
Page 1 of 33 

Data supplement for Chand  et al., Schizophrenia Imaging Signatures and Their 
Associations With Cognition, Psychopathology, and Genetics in the General Population. 
Am J Psychiatry (doi: 10.1176/appi.ajp.21070686) 
 
 
 
 
 
 
 
Study samples    

The PHENOM sample comprises individuals (age range: 16-45 years) with established 

schizophrenia (n = 307) and healthy normal controls (n = 364) from our previous study (1) that 

includes data from the USA, Germany, and China. USA participants were recruited at the 

University of Pennsylvania and provided written informed consent under a protocol approved by 

the Institutional Review Board. Participant assessment was conducted by expert clinical 

investigators. Diagnostic assessment employed the Structured Clinical Interview for DSM-IV 

(SCID) and included review of clinical records. Participant exclusion criteria were a history of 

substance abuse in the past six months or a positive urine drug screen on the day of the study and 

medical or neurological disorder that may impact brain function. Healthy control participants 

were excluded if they met criteria for any DSM-IV psychiatric disorder. Scale for the 

Assessment of Positive Symptoms (SAPS) (2) and the Scale for the Assessment of Negative 

Symptoms (SANS) (3) were assessed for patients. In Germany, participants were recruited at 

Ludwig-Maximilians University following study approval from the ethics committee. 

Participants provided written informed consent. Patient assessments were carried out by expert 

clinicians. Assessment included the SCID for Axis I & II disorders (SCID-I/-II), a semi-

standardized clinical assessment of medical and psychiatric history, review of medical records 

and psychotropic medications, and the Positive and Negative Syndrome Scale (PANSS) (4) for 

disease severity and psychopathology. Individuals were excluded if they had other psychiatric 

and/or neurological diseases, past or present regular alcohol abuse, consumption of illicit drugs, 

past head trauma with loss of consciousness or electroconvulsive treatment, insufficient 

knowledge of German, IQ < 70, and age < 18 or > 65 years. Healthy controls with a positive 

familial history for mental illnesses (first degree relatives) were also excluded. In China, 

participants were recruited at Tianjin Medical University General Hospital following study 



Page 2 of 33 

approval from the ethics committee. Written informed consent was provided by each participant. 

Diagnosis of patients was assessed following the consensus of two clinical psychiatrists using 

DSM-IV/SCID. Inclusion criteria were 16–60 years of age and right-handedness. Exclusion 

criteria were MRI contraindications, pregnancy, history of systemic medical illness, central 

nervous system disorder and head trauma, and substance abuse within the last three months or 

lifetime history of substance abuse or dependence. For healthy control participants, the exclusion 

criteria were a history of psychiatric disease and first-degree relatives with a psychotic disorder. 

PANSS scores were assessed for patients for disease severity and psychopathology. 

 

The PNC is a large community-based collaborative study between the University of 

Pennsylvania and the Children’s Hospital of Philadelphia (5, 6). There were 9,498 participants 

who underwent clinical and cognitive phenotyping. Participants were proficient in English 

language and had no significant intellectual disability. Participant medical exclusion criteria were 

implanted metal, claustrophobia, malignancy, cystic fibrosis, immune disorders, renal or hepatic 

conditions, sickle cell anemia, epilepsy, stroke, head injury with loss of consciousness for more 

than five minutes, thyroid abnormalities, or other endocrine disorders. Medically healthy 

participants were selected for cross-sectional multimodal neuroimaging (n = 1,601, age 8-23 

years) from the pool of clinically- and cognitively- assessed participants after stratifying for age 

and sex. Clinical assessment of participants was carried out using a comprehensive computerized 

tool for structured evaluation of psychopathology domains (GOASSESS) (6, 7). There were 399 

participants who met psychosis-spectrum symptoms criteria while 428 were typically developing 

individuals. As in Calkins et al. (8, 9), we identified participants as psychosis-spectrum if they: 

1) had an age-deviant PRIME (10) total score  >= 2 standard deviation above age matched peers 

or had >= one PRIME item rated 6 or >= three items rated 5 (Somewhat Agree); 2) endorsed 

definite or possible hallucinations or delusions on the K-SADS psychosis screen (11); or 3) had 

an age-deviant total negative/disorganized SIPS (12) score >= 2 standard deviation above age-

matched peers. Typically developing participants lacked any significant psychopathology, and 

any history of psychoactive medication use or inpatient psychiatric treatment. After restricting 

the PNC sample to participants age >= 16 years old (to ensure based overlapping age with the 

PHENOM participants), our final PNC sample consisted of 181 psychosis-spectrum and 178 

typically developing individuals. 
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The UK Biobank (UKBB) is a large-scale study and an open access resource for neuroimaging, 

genetic, and cognitive datasets (13, 14). We selected UKBB participants from the 22,000 with 

neuroimaging released by 2019, with age below 50 years, based on their overlapping age with 

PHENOM. Among those n = 836, we used the ICD-9 codes (Field IDs 41271, 41203, 41205), 

ICD-10 codes (Field IDs 41270, 41202, 41204), and self-report (Field ID 20002) to determine 

the psychological disease burden on the study population. Included in our cohort, there are: zero 

participants diagnosed with schizophrenia (ICD-10 = {F20.0-F20.9}, ICD-9 = {2941, 2900-

2909}, self-report = {1289}); zero participants diagnosed with autism (ICD-10 = {F84.0-

F84.1}); zero participants diagnosed with Asperger’s disease (ICD-10 = {F84.5}); zero 

participants diagnosed with dementia/Alzheimer’s disease (ICD-10 = {F00.0-F00.9}, ICD-9 = 

{2950-2959}); fifty-four participants with self-reported depression (self-report = {1286}); 

twelve participants with self-reported anxiety (self-report = {1287}); one participant with self-

reported bipolar disorder (self-report = {1291}); two participants with self-reported history of 

self-harm (self-report = {1290}); and two participants with self-reported history of nervous 

breakdown (self-report = {1288}). Medication status (whether participants were ever prescribed 

a medication for unusual or psychotic experience) was also studied (Field ID 20466.0.0). Fluid 

intelligence (Field ID 20016.2.0) (available in 94.62% samples) and TMT-B (Field ID 6350.2.0) 

(available in 46.53% samples) cognitive tests were included in the main analysis based on 

availability of sample size. We performed exploratory analysis for digit symbol substitution 

(Field ID 23324.2.0) (19.38% available), numeric memory (Field ID 4282.2.0) (22.37% 

available), and matrix pattern completion (Field ID 6373.2.0) (19.38% available) due to small 

sample size. European ancestry was determined in participants by the UKBB study team. The 

UKBB provided a binary descriptive field in the UKBB dataset designating the status of 

genetically inferred Caucasian (Field ID 22006.0.0). Related individuals were not included in the 

analyses. Identical by descent (IBD) estimation was done using a threshold of 0.25 to remove up 

to second degree relatives. There were n = 671 individuals with European ancestry; this subset 

was used in the genetic analysis. This research has been conducted using the UKBB 

Resource under Application Number 35148.  
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For replication of recently found schizophrenia subtypes (1), we combined data from two 

previous study samples—Melbourne (Australia) (15) and Utrecht  (Netherlands) (16). The local 

Research and Ethics Committee in each location approved the study. In Melbourne data, there 

were 59 participants with schizophrenia and 83 normal control volunteers. Schizophrenia 

diagnoses were based on SCID and chart review using DSM criteria (DSM-III-R, DSM-IV). 

Healthy volunteers were recruited through advertisements and they had similar socio-

demographic areas as patients. All participants were screened for co-morbid medical and 

psychiatric conditions by clinical assessment, physical and neurological examination. Exclusion 

criteria were a history of significant head injury, seizures, electro-convulsive therapy during the 

six months prior to scan, polydipsia, neurological diseases, impaired thyroid function, steroid use 

or DSM criteria of alcohol or substance abuse or dependence. In Utrecht data, there were 90 

participants with schizophrenia and 115 normal control volunteers. Schizophrenia patients met 

DSM-IV criteria for schizophrenia and healthy controls met Research Diagnostic Criteria of 

never [being] mentally ill. The presence or absence of psychopathological abnormality was 

assessed by at least one independent trained rater. All participants provided written informed 

consent. The study was reviewed and approved by the local Medical Research and Ethics 

Committee of the University Medical Centre Utrecht. 

 

It is worth noting that the PNC age ranges 8-23 years, but we restricted it to 16 years and above 

for the main analysis because it would be challenging to harmonize the data if age range does not 

overlap or is very different between data sites. To include a reasonable number of samples (n = 

836, where 671 subjects were with European ancestry) from UKBB, we stretched the age limit 

up to 50 years. We did not study age beyond 50 years in the main analysis as this would impede 

our harmonization steps with PHENOM sample age ranges. In the replication study, where we 

did not need to harmonize data with PHENOM, we had age ranges from 16 to 57 years. 

 

Clinical measures 

To compare clinical profiles between signatures, GOASSESS (6, 7) psychopathology measures 

were studied in PNC. To provide a dimensional summary of the diverse psychopathology, a 

confirmatory factor analysis (17) was performed to orthogonally model four factors (mood, 

psychosis, externalizing, and phobias/fear) plus a general factor—overall psychopathology—that 
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represents the symptoms across all psychiatric classifications. The mood, psychosis, 

externalizing, and phobias/fear specific dimensions were also examined without 

orthogonalization using a correlated factors model. As these models combined all psychotic 

symptoms into single factors, we also explored psychosis-specific models where psychosis 

symptoms were modelled with a single overall factor, with two factors (positive and negative), 

and with three factors (positive, positive-delusion, and negative). 

 

Image acquisition and preprocessing 

In site 1 of PHENOM (USA), structural images were acquired on a 3T TIM TRIO scanner 

(Siemens, Erlangen, Germany) using T1-weighted 3D magnetization-prepared rapid acquisition 

with gradient echo sequences (MPRAGE) using the TR = 1810 ms, TE = 3.51 ms, TI = 1100 ms, 

flip angle = 9 degree, FOV = 240 mm x 180 mm, matrix = 256 × 192, slices = 160, and slice/skip 

thickness = 1 mm/0 mm. In site 2 of PHENOM (Germany), T1-weighted MPRAGE images were 

acquired on a 1.5 T Magnetom Vision scanner (Siemens, Erlangen, Germany) using the TR = 

11.6 ms, TE = 4.9 ms, FOV = 230 mm, matrix = 512 x 512, 126 contiguous axial slices of 1.5 

mm thickness, and voxel size = 0.45 x 0.45 x 1.5 mm3. In site 3 of PHENOM (China), images 

were acquired on a 3T MR system (Discovery MR750, General Electric, Milwaukee, WI, USA). 

Sagittal 3D T1-weighted images were acquired using a brain volume sequence (BRAVO) with 

the following parameters: TR = 8.2 ms, TE = 3.2 ms, TI = 450 ms, flip angle = 12 degree, FOV 

= 256 mm x 256 mm, matrix = 256 x 256, slice thickness = 1 mm, no gap, and 188 sagittal 

slices. In PNC, structural images were acquired on a Siemens 3T Tim Trio using MPRAGE with 

the following parameters: TR = 1810 ms, TE = 3.51 ms, TI = 1100 ms, FOV = 180 mm x 240 

mm, matrix = 256 x 192, slices = 160, flip angle = 9 degrees, voxel size = 0.9 x 0.9 x 1mm3. In 

UKBB, structural images were acquired on a Siemens 3T Skyra using MRPRAGE with the 

following parameters: TR = 2000 ms, TE = 2.01 ms, TI = 880 ms, FOV = 256 mm x 256 mm, 

slices = 208, flip angle = 8 degrees, voxel size = 1 x 1 x 1mm3. In Melbourne (Australia) data, 

participants were scanned using the GE Signa 1.5 T scanner (GE, Milwaukee). A 3D volumetric 

spoiled-gradient recalled echo in the steady state sequence generated 124 continuous, 1.5 mm 

coronal slices. The following imaging parameters were used: TE = 3.3 mm, TR = 14.3 mm, flip 

angle =30 degree, matrix size = 256 x 256, FOV = 240 mm x 240 mm, voxel dimension = 0.94 x 

0.94 x 1.5 mm3. . In Utrecht (Netherlands) data, structural MRI scans of the whole brain were 
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obtained on a 1.5 T Achieva scanner (Philips, Netherlands). 3D T1-weighted coronal spoiled-

gradient echo scan of the whole head (256 × 256 matrix, TE = 4.6 ms, TR = 30 ms, flip angle = 

30 degree, 160–180 contiguous slices; 1 × 1 × 1.2 mm3 voxel size, FOV = 256 mm) was 

acquired. Across all sites, images were quality checked for motion, image artifacts, or restricted 

field-of-view, and corrected for magnetic field inhomogeneity (18). MUSE (19) was used to 

segment each individual’s images into anatomical regions of interest, which consist of gray 

matter, white matter, and cerebrospinal fluid regions, and regional volumes were computed. 

Voxel-wise regional volumetric maps (20) for gray matter and white matter were generated by 

registering skull-stripped T1-images to MNI common space using a deformable registration 

method (21). 

 

Inter-site image harmonization and correction of covariates  

Potential site differences between images could be driven by a variety of factors, including 

scanners and acquisition parameters. Indeed, the literature includes methods for image-level 

harmonization using advanced machine learning/deep learning models aiming to remove 

variations by the parameters through complex nonlinear transformation in the data distribution 

(22, 23). However, such models often require repeated images scanned under various scanner 

parameters and often do not protect for biological variations driven by different sample 

characteristics and demographics across sites. Such models would be challenging to apply with 

the number of site/scanner parameter combinations included in our data. For our analyses, we 

have rigorously preprocessed imaging data using the MUSE (19) pipeline, extracted volumes of 

brain regions, and spatially registered voxel-wise regional volumetric maps (20) using the same 

spatial resolution (MNI space) for all sites and all subjects. By design, this method utilizes an 

ensemble of atlases coming from different scanners, field strengths, and acquisition protocols, 

which renders the method quite robust to such confounds compared to other methods (24). 

Hence, instead of trying to correct for all combinations of scanner/protocol parameters, we chose 

to use regression-based statistical harmonization models and estimate site effects by accounting 

for site indicators. This is to: 1) deal with the remaining systematic error on the top of the 

processing steps involved in the MUSE and voxel-wise regional volumetric maps pipelines; 2) 

allow explicit estimates of site differences as well as other covariate effects. Some state-of-the-

art approaches using statistical harmonization (rather than image-level parameters 
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harmonization) are the ComBat-related methods (25, 26), which explicitly model the site effects 

as additive and multiplicative on the errors. We did not employ ComBat methods, because 

exploratory analysis indicates that our original PHENOM data did not show significant variance 

differences in the scales of the regions of interest volumes with PNC (Brown Forsythe’s test, p = 

0.12) and UKBB (Brown Forsythe’s test, p = 0.50), but only in the mean shifts. Hence to be 

consistent with our earlier study by Chand et al. (1) so that the controls-schizophrenia subtype 

models can be applied adequately to the test datasets (PNC and UKBB) to estimate 

schizophrenia signature expressions, we chose to perform a linear correction that only accounts 

for the additive site effects, but not the multiplicative site effects. This approach was consistently 

applied at both regions of interest and voxel-level. A schematic of our harmonization approach is 

presented below: 

 
 

Schematic of harmonization steps: Regression coefficients for covariates 

(age, sex, sites) are computed from controls of all sites and then applied to 

data from each site to obtain the harmonized regions of interest (ROI) 

volume or voxel-wise tissue (gray matter or white matter) maps. 

 

Identifying the presence of schizophrenia imaging signatures and defining subgroups 

Schizophrenia neuroanatomical dimensional model parameters—weight (W) and bias (b) 

parameters—were estimated from the PHENOM schizophrenia and control samples using 

HYDRA (27). HYDRA parses disease heterogeneity by clustering cases through their 

associations with different faces of hyperplanes (decision boundaries) relative to the controls. 

HYDRA initializes the assignments of cases into clusters by sampling K-unit length hyperplanes 
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considering the space of pairwise differences between cases and controls. The K-hyperplanes are 

sampled using determinantal point processes (28) and are used to estimate initial clustering 

assignments (S-). While the estimated solution may vary depending on the initialization, a multi-

initialization strategy is implemented. The final clustering results are accomplished based on a 

consensus of clustering solutions. The HYDRA algorithm can be summarized as:  

 

Input: X  Rn x d, Y  {-1, +1}n (training signals with ‘n’ participants, ‘d’ imaging features), K 

(number of subtypes)  

Output: W  Rd x K, b  R1 x K (classifier); S- (clustering assignment) 

Initialization: Initialize S- 

Loop: Repeat until convergence (or a fixed number of iterations) 

        Fix S-, solve for W and b  

        Fix W and b, solve for S- 

The above analysis was carried out using 50 iterations between estimating hyperplanes and 

cluster estimation, 20 clustering consensus steps, and 0.25 regularization parameter. It is 

important to note that HYDRA internally performs many rounds of randomized K-fold leave-out 

procedures to assign subjects into clusters K-many times. Each of these K clustering results 

yields different sets of W's and b's that yield those clusters. HYDRA then performs a consensus 

step to harmonize the K different clustering assignments to generate a single cluster output for all 

subjects. In this step, the W's and b's that yielded the K clustering are lost. Therefore, to apply 

the HYDRA model to out of sample subjects, it is necessary to re-train the HYDRA decision 

boundary with the final clustering outputs to generate a final W and b to predict new samples. 

This last step does not change the optimal clusters in the training set but enables us to transfer 

this model to out of sample test data. HYDRA was applied to the PHENOM control and 

schizophrenia samples using the volumes of 145 anatomical regions of interest (Table S1), 10-

fold cross-validation approach was performed to protect against overfitting, and the two optimal 

and distinct schizophrenia dimensions were identified. The optimal parameters—“W” that 

consists of the weight of all regions of interest and “b” that captures the associated bias term—

that best separate the controls from the two schizophrenia signatures were then applied to the 

harmonized PNC and UKBB datasets, respectively, where the same 145 regions of interest 

volume features were considered. The test data (PNC or UKBB) were not touched during 
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HYDRA training so that this procedure protects against overfitting. Mathematically, 

“expression” (E) of schizophrenia signatures can be written via distance from respective 

hyperplanes of support-vector machine learning methods (27, 29) as, 

Ei = Wi
T X + bi  

where, X is the feature matrix (volumes of regions of interest) of PNC or UKBB participants. 

Since controls are assigned as ‘-1’ and schizophrenia patients as ‘+1’ during HYDRA training, Ei 

< 0 indicates none of schizophrenia signatures along dimension ‘i’, and Ei > 0 indicates 

schizophrenia signature along dimension ‘i’. Based on these expressions, each participant was 

thus assigned to one of these subgroups, S1 (E1 > 0, E2 < 0), S2 (E1 < 0, E2 > 0), None (E1 < 0, E2 

< 0) and S1+S2 (E1 > 0, E2 > 0), and placed in a two-axis framework for visualization. Note, a 

participant in ‘S1+S2’ group has positive signatures along both dimensions (E1 > 0, E2 > 0). 

Typically, as in our original schizophrenia analysis (1) or clustering studies (27) each participant 

is assigned to a single category based on the relative distance from hyperplanes. In the present 

study, however, in order to fairly compare proportions of samples across three studies (PNC, 

UKBB, and PHENOM), schizophrenia signatures were estimated for PHENOM samples in the 

same way as in PNC and UKBB. Specifically, to evaluate the strength of schizophrenia 

expressions, here we did not force the “mixed” participants into a single category but instead left 

them as ‘S1+S2’ participants, as we were interested in examining “pure” S1 or S2 subgroups by 

excluding the mixed subgroup. Although the ‘S1+S2’ subgroup is interesting, due to the small 

sample size of this group, especially in PNC dataset, the brain voxel-wise, cognitive, clinical, 

and genetic comparisons were mainly focused on ‘None’, ‘S1’ and ‘S2’ subgroups.  

 

MIDAS 

The voxel-wise volumetric profiles between the groups were assessed using MIDAS (30) for 

visualization purposes of signatures. MIDAS determines the optimal regional smoothing and 

provides higher sensitivity and specificity in identifying group alterations compared to other 

existing methods, such as standard voxel-based morphometry analysis using general linear 

models, where use of an a priori fixed smoothing kernel [e.g., 6-12 mm full width half maximum 

(FWHM) in general] is a prerequisite. To alert the reader that we are not using the more common 

(but we believe less-optimal) approach, we referred to our methodology as voxel-wise 

volumetric analysis instead of standard voxel-based morphometry. MIDAS parses any set of 
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image maps using a sufficiently large set of overlapping neighborhoods (P), and performs 

regional discriminative analysis based on least squares support vector machines, which aims to 

relate the imaging features X ∈ Rn x m (‘n’ participants and ‘m’ dimensional imaging features) 

with group variable Y ∈ Rn via a weight vector (w). The regional volumetric pattern that 

optimally discriminates between groups is equivalent to filtering locally by an optimal kernel 

whose coefficients are the weights of the discriminant. For a particular voxel ‘i’, statistic (S) is 

computed by modulating the total contribution of each voxel to the estimated local activation 

patterns (a) with the total predictive power of the respective machine learners: 

si = 
∑ 𝑎𝑖

𝑝𝑃
𝑝=1

∑ ∥𝑤𝑝∥2
2𝑃

𝑝=1
   

where, 𝑎 ∝  
1

𝑛
(𝑋 − �̅�)𝑇(𝑋 − �̅�)𝑤, and ∑ ∥ 𝑤𝑝 ∥2

2𝑃
𝑝=1  is the sum of the inverse predictive power 

of all learners, in which voxel ‘i’ participates. The statistical significance p-value corresponding 

to the voxel statistic is analytically achieved by approximating permutation tests. The voxel-wise 

regional volumetric maps (20) of gray matter or white matter with dimensions 182 x 218 x 182 

were used to evaluate the neuroanatomical differences between the groups. In MIDAS analysis, 

15 neighborhood radii in voxels, 500 neighborhoods, and 0.1 regularization parameter were used. 

The voxel-wise statistical significance values (p-values) between signatures (subgroups) were 

extracted from MIDAS calculations, and false discovery rate (FDR) was used to correct for 

multiple comparisons across the voxels. The map of statistically significant regions (FDR-p < 

0.05) was then used as a mask for the effect size (Cohen’s d) maps in order to display the 

significant differences between signatures. 

 

Schizophrenia signatures excluding participants who endorse full psychotic-level symptoms 

We conducted additional sensitivity analyses, excluding the individuals rated as threshold 

severity on one or more GOASSESS psychosis items (n = 47 psychosis-spectrum participants). 

In the remaining 134 psychosis-spectrum, the patterns of results were very similar in terms of the 

pattern of effect sizes, although statistical significance was somewhat reduced as expected given 

lower sample size. In this reduced psychosis-spectrum sample, the prevalence of signature 1, 

signature 2, both signatures, and ‘None' was 38.81%, 17.16%, 8.21%, and 35.82%, respectively 

(in the full psychosis-spectrum sample it was 39.78%, 14.36%, 8.29%, and 37.57%; see Figure 

1A in main text). Psychosis-spectrum youths in the reduced sample still displayed significantly 
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higher signature 1 prevalence than typically developing youths (p < 0.05), and the frequency 

difference between psychosis-spectrum and typically developing was still not significant for 

signature 2, both signatures, and ‘None’. The effect size of the relationship between CNB 

cognitive performance and the two signatures was also similar in the reduced psychosis-spectrum 

sample (efficiency S1 ρ =-0.22, S2 ρ = 0.15; accuracy S1 ρ =-0.21, S2 ρ = 0.05; speed S1 ρ =-

0.14, S2 ρ =0.17) compared to the original psychosis-spectrum sample (efficiency S1 ρ =-0.25, 

S2 ρ = 0.12; accuracy S1 ρ =-0.25, S2 ρ = 0.02; speed S1 ρ =-0.14, S2 ρ =0.15). Moreover, 

across the new combined (typically developing + reduced psychosis-spectrum) sample, signature 

1 expression remained negatively associated with global cognitive performance efficiency (ρ = -

0.25; p < 0.05), accuracy (ρ = -0.20; p < 0.05), and speed (ρ = -0.16; p < 0.05), whereas 

stronger signature 2 expression correlated positively with higher efficiency (ρ = 0.13; p < 0.05) 

and speed (ρ = 0.13; p < 0.05) while positive correlation did not reach significance level with 

accuracy. Compared to signature 2, signature 1 had lower efficiency (z-stat = -3.97; p < 0.05), 

accuracy (z-stat = -2.77; p < 0.05), and speed (z-stat = -2.44; p < 0.05). Compared to those with 

neither schizophrenia signature, signature 1 individuals also had lower efficiency (z-stat = -4.20; 

p < 0.05), accuracy (z-stat = -3.48; p < 0.05), and speed (z-stat = -2.76; p < 0.05). Signature 2 

did not differ significantly from individuals with neither of schizophrenia signatures in 

efficiency, accuracy, and speed. These results were consistent with the findings shown in Figure 

2 (main text). Thus, it is unlikely that our results are explainable by the minority of psychosis-

spectrum participants who may have frank psychosis. 

 

Schizophrenia signature prevalence in other psychopathology  

We explored other psychopathology individuals (n = 239, age 16-23 years) from the PNC who 

were neither typically developing nor psychosis-spectrum (11). Prevalence of schizophrenia 

signature 1, signature 2, both signatures, and none of schizophrenia signatures ('None') was 

27.62%, 22.18%, 9.2%, and 41%, respectively. Signature 1 prevalence in other psychopathology 

individuals (27.62%) was significantly lower than that of psychosis-spectrum (39.78%) (p < 

0.05), but slightly greater than that of typically developing (23.03%) with no significant 

difference. Signature 2 prevalence in other psychopathology individuals (22.18%) was not 

statistically different than that of typically developing (24.16%) or psychosis-spectrum (14.36%) 

(p > 0.05). These findings provide some support for relative specificity for signature 1 since its 
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prevalence is greater in psychosis-spectrum than in those with “other psychopathology”. Detailed 

studies will be needed to fully evaluate diagnostic and dimensional specificity in the future.  

 

Schizophrenia signature prevalence in PNC younger participants 

We further explored neuroanatomical schizophrenia signatures in PNC (typically developing and 

psychosis-spectrum) participants below 16 years old. There were n = 393 participants >=10 years 

old and below 16 years old (185 typically developing and 208 psychosis-spectrum) in PNC. In 

typically developing individuals, prevalence of schizophrenia signature 1, signature 2, both 

signatures, and none of schizophrenia signatures ('None') was 22.16%, 23.24%, 5.41%, and 

49.19%, respectively. In psychosis-spectrum individuals, prevalence of signature 1, signature 2, 

both signatures, and ‘None' was 39.42%, 16.83%, 9.62%, 34.13%, respectively. These results 

were consistent with the prevalence of schizophrenia signatures presented in Figure 1A for age 

16-23 years. Although similar prevalence in both age ranges, these results should be interpreted 

with caution because the original PHENOM models were not derived from participants of this 

age group.  

 

Schizophrenia signature prevalence in UKBB older participants 

We also explored the neuroanatomical schizophrenia signatures in UKBB participants up to age 

55 years (n = 3,844). Prevalence of schizophrenia signature 1, signature 2, both signatures, and 

none of schizophrenia signatures ('None') was 24.92%, 20.66%, 9.16%, and 45.26%, 

respectively, and these results were similar with the main results in Figure 3A (below age 50 

years). Although results stayed similar with varied ages, these results should be interpreted with 

caution, mainly because original PHENOM “schizophrenia signatures” were not derived from 

individuals of this age range.  
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TABLE S1. MUSE (19) anatomical regions of interest used to derive schizophrenia signature 

expressions (L: Left hemisphere; R: Right hemisphere; WM: White matter). 

 
3rd ventricle Ventral diencephalon (R) Anterior insula (L) 

4th ventricle Ventral diencephalon (L) Anterior orbital gyrus (R) 

Accumbens area (R) Cerebellar vermal lobules I-V Anterior orbital gyrus (L) 

Accumbens area (L) Cerebellar vermal lobules VI-VII Angular gyrus (R) 

Amygdala (R) Cerebellar vermal lobules VIII-X Angular gyrus (L) 

Amygdala (L) Basal forebrain (R) Calcarine cortex (R) 

Brain Stem Basal forebrain (L) Calcarine cortex (L) 

Caudate (R) Frontal lobe WM (R) Central operculum (R) 

Caudate (L) Frontal lobe WM (L) Central operculum (L) 

Cerebellum exterior (R) Occipital lobe WM (R) Cuneus (R) 

Cerebellum exterior (L) Occipital lobe WM (R) Cuneus (L) 

Cerebellum WM (R) Parietal lobe WM (R) Entorhinal area (R) 

Cerebellum WM (L) Parietal lobe WM (L) Entorhinal area (L) 

Hippocampus (R) Temporal lobe WM (R) Frontal operculum (R) 

Hippocampus (L) Temporal lobe WM (L) Frontal operculum (L) 

Inferior lateral ventricle (R) Fornix (R)  Frontal pole (R) 

Inferior lateral ventricle (L) Fornix (L) Frontal pole (L) 

Lateral ventricle (R) Anterior limb of internal capsule (R) Fusiform gyrus (R) 

Lateral ventricle (L) Anterior limb of internal capsule (L) Fusiform gyrus (L) 

Pallidum (R) 
Posterior limb of internal capsule including 
cerebral peduncle (R) Gyrus rectus (R) 

Pallidum (L) 
Posterior limb of internal capsule including 
cerebral peduncle (L) Gyrus rectus (L) 

Putamen (R) Corpus callosum Inferior occipital gyrus (R) 

Putamen (L) Anterior cingulate gyrus (R) Inferior occipital gyrus (L) 

Thalamus proper (R) Anterior cingulate gyrus (L) Inferior temporal gyrus (R) 

Thalamus proper (L) Anterior insula (R) Inferior temporal gyrus (L) 
 

Lingual gyrus (R) Occipital fusiform gyrus (L) Subcallosal area (R) 

Lingual gyrus (L) Opercular part of inferior frontal gyrus (R) Subcallosal area (L) 

Lateral orbital gyrus (R) Opercular part of inferior frontal gyrus (L) Superior frontal gyrus (R) 

Lateral orbital gyrus (L) Orbital part of inferior frontal gyrus (R) Superior frontal gyrus (L) 

Middle cingulate gyrus (R) Orbital part of inferior frontal gyrus (L) Supplementary motor cortex (R) 

Middle cingulate gyrus (L) Posterior cingulate gyrus (R) Supplementary motor cortex (L) 

Medial frontal cortex (R) Posterior cingulate gyrus (L) Supramarginal gyrus (R) 

Medial frontal cortex (L) Precuneus (R) Supramarginal gyrus (L) 

Middle frontal gyrus (R) Precuneus (L) Superior occipital gyrus (R) 

Middle frontal gyrus (L) Parahippocampal gyrus (R) Superior occipital gyrus (L) 

Middle occipital gyrus (R) Parahippocampal gyrus (L) Superior parietal lobule (R) 

Middle occipital gyrus (L) Posterior insula (R) Superior parietal lobule (L) 

Medial orbital gyrus (R) Posterior insula (L) Superior temporal gyrus (R) 

Medial orbital gyrus (L) Parietal operculum (R) Superior temporal gyrus (L) 

Postcentral gyrus medial segment (R) Parietal operculum (L) Temporal pole (R) 

Postcentral gyrus medial segment (L) Postcentral gyrus (R) Temporal pole (L) 

Precentral gyrus medial segment (R) Postcentral gyrus (L) 
Triangular part of the inferior frontal 
gyrus (R) 

Precentral gyrus medial segment (L) Posterior orbital gyrus (R) 
Triangular part of the inferior frontal 
gyrus (L) 

Superior frontal gyrus medial segment 
(R) Posterior orbital gyrus (L) Transverse temporal gyrus (R) 

Superior frontal gyrus medial segment 
(L) Planum polare (R) Transverse temporal gyrus (L) 

Middle temporal gyrus (R) Planum polare (L) 

Middle temporal gyrus (L) Precentral gyrus (R) 

Occipital pole (R) Precentral gyrus (L) 

Occipital pole (L) Planum temporale (R) 

Occipital fusiform gyrus (R) Planum temporale (L) 
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FIGURE S1. Validation datasets (n = 347; 198 healthy normal controls and 149 schizophrenia 

patients) from Melbourne (Australia) and Utrecht (Netherlands). A) Total volume of MUSE 

regions of interest (ROIs) before harmonization (Raw) where sites are significantly different (p = 

5.45x10-6), and B) Total volume of MUSE regions of interest after site, age, and sex correction 

(Harmonized) demonstrating our harmonization approach diminishes site differences (p = 0.23). 
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FIGURE S2. Replication dataset. A) HYDRA results demonstrating two schizophrenia 

subtypes are highly stable [demonstrating a high adjusted Rand index (ARI) of 0.75] in 

independent datasets from Melbourne (Australia) and Utrecht (Netherlands), and B) MIDAS 

results demonstrate voxel-based comparisons of regional gray matter volumes between 

schizophrenia type 1 or type 2, compared to normal control group. Compared to controls, 

schizophrenia type 1 individuals were characterized by widespread reduction of gray matter 

volumes, especially in the thalamus, nucleus accumbens, medial temporal, medial 

prefrontal/frontal and insular cortices, whereas schizophrenia type 2 individuals were 

characterized by increased striatal volumes. These findings replicated our previous findings (1) 

in the present two independent datasets. C) Reproducibility analysis: Our previous models (1) 

were also applied to the replication data, and schizophrenia type 1 and schizophrenia type 2 were 

predicted. Voxel-based comparisons of regional gray matter volumes between controls and 

predicted schizophrenia type 1 or type 2 were consistent with B). (Cohen's d effect size maps 

were generated by masking MIDAS results after FDR-correction over voxels at p < 0.05). 
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FIGURE S3. Voxel-based comparisons of regional white matter volumes between individuals 

expressing primarily signature 1 (S1) or signature 2 (S2), compared to individuals expressing 

none of these two signatures, in PNC youth are displayed for purely visualization purposes. S1 

was characterized by widespread reductions of white matter volumes, whereas S2 was 

characterized by increased white matter volumes mainly in the internal capsule. (Cohen's d effect 

size maps were generated by masking MIDAS results after FDR-correction over voxels at p < 

0.05). 
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FIGURE S4. Voxel-based comparisons of regional gray matter or white matter volumes 

between individuals expressing primarily signature 1 (S1) or signature 2 (S2), compared to 

individuals expressing none of these two signatures, for typically developing and psychosis-

spectrum separately, are displayed for visualization purposes. S1 was characterized by 

significantly reduced gray matter volumes in prefrontal, temporal, and peri-Sylvian regions, 

whereas S2 was characterized by increased striatal volumes. S1 was also characterized by 

widespread reductions in white matter volumes, whereas S2 was characterized by increased 

white matter volumes primarily in the internal capsule. (Cohen's d effect size maps were 

generated by masking MIDAS results after FDR-correction over voxels at p < 0.05). 
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FIGURE S5.  Prevalence of signature 1 (S1) and signature 2 (S2) expressions in the PHENOM 

samples consisting of schizophrenia and normal control participants. 
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FIGURE S6. Voxel-based comparisons of regional gray matter volumes exploring potential 

protective/compensatory structural features in healthy individuals who express schizophrenia-

related signatures but do not exhibit psychotic symptoms. In PNC, A) Compared to psychosis-

spectrum S1, typically developing S1 was characterized by larger gray matter volumes in 

prefrontal, temporal, and peri-Sylvian regions, and B) Compared to psychosis-spectrum S2, 

typically developing S2 was characterized by smaller striatal volumes but larger gray matter 

volumes in other regions. In PHENOM, C) Compared to schizophrenia S1, normal control S1 

was characterized by larger gray matter volumes in prefrontal, temporal, and peri-Sylvian 

regions, and D) Compared to schizophrenia S2, normal control S2 was characterized by smaller 

striatal volumes but larger gray matter volumes in other regions. (Cohen's d effect size maps 

were generated by masking MIDAS results). 
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FIGURE S7. Comparison of signature expression strength between typically developing and 

psychosis-spectrum in PNC, and normal control and schizophrenia in PHENOM. In PHENOM, 

both signature 1 (S1) and signature 2 (S2) are expressed more strongly in schizophrenia than 

normal controls (*: p < 0.05), but in PNC there was no significant group difference (typically 

developing vs. psychosis-spectrum) in expression strength for S1 or S2.  

 



Page 21 of 33 

 
 

FIGURE S8. Exploratory domain-specific cognitive efficiency comparison between signatures 

in PNC: Signature 2 (S2) performed significantly better than signature 1 (S1) in complex 

reasoning, episodic memory, executive, and social cognition domains (*: p < 0.05).  
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FIGURE S9. Differences in cognitive efficiency, accuracy, and speed between signatures, 

separately for typically developing (top) and psychosis-spectrum (bottom). In both typically 

developing and psychosis-spectrum, signature 2 (S2) performed better than signature 1 (S1) (*: p 

< 0.05). 
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TABLE S2. Clinical and educational profiles between signature 1 (S1) and signature 2 (S2) in 

PNC (typically developing participants) (Note: none of these measures are significant).  

 
Variable S1 

(N=41) 
S2 

(N=43) 
S1 vs. S2 
p-value  

 

Education, mean years (SD) 11.73 (1.43) 11.37 (1.54) 0.23 

Mood, four factors, mean (SD)   -0.11 (1.16) -0.15 (0.88) 0.80 

Psychosis, four factors, mean (SD)   -0.24 (0.91) -0.51 (0.84) 0.86 

Externalizing, four factors, mean (SD)   -0.30 (0.76) -0.16 (0.92) 0.41 

Phobias/fear, four factors, mean (SD)  -0.03 (0.88) -0.16 (0.80) 0.44 

Overall psychopathology, four factors, mean 
(SD)   

-0.42 (0.83) -0.34 (0.77) 0.46 

Mood, correlated factors, mean (SD)   -0.41 (0.81) -0.36 (0.69) 0.51 

Psychosis, correlated factors, mean (SD)   -0.42 (0.79) -0.38 (0.73) 0.65 

Externalizing, correlated factors, mean (SD)   -0.48 (0.77) -0.34 (0.79) 0.43 

Phobias/fear, correlated factors, mean (SD)   -0.35 (0.76) -0.35 (0.74) 0.99 

Overall psychosis, mean (SD) -0.69 (0.61) -0.72 (0.60) 0.75 

Positive, two factors, mean (SD) -0.69 (0.60) -0.69 (0.54) 0.84 

Negative, two factors, mean (SD) -0.58 (0.73) -0.62 (0.68) 0.86 

Positive, three factors, mean (SD) -0.71 (0.56) -0.71 (0.53) 0.83 

Positive delusional, three factors, mean (SD) -0.57 (0.68) -0.57 (0.58) 0.68 

Negative, three factors, mean (SD) -0.55 (0.75) -0.60 (0.70) 0.99 

Psychoactive medication, Yes, N (%) 5 (12.20%) 10 (23.26%) 0.63 

 
 
 
 
 
 
 



Page 24 of 33 

TABLE S3. Clinical and educational profiles between signature 1 (S1) and signature 2 (S2) in 

PNC (psychosis-spectrum participants) (Note: none of these measures are significant after 

multiple comparisons). 

 
Variable S1 

(N=72) 
S2 

(N=26) 
S1 vs. S2 
p-value  

Education, mean years (SD) 10.54 (1.68) 10.31 (1.91) 0.32 

Mood, four factors, mean (SD)   0.19 (1.05) 0.66 (1.16) 0.04 

Psychosis, four factors, mean (SD)   0.70 (1.14) 0.58 (1.00) 0.64 

Externalizing, four factors, mean (SD)   -0.06 (0.89) 0.17 (0.88) 0.43 

Phobias/fear, four factors, mean (SD)  -0.07 (1.12) -0.03 (1.09) 0.95 

Overall psychopathology, four factors, mean 
(SD)   

1.24 (0.56) 1.19 (0.66) 0.80 

Mood, correlated factors, mean (SD)   1.12 (0.74) 1.29 (0.79) 0.29 

Psychosis, correlated factors, mean (SD)   1.32 (0.53) 1.23 (0.64) 0.67 

Externalizing, correlated factors, mean (SD)   0.83 (0.78) 0.92 (0.59) 0.49 

Phobias/fear, correlated factors, mean (SD)   0.75 (0.87) 0.77 (0.81) 0.79 

Overall psychosis, mean (SD) 1.22 (0.70) 1.04 (0.81) 0.52 

Positive, two factors, mean (SD) 1.21 (0.75) 1.01 (0.91) 0.54 

Negative, two factors, mean (SD) 1.10 (0.98) 1.38 (0.99) 0.18 

Positive, three factors, mean (SD) 1.26 (0.72) 1.04 (0.87) 0.32 

Positive delusional, three factors, mean (SD) 0.96 (1.03) 0.83 (1.10) 0.69 

Negative, three factors, mean (SD) 1.05 (0.97) 1.40 (1.15) 0.09 

Psychoactive medication, Yes, N (%) 12 (16.67%) 6 (23.08%) 0.9 
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FIGURE S10. Voxel-based comparisons of regional white matter volumes between individuals 

expressing primarily signature 1 (S1) or signature 2 (S2), compared to individuals expressing 

none of these two signatures, in UKBB are displayed for purely visualization purposes. S1 was 

characterized by widespread reductions of white matter volumes, whereas S2 was characterized 

by increased white matter volumes mainly in the internal capsule. (Cohen's d effect size maps 

were generated by masking MIDAS results after FDR-correction over voxels at p < 0.05). 
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FIGURE S11. Differences in cognitive performance across neuroanatomical signatures in 

UKBB dataset: participants with schizophrenia signature 2 (‘S2’) and ‘None’ took relatively 

shorter time to complete trail-making test part-B (TMT-B) task than those with schizophrenia 

signature 1 (‘S1’) and those with both signatures ‘S1+S2’ (*: p < 0.05). 
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FIGURE S12. Differences in fluid intelligence performance across neuroanatomical signatures 

in UKBB dataset: participants with schizophrenia signature 1 (‘S1’) performed worse than those 

with other signatures (*: p < 0.05). 
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TABLE S4. Clinical, educational, and cognitive profiles between neuroanatomical signature 1 

(S1) and signature 2 (S2) in UKBB (N/A: Statistical comparisons were not carried out for 

measures with small sample size; and note that none of these measures are significant after 

multiple comparisons correction). 

 
Variable S1  

(N=203) 
S2  

(N=170) 
S1 vs. S2 
p-value 

Education, mean years (SD), N 13.50 (1.58), 198 10.36 (1.79), 168 0.12 

Self-reported depression, Yes (%), N 11 (8.87%), 124 16 (17.20%), 93 0.07 

Self-reported anxiety, Yes (%), N 5 (4.03%), 124 4 (4.30%),124 N/A 

Self-reported nervous breakdown, Yes (%), N 0 (0%), 124 2 (2.15%),93 N/A 

Self-reported self-harm, Yes (%), N 0 (0%), 124 1 (1.08%), 93 N/A 

Diastolic blood pressure, mean mm Hg (SD), N 78.84 (10.79), 176 77.19 (9.91), 150 0.12 

Systolic blood pressure, mean mm Hg (SD), N 129.14 (15.12), 176 127.89 (16.35), 150 0.29 

Current tobacco smoking, Yes (%), N 28 (13.79%), 203 8 (4.71%), 170 N/A 

Maternal smoking around birth, Yes (%), N 54 (30.00%), 180 40 (26.49%), 151 0.48 

Vascular heart problems diagnosed by doctor, 
Yes (%), N 

14 (6.90%), 203 14 (8.24%), 170 0.63 

Smoking status, Yes (%), N  75 (37.13%), 202 48 (28.24%), 170 0.07 

Alcohol drinker status, Yes (%), N 191 (94.09%), 203 167 (98.24%), 170 0.04 

Ever taken cannabis, Yes (%), N 49 (34.27%), 143 48 (40.34%), 119 0.31 

Body mass index, mean (SD), N 26.07 (4.67), 202 26.52 (4.50), 169 0.18 

Ever depressed for a whole week, Yes (%), N 68 (57.63%), 118 54 (66.67%), 81 0.20 

Number of depression episodes, mean (SD), N 3.24 (3.57), 58 8.40 (28.76), 50 0.89 

Illness injury bereavement stress in last 2 
years, Yes (%), N 

92 (45.32%), 203 76 (44.97%), 169 0.94 

Neuroticism score, mean (SD), N 4.46 (3.43), 202 4.55 (3.46), 169 0.85 

Lifetime number of depressed periods, Yes 
(%), N 

40 (54.05%), 74 33 (56.90%), 58 0.74 

Ever heard an unreal voice, Yes (%), N 4 (2.78%), 144 5 (4.20%), 119 N/A 

Ever believed in an unreal conspiracy against 
self, Yes (%), N 

2 (1.39%), 144 3 (2.52%), 119 N/A 

Ever seen an unreal vision, Yes (%), N 2 (1.40%), 143 7 (5.93%), 118 N/A 

Ever believed in unreal communications or 
signs, Yes (%), N 

0 (0%), 144 2 (1.68%), 119 N/A 

Ever talked to a health professional about 
unusual or psychotic experiences, Yes (%), N 

3 (50%), 6 4 (33.33%), 12 N/A 

Ever prescribed a medication for unusual or 
psychotic experience, Yes (%), N 

2 (33.33%), 6 3 (25%), 12 N/A 

Digit symbol substitution test, mean (SD), N 21.72 (0.81), 43 22.68 (0.77), 35 0.36 

Numeric memory, mean (SD), N 6.90 (0.19), 52 7.05 (0.21), 41 0.75 

Matrix pattern completion, mean (SD), N 8.39 (0.27), 43 8.66 (0.34), 35 0.62 
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FIGURE S13. Genetic profiles across neuroanatomical signatures in European-ancestry UKBB 

dataset (*: p < 0.05). 
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FIGURE S14. Across the full European-ancestry UKBB sample (n = 671), A) association 

between S1 expression and schizophrenia PRS (ρ = 0.07; p = 0.05), and B) association between 

S2 expression and schizophrenia PRS (ρ = 0.04; p = 0.40). 
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