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Data supplement for Roberts et al., Longitudinal Changes in Structural Connectivity in 

Young People at High Genetic Risk for Bipolar Disorder. Am J Psychiatry (doi: 

10.1176/appi.ajp.2021.21010047) 

 
 
 
 
 
 
 
 
 
 
 

SUPPLEMENTARY METHODS 

Participants 

Participants were involved in an ongoing longitudinal study with annual follow-up evaluations. 

High Risk participants were recruited from families who had either previously participated in a 

bipolar disorder (BD) pedigree molecular genetics study, from a specialised BD research clinic, or 

were otherwise recruited from clinicians, mental health consumer organisations and other forms 

of publicity. Control participants were recruited via print and electronic media as well as 

noticeboards in universities and local communities. 

Control  participants were defined as those who did not have a first-degree relative with either BD 

I or II, recurrent major depressive disorder, schizophrenia, schizoaffective disorder, recurrent 

substance abuse or any past psychiatric hospitalisation. Additionally, they did not have a second-

degree relative with a history of psychosis or who had been hospitalised for a mood disorder.  High 

Risk and Control participants with a lifetime or current presence of psychiatric symptoms (apart 

from the occurrence of BD) were not excluded from the study. This ecological approach has been 

used by similar studies of individuals at high genetic risk for BD to recruit both Control and High 

Risk cohorts (1). 

We benchmarked these longitudinal data against a cohort of gender-matched participants with 

bipolar disorder for whom a single cross-sectional scan had been acquired (2). Bipolar Disorder 

participants were drawn from the same study, age-matched to the High Risk and Control cohorts 

at follow-up. The Bipolar Disorder participants met DSM-IV criteria for either bipolar I or bipolar 

II disorder. Longitudinal data were not available from this clinical cohort. 
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Sample selection and characterization 

All potential participant families were initially assessed through baseline administration of the 

Family Interview for Genetic Studies (FIGS) (3) to determine family history of BD and other 

disorders for eligibility. At least one parent or participant aged over 22 in each family completed 

the FIGS. Parents were interviewed about their child (aged 12-21) using the Kiddie-Schedule for 

Affective Disorders and Schizophrenia for School-Aged Children – Present and Lifetime Version 

(K-SADS-BP) (4). The 12-21-year-olds also completed a K-SADS-BP interview as part of a 

collaborative High Risk study with a US consortium (1). For all participants aged 22-30 (including 

BD-probands), the Diagnostic Interview for Genetic Studies (DIGS) was administered to 

determine diagnoses (5). Consensus DSM-IV diagnoses of BD-probands, High Risk, and Control 

participants were determined by two independent raters using best estimate methodology (6), 

drawing from the DIGS, K-SADS-BP, FIGS, and medical records. 

To assess current mood state, the Children's Depression Inventory (7) was administered to 

participants aged 12-21 years. Both the Montgomery–Åsberg Depression Rating Scale (8) and 

Young Mania Rating Scale (9) were administered to those aged 22–30 years. Intellectual ability 

was assessed with the Wechsler Abbreviated Scale of Intelligence (10). 

For the cross-sectional Bipolar Disorder cohort, proband consensus DSM-IV diagnosis was also 

determined by two independent raters following Best Estimate methodology using information 

from the Diagnostic Interview for Genetic Studies (DIGS) Version 4, the Family Interview for 

Genetic Studies (FIGS) and medical records (when available) (see (2) for full details for the 

Bipolar Disorder cohort). 

 

Total MRI scans and exclusions 

A total of 279 participants completed a baseline diffusion-weighted (dMRI) scan and 217 

participants completed a follow-up scan approximately 2 years later. 79 subjects who were 

excluded (31 Control and 48 High Risk) had a baseline dMRI scan but did not complete a follow-

up diffusion-weighted scan. 17 subjects (7 Control and 10 High Risk) were excluded because they 

did not complete a baseline dMRI scan. Of the 200 subjects with dMRI scans at both time-points 

(87 Control and 112 High Risk), 1 High Risk subject was removed because there were more than 

three years between their scans, another High Risk subject was excluded on clinical grounds. Two 

participants were also removed (1 Control and 1 Hig-Risk) due to image artifact and distortion in 
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a baseline or follow up scan. One participant (1 Control) was removed due to excessive head 

movement dMRI scans (mean rms motion > 2 ). Thus, 195 subjects with usable baseline and 

follow-up dMRI scans remained (86 Control and 109 High Risk). To minimise possible 

confounding effects of gender and age, we selected 2 age- and gender-matched samples 

comprising 86 Control and 97 High Risk subjects, by removing younger Control subjects. There 

was no effect of time on head motion, pooled across both groups (independent t-test, t=1.70, p=0.092).  

Diffusion MRI images were available for 52 participants with bipolar disorder, age-matched to the 

High Risk and Control cohorts at time of follow-up, meeting the same quality control criteria 

(Table S4). 

 

Data acquisition, pre-processing and structural network construction 

MRI acquisition & pre-processing of DWI  

 Data acquisition 

Diffusion-weighted MRI data were acquired with a 3-T Philips Achieva scanner at Neuroscience 

Research Australia (NeuRA) in Sydney with an 8-channel head coil. One acquisition of 32 

directional DWI (b =1000 s/mm2, with one non-diffusion-weighed image) was acquired using a 

single-shot echo planar imaging (EPI) sequence. The imaging parameters were as follows: TR = 

7767 ms, TE = 68 ms, 55 slices, slice thickness = 2.5 mm, gap = 0 mm, acquisition matrix size = 

96 × 96 (field of view = 240×240×137.5 mm), flip angle = 90°, reconstructed to yield 1 mm × 1 

mm × 2.5 mm voxels (where the longer dimension is along the dorsoventral axis).  

A T1-weighted image was also acquired in the imaging session but was not used in connectome 

generation or analysis. 

Diffusion-weighted MRI data were pre-processed using functions within MRtrix3 software (11), 

(https://github.com/MRtrix3/mrtrix3/releases/tag/3.0_RC3),  and FSL, which were called from a 

pre-processing pipeline developed in-house (https://github.com/breakspear/diffusion-

pipeline/tree/bipolarlongitudinal). First, the dMRI data were denoised (12), and then corrected for 

motion and eddy-current induced distortions within FSL eddy (version 5.0.11) (13). FSL eddy 

(using --repol) was also used to detect slice signal outliers due to bulk motion (among other 

factors), and then corrected for using a non-parametric replacement method (13). Finally, bias-

intensity correction was performed using the dwibiascorrect  (-fsl argument) (14). 

https://github.com/MRtrix3/mrtrix3/releases/tag/3.0_RC3
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All diffusion of volumes of each participant underwent a final visual quality assurance. This 

included inspection of (1) each diffusion weighted volume with fslview; (2) the generated brain 

mask, (3) the mean diffusion volume across the scan, (4) the FA image, and (5) the track density 

image of the reconstructed streamlines. Finally, to determine the accuracy of the co-registration 

steps (see below) used in structural connectome construction, each subject-specific parcellation 

image was overlaid on their FA map. 

This quality assurance pipeline is available at 

https://github.com/AlistairPerry/dwi2connectome/blob/master/miscscripts/QC_wfslview_basic .  

 

Whole-brain fibre tractography 

To provide estimates of local fibre orientations, the relative signal responses of multiple tissue-

types (anisotropic white matter and isotropic grey and CSF) were obtained using an unsupervised 

algorithm (i.e. no anatomical priors) (15, 16). The average white-matter and CSF signal 

contribution were then partitioned and constrained spherical deconvolution (lmax = 6, msmt_csd) 

(17), was used to provide the fibre orientation distribution functions (fODF),  reflecting local 

estimates (i.e. voxel-wise) of the apparent density of fibre direction as a function of angular 

orientation. The iFOD2 probabilistic streamline algorithm was employed to generate plausible 

whole-brain fibre propagations by random sampling of the orientation uncertainty inherent in each 

fODF at points along each candidate path (post bug-fix, c.f. 

https://github.com/MRtrix3/mrtrix3/issues/1204). Tracking parameters were as follows: step size 

= 0.2 mm, minimum length = 10 mm, max length = 250 mm, FOD termination threshold = 0.1, 

curvature constraint = 1 mm radius, with 5 million streamlines per subject initialized from random 

seeds throughout the brain mask.  

 

Whole-brain structural network construction 

To construct a high resolution parcellation, the 90 regions of the AAL atlas were subdivided into 

512 subregions of approximately equivalent volume using a random parcellation method (18), 

identical to that used in our baseline report (Table S1). This parcellation template of 512 regions 

was co-registered into a standard-space template representing an average FA image (FMRIB58; 

available within FSL). For each individual, the FMRIB58 1 mm template was co-registered to the 

subject's FA image (dof = 12; cost function = normmi, with the latter used as the reference image). 
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The parcellation template was then transformed into subject space by applying the transformation 

matrix generated above from co-registering the FA template to the individual’s FA image.  

The anatomical information of subject-specific parcellations and fibre streamline trajectories were 

combined to yield whole-brain structural connectivity graphs. A weighted connection, Aij, 

corresponds to the total number of fibre streamlines which start/terminate within a radial 2 mm 

distance of voxels located in each of the corresponding parcels i and j. Due to the greater number 

of random seeds along longer white matter tracts, fibre densities are typically over-estimated in 

longer fibre bundles (19). Distance-correction was performed by adjusting each streamline  Aij by 

the physical fibre length between its start and termination point (i and j) (20). 

The diffusion pipeline is available at (https://github.com/breakspear/diffusion-

pipeline/tree/bipolarlongitudinal). 

To reduce false positive connections, the resulting connectivity matrices were thresholded using a 

group consistency approach. In brief, weighted edges were rank ordered by their consistency, 

defined as the coefficient of variation (SD/mean) across subjects. The most consistent edges above 

a chosen threshold were retained; edges less consistent than this threshold were set to zero (21). 

This ensures that all subjects have the same edges, differing only in their weight and thus avoiding 

a composite of weights and zeros across subjects in individual edges. Following our previous 

cross-sectional study of this cohort (2), structural networks were thresholded with a connection 

density of 10%.  

The sum of the weights of the suprathreshold edges could also, in principle, still differ between 

groups. However, total connectivity weights in our data did not show a significant effect of group 

(p=.066), time (p=.085), or time by group interaction (p=.624). 

 

Network controllability 

We implemented measures from linear network control theory to understand the dynamic 

consequences of High Risk structural connectivity differences. Linear control theory assumes that 

neural dynamics can be approximated by linear, discrete-time models of regional activity.(22, 23) 

The propagation of neuronal perturbations along structural projections in response to exogenous 

inputs (24, 25), is given by,  

𝑥𝑖(𝑡 + 1) =∑𝑊𝑖𝑗𝑥𝑖 . 𝑥𝑗(𝑡)

𝑗

+ 𝐵𝑖𝑢(𝑡), 

https://github.com/breakspear/diffusion-pipeline/tree/bipolarlongitudinal
https://github.com/breakspear/diffusion-pipeline/tree/bipolarlongitudinal
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where 𝑥𝑖(𝑡) denotes the state of network node (brain parcel) i at time t.  W denotes the weighted 

structural connectivity matrix, with element Wij representing the connectivity between nodes i and 

j as defined above. The input vector B identifies the control nodes in the network (those receiving 

the perturbation), with the nodes in our study controlled one at a time. The term u(t) is the energy 

applied to the set of control nodes B at time t. 

To ensure the linear stability of all individual structural networks, following our previous work 

(25), we normalized all network edge weights (Wij) through division by a number 10% greater than 

the largest eigenvalue calculated across all subjects’ connectivity matrices W.  

Average controllability for a control node is defined as the average energy needed to steer the 

network to any target state in finite time (24). Complimenting the NBS analysis, controllability 

hence interrogates the outward connectivity of a network to the rest of the connectome (24, 26). 

Nodes with lower controllability values exert weaker control over brain states (27).  

In the present study, average controllability was calculated for all regions identified in our NBS 

group by time interaction model. That is, (virtual) perturbations were applied to all nodes within 

the subnetwork of interest and then allowed to propagate outwards through the entire connectome. 

The total subnetwork controllability was derived by summing the controllability of all nodes in 

this network. Average controllabilty is simply referred to as “controllability” in the main text, 

noting that there are other independent controllability metrics (28). 

For the code used in the initial controllability studies, see 

https://complexsystemsupenn.com/s/controllability_code-smb8.zip (ave_control.m) 

Network calculations and parcellation data are available at  

https://github.com/AlistairPerry/CNHRLongitudinal. 

 

 

 

 

 

 

 

SUPPLEMENTARY RESULTS 

Network edge consistency  

https://complexsystemsupenn.com/s/controllability_code-smb8.zip
https://github.com/AlistairPerry/CNHRLongitudinal
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Networks constructed using consistency-based thresholding showed an approximately exponential 

relationship between weight and inter-areal distance. Consistent with prior work, consistent edges 

show a similar distance effect to the entire (unthresholded) network (Figure S2A), although they 

tend to be stronger than the unthresholded network by distance and lack the hard lower cut-off 

present in networks thresholded by a weight-based approach (29).  

Edges that were consistent in each group at baseline are also amongst those that were consistent 

in each group at follow-up. For example, 83.1% of the most consistent edges at baseline are also 

among the most consistent at follow-up (Figure S2B). Moreover, the 10% most consistent edges 

at baseline are among the 12.2% of most consistent edges at follow-up. Likewise, consistent edges 

are very similar across groups: 79.6% of the most consistent edges in the High Risk group were 

among the most consistent in the Control group. The 10% most consistent edges in the High Risk 

group were among the 12.6% of most consistent edges in the Control group. 

The high concordance of consistent edges suggests that consistency-based thresholding could, in 

principle, be applied separately to each group and at each time point. However, while relatively 

few in number, the mismatching edges would have a spread of weights in one group but be 

thresholded uniformly to zero in the other. This would introduce a sharp difference between 

groups, with zero variance in one group and thus a high likelihood of a false positive effect. For 

this reason, we applied a single consistency threshold across both groups at both times and focus 

on the re-weighting of the ensuing edges using NBS. 

 

Comparison with Bipolar Disorder cohort 

The weighted average of the interaction subnetwork in the Control cohort at baseline was similar 

to the Bipolar Disorder network, but increased substantially by follow-up (Figure 2B). In contrast, 

the weighted average of this network in the High Risk cohort crossed from slightly above to 

slightly below the Bipolar Disorder network from baseline to follow-up. Over time there was a 

marginally significant reduction in the subnetwork weights for the High Risk cohort (MD=-.55, 

p=.051) and a significant increase in the subnetwork weights for the Control cohort (p=.001). There 

was no significant difference between the Bipolar Disorder subnetwork weights and the follow-up 

High Risk weights (p=0.421). However, there was a significantly higher weighted average in the 

Control at follow-up (p=.03) than in the Bipolar Disorder cohort. Bayes-analyses of these results 

favour a difference in the Bipolar Disorder and Control network weights at follow-up (BF=1.64) 



Page 8 of 25 

but favour no difference between the High Risk and Bipolar Disorder cohorts (BF=0.25, Table 

S5). Restricted to the follow-up T2 time point, there was no significant age by group (HR, CN, 

BD) effect for the weighted average of this subnetwork (p>0.70; Figure S6).  

To supplement these post-hoc analyses, we also tested for the interaction of age x group across all 

three groups at follow-up, using NBS to examine all nodes in the structural connectome. There is 

no significant effect for the interaction of age and group in these follow-up data (p>0.61).  

 

Auxiliary Analyses  

Subsequent exploratory analyses were undertaken to study putative effects of medication or 

affective episodes between baseline and follow-up imaging.  

Two sets of linear-mixed effects models were run to study the effects of medication. The first set 

used the base models (as described in the main text) with the addition of a binary predictor for 

current use of any psychotropic medication (n=20). This comprised of 15 subjects at baseline (3 

Control, 12 High Risk) and 10 subjects (1 Control, 9 High Risk) remaining on psychotropic 

medication at follow-up, with an additional 5 subjects (3 Control, 2 High Risk) using psychotropic 

medications at follow-up only. Similar to the models examining medication effects, the base 

models were also re-run with the addition of a binary predictor for current mood episode (n=13) 

to examine possible confounding effects. This comprised of 4 subjects at baseline scan (2 Control, 

2 High Risk) with an additional 8 subjects (4 Control, 4 High Risk) experiencing a current episode 

at time of follow-up scan. One subject (High Risk) experiencing a mood episode at baseline was 

also experiencing an episode at follow-up.  

Current mood state associations with the group by time network effect (Figure 2) and 

controllability were explored by including current mood state measures as a predictor in the base 

models. The Children's Depression Inventory(7)  was administered to participants aged 12-21 

years, and both the Montgomery–Åsberg Depression Rating Scale (8), and Young Mania Rating 

Scale (9), were administered to those aged 22–30 years. As mood state was assessed using separate 

scales for younger (12-21-year-olds) and older (22-30-year-olds) groups, separate models were 

run for each age group (all other analyses were run with the total sample).  

To investigate if the group by time network effect or controllability reflected DSM-IV disorders 

in our High Risk group, we performed various exploratory sub-group analyses. Firstly, we sub-

divided our High Risk group according to the following criteria: i) new onset of any mood episode 
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(major depressive or manic/hypomanic episode); ii) new onset of manic/hypomanic episode; or 

iii) new onset of any DSM-IV disorder from baseline to follow-up. To benchmark new against 

prior episodes, we additionally divided the Hig Risk cohort into iv) those with or without a lifetime 

mood episode at baseline. Due to the small sample sizes of these High Risk sub-groups we 

estimated effect sizes for differences and did not report the associated p-values which are likely to 

be unstable due to finite size effects. We additionally used Bayesian repeated measures ANOVA 

(https://jasp-stats.org, 1 million samples) to determine the relative evidence in favour of an effect 

in subgroups (Bayes Factors, BF).  

 

https://jasp-stats.org/
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TABLE S1. Additional baseline and follow-up demographic and clinical data 

 
 
 
 
 

 
Control 
n=86  

 
High Risk 
n=97 

 
Difference 
Statistic 

 
p 

 
Difference 

Meeting Criteria for Current DSM-
IV Episode at Baseline   

   

Major Depressive Episode #, n (%) 2 (2.3) 2 (2.1) N/A p=1.00  

Hypo/manic episode, n (%) - - N/A   
      
Meeting Criteria for Current DSM-
IV Episode at Follow-Up   

   

Major Depressive Episode #, n (%) 

 
4 (4.7) 5 (5.2) N/A p=1.00  

Hypo/manic episode, n (%) - 1 (1.0) N/A   
      
Symptom Severity Scales at 
baseline   

   

22 to 30 years n=43 n=39    
MADRS$ mean (SD) 2.44 (4.21) 3.95 (5.17) U = 732.00  p=0.30  

YMRS$ mean (SD) 0.93 (1.10) 0.97 (1.71) U =762.50  p=0.44  

12 to 21 years  n=40  n=49    
CDI$ mean (SD) 5.30 (4.44) 7.31 (7.13) U =896.50  

 
 

p=0.49 
 

 

 
Clinical Characteristics at baseline 

      

Global Functioning  n=86 n=93    
     

GAS/C-GAS$, mean (SD) 91.13 (5.72) 86.31 (9.41) U=2747.50  p<.001*** Control > 
High Risk  

Age at First n=10 n=28    
   Major Depressive Episode, mean 
(SD) 

17.90 (3.14) 16.14 (4.42) t=-1.15 p= 0.26  

Number of Episodes      
   Major Depressive Episode$, mean 
(SD) 

1.80 (1.55) 3.32 (3.56) U=111.00  p= .30  

 
Baseline Psychotropic Medication 

n=86 n=97    

At least one psychotropic 
medication#, n (%) 

3 (3.5) 12 (12) N/A p= 0.03* High Risk > 
Control 

Anti-depressants#, n (%) 2 (2.3) 10 (10) N/A p=0.03* High Risk > 
Control 

Mood stabilisers, n (%) - - -   
Lithium, n (%) - - -   
Anti-psychotics, n (%)  - - -   
Anti-convulsants, n (%) - - -    

Other psychotropic medication#, n 
(%) 

- 2 N/A p=.62  

Benzodiazepines, n (%) 1 (1.2) - N/A   

Stimulants, n (%) - - -   
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Follow Up Psychotropic 
Medication 

n=86  n=97    

At least one psychotropic 
medication#, n (%) 

4 (4.7) 11 (11) N/A p=0.11  

Anti-depressants#, n (%) 4 (4.7) 8 (8.2) N/A p=0.38  
Mood stabilisers, n (%) - 1 (1.0) N/A   
Lithium, n (%) - -    
Anti-psychotics, n (%) - 1 (1.0) N/A   
Anti-convulsants, n (%) - 1 (1.0) N/A   
Other psychotropic medication# 1 (1.2) 1 (1.0) N/A p=1.00  
Benzodiazepines, n (%) - 2 (2.1) N/A   
Stimulants, n (%) - -    

 
Abbreviations: MADRS, Montgomery-Asberg Depression Rating Scale; YMRS, Young Mania Rating Scale; CDI, Children’s 

Depression Inventory: GAS, Global Assessment Scale; C-GAS, Children’s Global Assessment Scale.    

 
$ Variable did not meet assumptions for parametric analysis. Mann-Whitney U was used.  # Variable did not meet assumptions for 

parametric analysis. Fisher’s exact test was used.  * p<.05; ** p<.01; *** p<.001.  

 

Diagnostic details: Diagnostic confidence rating ranges using the Best Estimate Methodology vary from 1-4, where 1 represents 

criteria not met for a diagnosis and 4 represents a definite diagnosis. All diagnoses listed here have a confidence rating of 3 or 

higher. The 183 subjects belonged to 157 families.  
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TABLE S2. Edge weights of connections for significant NBS derived Time (T2 > T1) 

subnetwork, adjusting for age at time of scan (t = 3; p<0.024, FWE-corrected)  
 

 

  

Network Node pair  Baseline Follow Up 

Left Middle Cingulum (a) ↔ Left Anterior Cingulum 104 ↔ 162 0.28 0.25 

Left Middle Cingulum (b) ↔    Left Anterior Cingulum 139 ↔ 162 0.52 0.53 

Left Anterior Cingulum ↔ Left Precuneus (a) 162 ↔ 250 0.16 0.16 

Left Anterior Cingulum ↔ Left Precuneus (b) 162 ↔ 252 0.27 0.32 

Left Anterior Cingulum ↔ Right Middle Cingulum 162 ↔ 343 0.62 0.58 

Left Frontal Superior Medial Gyrus ↔ Right Middle 

Cingulum (a) 
219 ↔ 343 0.19 0.19 

Left Anterior Cingulum ↔ Right Middle Cingulum (a) 229 ↔ 343 0.549 0.56 

Left Caudate ↔ Right Middle Cingulum (a) 238 ↔ 343 0.22 0.24 

Left Anterior Cingulum ↔   Right Middle Cingulum (b) 162 ↔ 360 0.14 0.14 

Left Precuneus (b) ↔ Right Precuneus  252 ↔ 449 1.38 1.22 

Left Posterior Cingulum ↔ Right Frontal Superior 

Medial Gyrus 
70 ↔ 479 0.03 0.03 

Left Frontal Superior Medial Gyrus ↔ Right Frontal 

Superior Medial Gyrus 
223 ↔ 479 10.10 10.39 

Left Caudate ↔ Right Frontal Superior Medial Gyrus 238 ↔ 479 
 

0.64 0.78 

Left Frontal Superior Medial Gyrus ↔ Right Caudate 223 ↔ 494 1.21 1.29 

Left Anterior Cingulum ↔ Right Precuneus (a) 162 ↔ 506 0.11 0.12 

Left Anterior Cingulum ↔   Right Precuneus (b) 162 ↔ 508 0.17 0.19 
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TABLE S3. Edge weights of connections for significant Group by Time NBS subnetwork (t 

= 3; p=0.007, FWE-corrected)  

 

The NBS derived network for group by time interaction. After controlling for age at the time of scan (t = 3.0, p<0.007 FWE 

corrected) a network that contains 13 of the 14 edges was observed. $Edge that was not part of the group by time network when 

covarying for age at time of scan. 

  

Network Node pair Control (n = 86) High Risk (n = 97) 

  Baseline 
Follow 

Up 
Baseline 

Follow 

Up 

Left Caudate ↔ Left Inferior Frontal 

Gyrus/ Pars Triangularis 
10 ↔ 24 1.48 1.33 1.28 1.58 

Left Caudate ↔  Left Fusiform (a) 10 ↔ 81 0.07 0.06 0.07 0.09 

Left  Fusiform (b) ↔ Left Putamen 16 ↔ 82 0.12 0.10 0.11 0.13 

Left  Fusiform (b) ↔ Left  Inferior Frontal 

Gyrus / Pars Triangularis (b) 
16 ↔ 136 0.05 0.04 0.04 0.06 

Left Fusiform (a)↔  Left  Inferior Frontal 

Gyrus / Pars Triangularis (b) 
81 ↔ 136 0.06 0.06 0.06 0.08 

Left Lingular Gyrus ↔ Left Inferior Frontal 

Gyrus/ Pars Triangularis$ 
90 ↔ 136 0.05 0.05 0.05 0.07 

Left  Inferior Frontal Gyrus / Pars 

Triangularis (b) ↔  Left  Middle Frontal 

Gyrus 

136 ↔ 230 23.55 22.09 21.23 24.58 

Right Precuneus (b) ↔ Right Middle 

Occipital Gyrus 
306 ↔ 311 4.19 3.79 3.28 4.32 

Right Middle Occipital Gyrus ↔ Right 

Thalamus 
311 ↔ 319 1.20 0.90 0.94 0.98 

Right Precuneus (b) ↔ Right Cuneus 306 ↔ 417 22.59 19.40 20.58 21.16 

Left Fusiform (a)↔  Right Superior 

Occipital Gyrus 81  ↔ 463 0.31 0.26 0.28 0.32 

Right Thalamus ↔  Right Superior 

Occipital Gyrus 
319 ↔ 463 0.90 0.75 0.71 0.79 

Right Inferior Occipital Gyrus (a) ↔  Right 

Inferior Occipital Gyrus (b) 
411 ↔ 495 68.62 66.93 67.60 76.29 

Right Superior Occipital Gyrus ↔  Right 

Inferior Occipital Gyrus (b) 
463 ↔ 495 3.67 3.34 3.60 4.3 
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TABLE S4. Demographic and clinical data of the 52 Bipolar Disorder subjects 

 

Demographic data Bipolar Disorder 
(n=52) 

Females, n (%) 26 (50.0) 

  

Age (years), mean (SD) 24.74 (3.80) 

Intelligence Quotient, mean (SD) 
 

116.06 (12.41) 

 

Clinical Data  

Bipolar subtype  

Bipolar II, n (%) 25 (48.0) 

Bipolar I, n (%) 27 (51.9) 

Any anxiety disorder,  n (%) 26 (50.0) 

Any behavioural disorder,  n (%) 10 (19.2) 

Any substance disorder,  n (%) 14 (26.9) 

Any other disorder, n (%) 7 (13.5) 

 

Meeting Criteria for Current DSM-IV Episode   

Major Depressive Episode, n (%) 1 (1.9) 

Hypo/manic episode, n (%) 1 (1.9) 

  

Symptom Severity Scales  

22 to 30 years n=41 

MADRS mean (SD) 10.11 (9.77) 

YMRS mean (SD) 4.90 (4.43) 

12 to 21 years n=11 

CDI mean (SD) 20.45 (8.62) 

 
Clinical Characteristics 

 

Global Functioning  n=52 

GAS/C-GAS, mean (SD) 77.12 (12.34) 

  

 n=48 

 Age at first Major Depressive Episode, mean (SD) 15.31 (3.67) 

 n=52 

Age at onset of bipolar (years), mean (SD) 17.61 (4.28) 

 
Psychotropic Medication 

 

At least one psychotropic medication, n (%) 40 (76.9) 

Anti-depressants, n (%) 23 (44.2) 

Mood stabilisers, n (%) 35 (67.3) 

Lithium, n (%) 14 (26.9) 

Anti-psychotics, n (%) 16 (30.8) 

Anti-convulsants, n (%) 30 (57.7) 

Other psychotropic medication#, n (%) 6 (11.5) 

 
*One subject is missing an IQ score.  
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TABLE S5. Comparisons between Control and High Risk connectivity of NBS group by 

time network at follow-up with Bipolar Disorder patients 

Group means                                                                                                            Mean (SD) 

Control 8.50 (1.90) 

High Risk 9.63 (2.21) 

Bipolar Disorder 8.78 (2.14) 

Group comparisons                                                                                               p-val (BF10) 

Control vs Bipolar Disorder 0.03 (1.64) 

High Risk vs Bipolar Disorder 0.42 (0.25) 

BF10 = Bayes Factor for evidence of alternative hypothesis 

N.B. Both p-vals and Bayes Factors are uncorrected for multiple testing 
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TABLE S6. Effect sizes and Bayes Factors for longitudinal sub-group analyses 

  

Group x Time NBS (Threshold = 3.0)  

Effect sizes (d)    Bayes Factor (BF10)  

Controllability 

Effect sizes (d) 

Original model  All High Risk (n=97) 0.28 0.07 
  

New onset any 

DSM-IV 

High Risk with new 

onset of any DSM-

IV diagnosis, (n=18) 

0.38                      0.69% 0.06 

High Risk minus 

High Risk with new 

onset of any DSM-

IV diagnosis,  (n=79) 

0.26 0.07 

New mood 

episode 

High Risk with new 

mood episode, (n=8) 

0.52                     1.20$ 0.03 

High Risk minus 

High Risk with new 

mood episode, 

(n=89) 

0.27 0.03 

Lifetime mood 

episode at 

baseline 

High Risk with 

lifetime mood 

episode at baseline, 

(n=28) 

0.36                     0.65^ 0.26 

 High Risk minus 

High Risk with 

lifetime mood 

episode at baseline, 

(n=69) 

0.25 0.02 

Converters High Risk who 

converted to BD, 

(n=5) 

0.97                       2.61# 0.31 

High Risk minus 

High Risk who 

converted to BD, 

(n=92) 

0.24               0.06 

 High Risk subjects 

without a lifetime 

mood episode 

(n=64) 

0.23  

%High Risk with new onset of any DSM-IV diagnosis, (n=18) vs High Risk minus High Risk with new onset of any DSM-

IV diagnosis,  (n=79). $ High Risk with new mood episode,  (n=8) vs High Risk minus High Risk with new mood episode, 

(n=89). ^ High Risk with any affective diagnosis at baseline, (n=30) vs High Risk minus High Risk with any affective 

diagnosis at baseline, (n=67). # High Risk who converted to BD, (n=5) vs High Risk minus High Risk who converted to 

BD, (n=92).  



Page 17 of 25 

FIGURE S1. Interval between the baseline and follow-up imaging scan for all participants 
 

 

 

 
The position along the y-axis for participants in each group is ordered according to their age at 
baseline imaging scan (ascending order). The mean inter-scan interval did not differ between 
groups (controls 2.04 +/-0.14 years; High Risk 2.07 +/-0.13 years). However, the control group 
had a significantly greater positive skew (1.64 versus 1.48, ks-stat = 0.23, p=0.014). 
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FIGURE S2. Consistency of connectome edges across group and imaging time points with 

consistency-based thresholding 

 

(A) Consistency-based threshold across both groups and both time points in double logarithmic coordinates (red) shows 

a similar distance-weight relationship to the entire unthresholded connectome (grey). (B) 83.1% of the 10% most 

consistent edges at baseline (red) are also among the most 10% consistent at follow-up (blue). (C) Consistency-

thresholded edges tend to be stronger and somewhat shorter than the full connectome, with a median (mean) length 

of 39.0 cm (44.1 cm). 
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FIGURE S3. Longitudinal changes in structural connectivity across both High Risk and 

Control groups at a liberal test-threshold (t = 3; p < 0.05, FWE corrected) 
 

 

 

(A) Distribution of edges showing a significant decrease (T1>T2, left) and increase (T2>T1, right) 

in strength. Colours show coding of nodes according to functional distribution (30); abbreviations: 

SubCort: sub-cortical, Default: default mode network, VentAttn: Ventral Attention network, 

DorsAttn: Dorsal Attention network, SomMat: somato-motor network. (B) Corresponding mean 

connectivity strength of this network in all individuals at both time points and the corresponding 

group distributions. Circles and bars show mean +/- 95% C.I. Networks with a more conservative 

threshold of t=3.5 are provided in the main text (Figure 1). 
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FIGURE S4. Network of longitudinal changes in structural connectivity across both High 

Risk and Control groups, corrected for age at scanning (t = 3; p < 0.024, FWE corrected) 

  

(A) This “age invariant” longitudinal contrast reveals a smaller, discrete network of edges than without age as a covariate 

(observed in Figure 1 and Figure S3) connecting bilateral cortical midline structures including bilateral middle and 

anterior cingulum, precuneus, and the caudate. (B) Distribution of network weights across participants showing an 

increase in strength shared across both groups. (C) Age-weight relationship of this network reveals the subtle effect of 

a 2-year shift in the age range of both cohorts. Colours show coding of nodes according to functional distribution; 

abbreviations: SubCort: sub-cortical, Default: default mode network, VentAttn: Ventral Attention network, DorsAttn: 

Dorsal Attention network, SomMat: somato-motor network.  
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FIGURE S5. Streamline count of time by group subnetworks (with NBS height threshold of 

t=3.0) across different connectome sparsity thresholds 

 

Mean streamline counts calculated at network density levels of (A) 7.5%, (B) 10% (the default for 

the main text), and (C) 12.5%.  Circles and bars show mean +/- 95% C.I. 
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FIGURE S6. Network connectivity strength in the high risk, bipolar and control individuals 

at baseline follow-up, with corresponding group regression slopes (and confidence intervals) 
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FIGURE S7. Non-linear age effects on connectivity 

  

 

(A) Histogram of quadratic coefficient term for all edges reflecting that >99% sat within the (corrected) linear, 

null effect (red and blue lines show the Bonferroni-corrected cut-off). (B) Linear and quadratic trends in the 

mean (thick black) and individual (thin) edge weights as a function of age across both groups at baseline. 

Of all 26164 edges (grey), 86 edges possess a negative concavity (quadratic coefficient negative, blue) 

and 100 possess a positive concavity (red). The mean edge weight (black) sat within the confidence 

intervals for a purely linear effect. (C) The magnitude (absolute value) of the quadratic term was strongly 

correlated with the mean edge weight (corr=0.73, p<0.001). That is, quadratic edges tend to be strong, and 

short. (E-G). Highly comparable numbers of effects (numbers, lengths and weights of edges) were present 

at follow-up and within each group considered separately. Quadratic edges were consistent across time 

but not across group. The consistency of nonlinearity of edges was more consistent in the control (than the 

High Risk group (corr 0.60 versus 0.54, p<0.05, non-parametric bootstrap test).  
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