iteration utilising 2 million randomly selected variants 

with MAF of at least 5%, followed by random pruning at an LD threshold of r2=0.8. Estimates and SDs 

were computed from each set of 20 iterations.  

In order to compute the genetic correlation of the shared component for ADHD and major depression under 

a scenario of maximum possible overlap we used the equation above, but replaced the values of 𝜋1, 𝜋2, and 
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𝜋12 with equivalent values for total possible overlap, i.e. 0 (unique-ADHD variants) , 8.9K (unique-MD 

variants), and 5.6K (shared variants).  

Please note, MiXeR does not currently incorporate functional categories, gene set enrichments, or MAF- 

and LD-dependent genetic architectures. ‘Causal’ variants have been shown to be distributed non-randomly 

throughout the genome, with a higher density present in transcriptionally active regions and regions with 

lower levels of LD.5,6 While this may affect the accuracy of absolute estimates, there is no evidence to 

suggest this affects the accuracy of the measures relatively, and so is unlikely to substantially affect 

bivariate measures. Future iterations of the MiXeR model will attempt to control for these additional 

features. 

The current analysis is also restricted to common genetic variants. Large proportions of the broad-sense 

heritability of mental disorders are not explained by common variants and the heritability tagged by 

common variants may represent the effect of hidden rare variants. Consequently, the ‘causal’ variants 

quantified by MiXeR may not always represent variants underlying the direct ‘causal’ mechanism, rather 

variants which are associated with the phenotype beyond the confounding effect of LD.  

Visualising parameter optimisation and evaluating model fit 

Parameter optimization for the number of shared ‘causal’ variants π12 was visualised using log-likelihood 

plots, which plot the negative log-likelihood function (y axis) against the modelled number of shared causal 

variants (x axis). The predicted number of shared causal variants is represented as the lowest point (i.e. the 

lowest negative log-likelihood) on the log-likelihood curve (Figure S1). Minimum (constrained by genetic 

correlation between the two traits) and maximum possible overlap (constrained by the polygenicity of the 

least polygenic trait) were represented on the log-likelihood plots as the minimum and maximum values 

plotted along the x-axis (number of causal variants), which are used by the Akaike Information Criterion 

test as comparators against the estimated number of shared ‘causal’ variants after parameter optimisation. 

A positive AIC difference is represented by a clear descending curve from the minimum number of shared 
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causal variants to the lowest point and a clear ascending curve to the maximum number of shared causal 

variants (Figure S1a). A negative AIC difference may be due to an apparent convergence towards 

minimum or maximum overlap. This is observed in Figure S1b, which converges towards maximum 

possible overlap, resulting in a positive AIC difference when comparing minimum overlap to modelled fit, 

but a negative AIC difference when compared to maximum overlap. This scenario can therefore be 

interpreted as evidence of extensive genetic overlap between the two traits, but greater power is required to 

improve the precision of the estimate given its proximity to complete genetic overlap. A negative AIC 

difference may also be observed for both minimum and maximum overlap, as in Figure 1c. This indicates 

poor parameter optimisation, most likely due to the power of the analysis. The estimates should therefore 

be interpreted with caution. 

Conditional QQ plots, a common method for visualising cross-trait enrichment of genetic associations 

between two traits, for both modelled and input data were also constructed (Supplementary Methods and 

Figure S2).7 The proximity of the modelled QQ plots (dotted line) to observed QQ plots (solid lines) is a 

qualitative indicator of model fit (Figure 1A, panels 2-3).  

LAVA local correlations 

Genetic loci included in the bivariate analysis were filtered according to their local h2
SNP using a significance 

threshold of p<1e-4, consistent with LAVA’s standard settings.8  

MiXeR simulations to evaluate effect of GWAS statistical power on MiXeR model fit 

We performed simulated MiXeR analyses at 4 levels of statistical power (h2
SNP=0.06, 0.12, 0.24 and 0.48 

with constant sample size of n=100,000 and constant polygenicity of pi=0.003), and 5 scenarios of genetic 

overlap (0, 0.25, 0.5, 0.75 and 1). Simulation settings were chosen to reflect the phenotypes included in the 

current analysis.” 
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Supplementary Results 

Univariate MiXeR 

h2
SNP possessed a similar but different trend to polygenicity. Schizophrenia (h2

SNP=0.38, sd=0.0041) and 

ADHD possessed highest h2
SNP (h2

SNP=0.23, sd=0.0034), followed by BIP, intelligence and EDU 

(h2
SNP=0.10-0.20). Neuroticism, SWB and MD had the lowest h2

snp (h
2

SNP=0.05-0.10) (Table S4). Height 

had substantially higher h2
SNP than mental traits (h2

SNP=0.63, sd=0.0067). MiXeR estimates closely matched 

previously reported LDSC-based h2
SNP (Table S4). 

Univariate MiXeR estimated the discoverability of each trait, defined as the average explained variance per 

causal variant (heritability/polygenicity) (Table S4). Given their low heritability and high polygenicity, 

major depression (σ2β=7.40e-6, s.d.=3.20e-7) and personality traits (σ2β=1.31e-5-6.24e-6) were less 

discoverable than other mental disorders (σ2β=3.37e-5-6.31e-5), general intelligence (σ2β=2.62e-5, 

s.d.=7.07e-7) and educational attainment (σ2β=1.40e-5, s.d.=2.81e-7). In contrast, height’s high heritability 

and low polygenicity meant that it was an order of magnitude more discoverable (σ2β=2.39e-4, s.d.=5.51e-

6).  

Power analysis revealed large differences in the statistical power of the current GWASs. Given its high 

discoverability and large sample size, height was the only GWAS sufficiently powered to explain over 50% 

of its h2
SNP at genome-wide significance, and a sample size of 3 million was predicted to explain 90% 

heritability. In contrast, all mental disorders and traits currently explained less than 10% h2
SNP and were 

estimated to require effective sample sizes of over 10 million participants to explain 90% heritability. Due 

to their low discoverability, major depression and personality traits required sample sizes of greater than 

60 million to discover 90% h2
SNP (Table S4; Figure S2).  

All univariate AIC differences were positive, indicating that the “causal mixture” model was a substantially 

better fit to the data than an infinitesimal model (AIC=2.22-12486.61). 
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Mental disorders by cognitive and personality traits 

Schizophrenia and BIP displayed divergent patterns of genetic correlations with intelligence and EDU 

despite their highly similar genetic architectures, in line with previous reports.9 Intelligence was more 

strongly negatively correlated with schizophrenia (rg=-0.24, sd=0.005) compared to BIP (rg=-0.09, 

sd=0.009) while EDU was more strongly positively correlated with BIP (rg=0.12, sd=0.008) than with 

schizophrenia (rg=0.02, sd=0.007). In contrast, MD was negatively correlated with both EDU (rg=-0.12, 

sd=0.007) and intelligence (rg=-0.04, sd=0.024). Genetic correlation of shared variants closely matched 

genome-wide genetic correlations for schizophrenia, BIP and MD. However, given ADHD’s lower 

polygenicity compared to cognitive traits, ‘causal’ variants shared between ADHD and each of intelligence 

and EDU were more strongly negatively correlated (rgs=-0.60, sd=0.03; rgs=-0.88, sd=0.04, respectively) 

than corresponding genome-wide genetic correlations (rg=-0.42, sd=0.012; rg=0.57, sd=0.007, 

respectively).  

LAVA results also showed prominent mixed effect directions between BIP, SCZ, MD and cognitive traits. 

Consistent with genetic correlations, there were fewer positively correlated loci for SCZ and intelligence 

(17/43, 40%) than BIP and intelligence (17/32, 53%), while there were more positively correlated loci for 

BIP and EDU (38/51, 75%) than for SCZ (42/70, 58%). MD and intelligence proportions were also 

consistent with MiXeR genetic correlations, with 17/44 positively correlated (39%). There was a 

predominance of positively correlated loci between MD and EDU (17/30, 57%), somewhat divergent from 

negative genetic correlations. Interestingly, we saw a similar pattern of a high proportion of negative local 

genetic correlation between ADHD and intelligence (0/1, 0%) and educational attainment (1/11, 9%), 

consistent with MiXeR genetic correlation of shared variants. 

Among mental disorders and personality traits, MD and neuroticism shared the strongest genetic correlation 

(rg=0.68, sd=0.006) but displayed the largest number of unique variants. There were 2.4K (sd=0.5K) unique 

neuroticism variants and 4.7K (sd=0.7K) unique MD variants. Accordingly, there was a marked difference 

between genome-wide genetic correlation (rg=0.68, sd=0.006) and genetic correlation of shared variants 
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(rgs=0.92, sd=0.04). MD was strongly negatively correlated with SWB (rg=-0.65, sd=0.008) but since there 

was almost complete genetic overlap, the genetic correlation of shared variants was comparable (rgs=-0.75, 

sd=0.03). All other analyses displayed moderate genetic correlations and extensive genetic overlap, 

indicative of a predominance of mixed effect directions. This was illustrated by the proportion of shared 

‘causal’ variants with concordant effects, which varied between 0.16 (sd=0.031) for ADHD and EDU and 

0.88 (sd=0.037) for MD and neuroticism.  

LAVA local correlations also showed a predominance of mixed effect directions between neuroticism and 

SCZ (31/45, 69%), BIP (15/25, 60%), and ADHD (4/6, 67%). Interestingly, there was a high proportion of 

loci with positive local genetic correlations between MD and NEUR, consistent with MiXeR estimates of 

the correlation of shared variants (55/58, 95%). There was less consistency between LAVA and MiXeR 

results for SWB. This is likely because there were few loci with significant local correlations due to the 

smaller sample size and lower heritability of SWB, including no significant loci with BIP. 0/11 had positive 

local correlations with SCZ (0%), 1/10 with MD (10%) and 1/2 with ADHD (50%). 

Height by mental disorders 

Since there were few shared variants, there were large differences between genome-wide genetic 

correlations and genetic correlations of shared variants. This was most pronounced for height and ADHD 

(rg=-0.09; rgs=-0.63). While this suggests that shared variants between these traits are highly correlated, the 

small number of shared variants (0.7K) represent a small proportion of explained variance for both traits 

and the precision of these estimates was low (Table S8). 

MiXeR simulations to evaluate effect of GWAS statistical power on MiXeR model fit 

We performed simulations to evaluate the effect of GWAS statistical power on MiXeR model fit (Table 

S3). These showed that MiXeR estimates were not reliable for GWAS with an equivalent statistical power 

of neffective ≤ 100,000 when h2
SNP ≤ 0.06 (i.e. neffective*h2

SNP ≤ 100,000*0.06). The precision of MiXeR 

estimates improved as power increased, supported by positive AIC differences. This indicates that AIC 
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differences are sensitive to changes in statistical power and successfully differentiate good model fit from 

bad model fit. 

Supplementary Discussion 

The p factor and GenomicSEM 

The extensive genetic overlaps observed among mental disorders may be consistent with the concept of the 

“p factor”, the hypothesised “single dimension of psychopathology”.10,11 However, genetic variants 

associated with the p factor would be expected to display a consistent effect direction across included 

disorders. This is better addressed by methodologies such as GenomicSEM, which constructs a common 

genetic factor across multiple phenotypes using genome-wide genetic correlations. However, 

GenomicSEM is unable to identify shared genetic variants in the context of mixed effect directions. Since 

we aimed to chart genetic overlap beyond genome-wide genetic correlation and accounting for mixed effect 

directions, we applied MiXeR and LAVA. 
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Supplementary Figures 

FIGURE S1. How does MiXeR work? ‘Causal’ variants for a single trait are represented by red stars, null variants 

are represented by green circles, blue squares represent causal variants for a second trait and yellow triangles 

represent shared causal variants. Effect sizes are represented on the “y-axis”. Venn diagrams: size of circles indicates 

polygenicity, colours illustrate genome-wide genetic correlation (rg, unique regions of Venn diagrams) and 

correlation of shared variants (rgs, shared region of Venn diagrams), numbers inside circles are estimated number of 

causal SNPs in 1000s. AIC = Akaike Information Criterion  
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FIGURE S2. Evaluating MiXeR model fit. MiXeR log-likelihood plots and conditional QQ plots for a. 

schizophrenia (SCZ) and height, b. SCZ and bipolar disorder (BIP) and c. BIP and autism spectrum 

disorder (ASD). i.) Log-likelihood plots plotting -log-likelihood (y-axis) against the modelled number of 

causal variants. The lowest point on the curve indicates the number of causal variants after parameter 

optimization. The minimum and maximum number of causal variants is represented by the minimum and 

maximum points along the x axis. The dotted lines represent each iteration of the analysis, and the solid 

line indicates the mean values across all 20 iterations. Note the y-axis scale differs across the 3 plots. a. 

Example of good model fit, with clear convergence of the log-likelihood function between the minimum and 

maximum possible overlap, supported by positive AIC differences when comparing modelled overlap versus 

minimum (AIC=19.18) and maximum overlap (AIC=147.86). b. Example of convergence towards 

maximum possible overlap. The AIC value was therefore positive when compared to minimum overlap 

(AIC=14.41), but not maximum overlap (AIC=-0.43). c. Example of poor model fit, with no clear 

convergence. The AIC was therefore negative for both minimum (AIC=-0.48) and maximum overlap 

(AIC=-0.67). ii. MiXeR modelled conditional QQ plots (dotted line) versus real-life conditional QQ plots 

(solid lines) for each pair of traits, visualising how accurately MiXeR model predictions map on to real-

life data. Model fit is qualitatively assessed, with deteriorating model fit from a) to c). 
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FIGURE S3. Univariate MiXeR Power plots. The estimated variance explained by genome-wide significant 

SNPs (y axis) plotted against effective sample size. The explained variance at current n for input GWASs is 

represented by the star symbol. The sample size required to explain 90% variance is represented by the 

circle and marked by the dashed line. 
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FIGURE S4. Density plots illustrating the number of variants with a given effect size (β) for each disorder 

(x and y axes) as modelled by MiXeR, from no variants (dark blue) to 1000 variants (yellow). Unique causal 

variants for a given disorder are illustrated by the horizontal and vertical lines along each axis. Shared 

variants are illustrated by variants within the four quadrants (i.e. non-null for both traits). Positive 

correlations are indicated by a predominance of variants within the top right and bottom left quadrants, 

representing concordant effects on the two disorders, as opposed to variants in the top left and bottom right 

quadrants which represent discordant effects on the two disorders.  
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FIGURE S5. Bivariate MiXeR conditional QQ plots showing real-life vs modelled cross trait enrichment 

and log-likelihood plots, plotting the adjusted negative log-likelihood function against the number of shared 

‘causal’ variants, constrained to minimum and maximum possible overlap. a. Mental disorders by mental 

disorders; b. Mental disorders by cognitive traits; c. Mental disorders by personality traits; d. General 

intelligence by educational attainment; e. Neuroticism by subjective well-being; f. Cognitive traits by 

personality traits; g. Height by mental disorders/cognitive traits/personality traits. 

 

a. Mental disorder by mental disorder 
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b. Mental disorder by cognitive traits 
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c. Mental disorders by personality traits 
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d. General intelligence by educational attainment 

 

e. Subjective well-being by neuroticism
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f. Cognitive traits by personality traits 
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g. Height by disorders/mental traits 
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