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SUPPLEMENTAL METHODS 

Participants 

We obtained GWAS results in the form of summary statistics (p-values and z-scores). Data on 

schizophrenia (SCZ) were retrieved from Psychiatric Genomics Consortium (PGC) through 

collaboration (1). The SCZ dataset consisted of 53 386 individuals with schizophrenia or 

schizoaffective disorder and 77 258 controls of European descent (1). Further, we used 

GWAS results on CVD phenotypes, including the CVD risk factors BMI (n=795 640) (2), 

waist-to-hip ratio (WHR) adjusted for BMI (n=694 649) (3), triglycerides (TG, n=1 320 016) 

(4), total cholesterol (TC) (n=1 320 016) (4), low-density lipoprotein (LDL) cholesterol (n=1 

320 016) (4), high-density lipoprotein (HDL) cholesterol (n=1 320 016) (4), systolic and 

diastolic blood pressure (n=745 820-757 601) (5), type 2 diabetes mellitus (T2D, n=231 426) 

(6), smoking initiation (a binary variable indicating whether an individual had ever smoked 

regularly, n=1 232 091) (7), cigarettes per day (CigPerDay, n=337 334) (7), and coronary 

artery disease (CAD, n=332 477, including 71 602 CAD cases and 260 875 controls) (8). We 

restricted analyses to samples of European ancestry to limit population stratification. There 

was no overlap between participants in the CVD GWASs and the SCZ sample by inspecting 

the substudies that the GWAS data were retrieved from. We did not have access to individual 

genotype data and were therefore not able to identify potential overlapping individuals across 

studies. However, based on the sample description, it is highly unlikely that there is a 

significant number of overlapping individuals. Details about the inclusion criteria, genotyping 

and phenotype characteristics, see the original publications (1, 2, 4-8). 

 

MiXeR 

We applied causal mixture models (9, 10) to the GWAS summary statistics, using the MiXeR 

tool (https://github.com/precimed/mixer). For each SNP, 𝑖𝑖, univariate MiXeR models its 

https://github.com/precimed/mixer
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additive genetic effect of allele substitution, 𝛽𝛽𝑖𝑖, as a point-normal mixture, 𝛽𝛽𝑖𝑖 =

(1 − 𝜋𝜋1)𝑁𝑁(0,0) + 𝜋𝜋1𝑁𝑁(0,𝜎𝜎𝛽𝛽2), where 𝜋𝜋1 represents the proportion of non-null SNPs 

(`polygenicity`) and 𝜎𝜎𝛽𝛽2 represents variance of effect sizes of non-null SNPs 

(`discoverability`). Then, for each SNP, 𝑗𝑗, MiXeR incorporates LD information and allele 

frequencies for M=9,997,231 SNPs extracted from 1000 Genomes Phase3 data by LD score 

regression software (10, 11), and estimate the expected probability distribution of the signed 

test statistic, 𝑧𝑧𝑗𝑗 = 𝛿𝛿𝑗𝑗 + 𝜖𝜖𝑗𝑗 = 𝑁𝑁∑ �𝐻𝐻𝑖𝑖𝑟𝑟𝑖𝑖𝑗𝑗𝛽𝛽𝑖𝑖 + 𝜖𝜖𝑗𝑗𝑖𝑖 , where 𝑁𝑁 is sample size, 𝐻𝐻𝑖𝑖 indicates 

heterozygosity of i-th SNP, 𝑟𝑟𝑖𝑖𝑗𝑗 indicates allelic correlation between i-th and j-th SNPs, and 

𝜖𝜖𝑗𝑗 ∼ 𝑁𝑁(0,𝜎𝜎02) is the residual variance. Further, the three parameters, 𝜋𝜋1,𝜎𝜎𝛽𝛽2,𝜎𝜎02, are fitted by 

direct maximization of the likelihood function. The number of trait-influencing variants (i.e. 

variants with pure genetic effects not induced by LD) is estimated as 𝑀𝑀𝜋𝜋1, where 

M=9,997,231 gives the number of SNPs in the reference panel. 

In the cross-trait analysis, MiXeR models additive genetic effects as a mixture of four 

components, representing null SNPs in both traits (𝜋𝜋0); SNPs with a specific effect on the 

first and on the second trait (𝜋𝜋1 and 𝜋𝜋2, respectively); and SNPs with non-zero effect on both 

traits (𝜋𝜋12). In the last component, MiXeR models variance-covariance matrix as 𝚺𝚺𝟏𝟏𝟏𝟏 =

� 𝜎𝜎12 𝜌𝜌12𝜎𝜎1𝜎𝜎2
𝜌𝜌12𝜎𝜎1𝜎𝜎2 𝜎𝜎22

� where 𝜌𝜌12 indicates correlation of effect sizes within the shared 

component, and 𝜎𝜎12 and 𝜎𝜎22 correspond to the discoverability parameter estimated in the 

univariate analysis of the two traits. After fitting parameters of the model, genetic correlation 

is calculated as 𝑟𝑟𝑔𝑔 = 𝜌𝜌12𝜋𝜋12
�(𝜋𝜋1+𝜋𝜋12)(𝜋𝜋2+𝜋𝜋12)

. Further information is available in (9). After 

estimating the size of the shared and unique components, the dice coefficient (DC) was 

calculated to represent the overall extent of genetic overlap using the formula DC = 

2𝜋𝜋12
𝜋𝜋1+𝜋𝜋2+2𝜋𝜋12

. 
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To evaluate model fit, i.e. the ability of the MiXeR to accurately predict the actual 

GWAS data, we constructed modelled vs. actual conditional Q-Q plots (Figures S3-11). The 

conditional Q-Q plots show observed versus expected −log10 p-values in the primary trait as a 

function of the significance of association with a secondary trait at the level 

of p ≤ 0.1, p ≤ 0.01, and p ≤ 0.001, with successive leftward deflection of SNP strata with 

higher significance in the secondary (conditional) trait indicating cross-trait enrichment. 

Model fit is demonstrated in these conditional Q-Q plots if the data Q-Q plots (solid lines) are 

closely reproduced by the model predictions (dashed lines) across all p-value strata (9). 

Interestingly, scenarios without polygenic overlap may show an enrichment because GWAS 

p-values depend on allele frequency and LD structure, although this effect is smaller than 

enrichment arising due to shared variants (9). Furthermore, model fit was also assessed using 

negative log-likelihood plots (9), which visualize the performance of the best model versus 

models with minimum and maximum polygenic overlap (Figures S3-11). More specifically, 

the best model with polygenic overlap estimated with MiXeR was compared with two models 

– a model with least possible overlap and a model with maximum possible overlap. In the 

negative log-likelihood plot (Figures S3-11), the minimum model is represented by the point 

furthest to the left, the maximum model is represented by the point furthest to the right, and 

the lowest point on the curve (y-axis) indicates better model fit (9). Support for the MiXeR 

model is a clearly defined minimum on the negative log-likelihood curve.  

To filter situations with insufficiently powered GWAS summary statistics, we use 

Akaike information criterion (𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2 ln 𝐿𝐿), where 𝑘𝑘 is the number of free parameters 

in the model, 𝐿𝐿 is the value of the likelihood function, and 𝑛𝑛 is the effective number of SNPs 

used in optimization procedure. We calculate the difference between AIC for the full bivariate 

model, 𝑘𝑘 = 3, and AIC for the reduced bivariate model, 𝑘𝑘 = 2, due to 𝜋𝜋12 being constrained 

to smallest or largest possible ( 𝜋𝜋12𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑟𝑟𝑔𝑔�𝜋𝜋1𝑢𝑢 𝜋𝜋2𝑢𝑢 and 𝜋𝜋12𝑚𝑚𝑚𝑚𝑚𝑚 = min (𝜋𝜋1𝑢𝑢,𝜋𝜋2𝑢𝑢), respectively). 
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A positive value of AIC indicates that GWAS summary statistics have enough information to 

distinguish the custom polygenic overlap, as shown on the MiXeR Venn diagrams, from the 

constrained models with minimal (𝜋𝜋12𝑚𝑚𝑖𝑖𝑚𝑚) and maximum (𝜋𝜋12𝑚𝑚𝑚𝑚𝑚𝑚) polygenic overlap.  

 

Conditional False Discovery Rate  

The ‘enrichment’ seen in the conditional Q-Q plots can be directly interpreted in terms of true 

discovery rate (TDR = 1 – false discovery rate (FDR)) (12). More specifically, for a given p-

value cutoff, the FDR is defined as  

FDR(p) = π0F0(p) / F(p),  [1]  

where π0 is the proportion of null SNPs, F0 is the null cumulative distribution function (cdf), 

and F is the cdf of all SNPs, both null and non-null (13). Under the null hypothesis, F0 is the 

cdf of the uniform distribution on the unit interval [0,1], so that Eq. [1] reduces to  

FDR(p) = π0p / F(p),  [2]  

The cdf F can be estimated by the empirical cdf q = Np / Ν, where Np is the number of SNPs 

with p-values < p, and N is the total number of SNPs. Replacing F by q in Eq. [2], we get  

Estimated FDR(p) = π0p / q,  [3]  

which is biased upwards as an estimate of the FDR (14). Replacing π0 in Equation [3] with 

unity gives an estimated FDR that is further biased upward;  

q* = p / q,  [4]  

If π0 is close to one, which is probably true for most GWASs, the increase in bias from Eq. [3] 

is minimal. Therefore, the quantity 1 – p/q, is biased downward and thus a conservative 

estimate of the TDR. Referring to the Q-Q plots, we see that q* is equivalent to the nominal 

p-value divided by the empirical quantile, as defined previously. We can thus read the FDR 

estimate directly off the Q-Q plot as  

-log10(q*) = log10(q) – log10(p),  [5]  



5 
 

demonstrating that the estimated FDR is directly related to the horizontal shift of the curves in 

the Q-Q plots from the expected line x = y, i.e. a larger shift corresponds to a smaller FDR.  

 

Conditional Q-Q plots 

Q-Q plots compare a nominal probability distribution against an empirical distribution. In the 

presence of all null relationships, nominal p-values form a straight line on a Q-Q plot when 

plotted against the empirical distribution. For SCZ and CVD phenotype SNPs and for each 

categorical subset (strata), -log10 nominal p-values were plotted against -log10 empirical p-

values (conditional Q-Q plots). Leftward deflections of the observed distribution from the 

projected null line illustrate increased tail probabilities in the distribution of test statistics (z-

scores) and consequently an over-abundance of low p-values compared to that expected by 

chance, also called ‘enrichment’. This is illustrated in Figures S12-13.  

Under large-scale testing paradigms, such as GWAS, we can calculate quantitative 

estimates of likely true associations from the distributions of summary statistics (13, 15). 

Conditional Q-Q plots of nominal p-values from GWAS summary statistics visualizes this 

enrichment of statistical association relative to that expected under the global null hypothesis. 

The usual Q-Q curve has the nominal p value, denoted by "p", as the y-ordinate and the 

corresponding value of the empirical cdf, denoted by "q", as the x-ordinate. Under the global 

null hypothesis the theoretical distribution is uniform on the interval [0,1]. As is common in 

GWAS, we instead plot -log10 p against -log10 q to emphasize tail probabilities of the 

theoretical and empirical distributions. Therefore, genetic enrichment is illustrated with a 

leftward shift in the Q-Q curve, corresponding to a larger fraction of SNPs with nominal -

log10 p-value greater than or equal to a given threshold. Conditional Q-Q plots are constructed 

by creating subsets of SNPs based on levels of an auxiliary measure for each SNP, and 

computing Q-Q plots separately for each level. If SNP enrichment is captured by variation in 
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the auxiliary measure, this is expressed as successive leftward deflections in a conditional Q-

Q plot as levels of the auxiliary measure increase. We constructed conditional Q-Q plots of 

empirical quantiles of nominal -log10 values for SNP association for all SNPs, and for subsets 

(strata) of SNPs determined by the nominal p-values of their association with the conditional 

phenotypes, and vice versa. In particular, we computed the empirical cumulative distribution 

(cdf) of nominal p-values for a given phenotype for all SNPs and for SNPs with significance 

levels below the indicated cut-offs for the conditional phenotypes (-log10(p) ≥ 1, -log10(p) ≥ 2, 

-log10(p) ≥ 3 corresponding to p < 0.1, p < 0.01, p < 0.001 respectively). The nominal p-

values (–log10(p)) are plotted on the y-axis, and the empirical quantiles (–log10(q), where q=1-

cdf(p)) are plotted on the x-axis. To assess for polygenic effects below the standard GWAS 

significance threshold, we focused the conditional Q-Q plots on SNPs with nominal –log10(p) 

< 7.3 (corresponding to p > 5x10-8). We controlled for spurious enrichment by calculating all 

conditional Q-Q plots after random pruning averaged over 500 iterations. At each iteration, 

one SNP in every LD block (defined by an r2 >0.1) was randomly selected and the empirical 

cdfs were computed using the corresponding p-values. 

 

Detection of SNPs using conditional and conjunctional FDR 

The FDR can be interpreted as the probability that a SNP is null given that its p-value is as 

small as or smaller than its observed p-value. The conditional FDR (condFDR) is an extension 

of the standard FDR, which incorporates information from GWAS summary statistics of a 

second phenotype to adjust its significance level. The condFDR is defined as the probability 

that a SNP is null in the first phenotype given that the p-values in the first and second 

phenotypes are as small as or smaller than the observed ones. It is important to note that 

ranking SNPs by the standard FDR or by p-values gives the same ordering of SNPs. In 

contrast, ranking SNPs by condFDR will reorder SNPs when the primary and secondary 
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phenotypes are genetically related. The conjunctional FDR (conjFDR) is defined as the 

posterior probability that a SNP is null for either phenotype or both simultaneously, given that 

its p-values for association with both phenotypes are as small as or smaller than the observed 

p-values (16-20). A conservative estimate of the conjFDR is obtained by the maximum 

condFDR for a given SNP after repeating the condFDR procedure for both traits and inverting 

their roles (21). Given that complex correlations in regions with intricate LD can bias FDR 

estimation (22), we excluded SNPs in the extended major histocompatibility complex (MHC) 

and chromosome 8p23.1 (genome build 19 locations chr6: 25119106–33854733 and chr8: 

7242715–12483982, respectively) and SNPs in LD (r2>0.1) with such SNPs before fitting the 

FDR models. Accordingly, we avoided artificially inflated genetic enrichment owing to the 

LD structure of these regions (23). This is the standard procedure in cond/conjFDR studies of 

SCZ and related disorders that show strong associations with these genomic regions (23-25). 

The procedure involves excluding MHC and 8p23.1 before creating the conditional Q-Q 

plots, which allows us to observe cross-trait enrichment that is not driven by the strong 

associations within these regions. However, SNPs within these regions are not removed from 

the cond/conjFDR analyses per se because SNPs in these regions are given a cond/conjFDR 

value based on their p-value and may have high biological relevance. Furthermore, MiXeR 

provides accurate estimates in the presence of realistic LD structure. Accordingly, MHC was 

also excluded when performing MiXeR analyses as the intricate LD structure creates 

difficulties in providing reliable model estimates (9). The 8p23.1 region is characterized by 

strongly correlated SNPs, yet less complex LD pattern, and thus MiXeR is able to model this 

LD pattern (9). P-values were corrected for inflation using a genomic inflation control 

procedure (16). 

  

Genomic loci definition 
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We defined independent genomic loci using the FUMA, an online tool for functional mapping 

of genetic variants (http://fuma.ctglab.nl/) (27). Summary statistics from the GWASs on SCZ 

and CVD phenotypes were used as input for FUMA. First, independent significant SNPs were 

identified as SNPs with condFDR < 0.01 and independent from each other at LD  

r2 < 0.6. Secondly, lead SNPs were identified by retaining those independent significant SNPs 

that were independent from each other at r2 < 0.1. Next, distinct genomic loci were identified 

by merging physically overlapping lead SNPs (LD blocks < 250 kb apart) selecting a SNP 

with the most significant p-value as a lead SNP of the merged locus. Borders of the genomic 

loci were determined by identifying all SNPs in LD (r2 ≧ 0.6) with one of the independent 

significant SNPs in the locus. The region containing all of these candidate SNPs was regarded 

as a single independent genomic locus. All LD information was calculated from the 1000 

Genomes Project reference panel (28). 

 

Effect sizes and genetic correlation 

Effect size (z-scores) of the shared SNPs were obtained from the original summary statistics 

(see original publications (1-8)). We estimated the genetic correlation using LD score 

regression (29). LD score regression was estimated using the Python-based package available 

at https://github.com/bulik/ldsc. The procedure is described in here: 

https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation. 

 

Identification of novel SCZ loci  

We identified novel SCZ loci by comparing the identified loci at conjFDR <0.05 with the loci 

reported in the most recent SCZ GWAS (1), other SCZ GWASs and cond/conjFDR analyses, 

and the NHGRI-EBI catalog (30). 

 

http://fuma.ctglab.nl/
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Validation: Consistency of genetic effects in independent samples 

The probability of replicating individual loci at genome-wide significance is low due to weak 

genetic effects. Therefore, we determined the number of lead SNPs in the identified shared 

loci (conjFDR<0.05) whose effect directions were the same in replication samples (i.e. sign 

concordance), following a similar procedure as described previously (31, 32). There was sign 

concordance if the lead SNP had concordant effect directions in the replication samples. If 

lead SNPs were missing in the independent datasets for conjFDR analyses, we replaced them 

with the next most significant candidate SNP which was present in the independent datasets. 

We employed a one-sided exact binomial test of significance under the null hypothesis that 

significant concordance was randomly distributed (31, 32). In addition, we identified lead 

SNPs (or next most significant candidate SNPs) which were nominally significant at P < 0.05 

in each independent sample (31, 32).  

 

Functional annotation 

We used FUMA (27), an online annotation platform (http://fuma.ctglab.nl/) to functionally 

annotated all candidate SNPs in the genomic loci with a condFDR or conjFDR value<0.10 

having an r2≧0.6 with one of the independent significant SNPs. SNPs were annotated with 

Combined Annotation Dependent Depletion (CADD) scores (33), RegulomeDB (34) scores, 

and chromatin states (35, 36). The CADD score is a deleterious score of variants computed by 

integrating 63 functional annotations (33). The higher the score, the more deleterious. A 

CADD score above 12.37 is the threshold to be potentially pathogenic (33). The RegulomeDB 

score is a categorical score to guide interpretation of regulatory variants (34). It is based on 

information from eQTLs and chromatin marks, ranging from 1a to 7 with lower scores 

indicating a higher likelihood of having a regulatory function. Scores are as follows: 

1a=eQTL + Transcription Factor (TF) binding + matched TF motif + matched DNase 
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Footprint + DNase peak; 1b=eQTL + TF binding + any motif + DNase Footprint + DNase 

peak; 1c=eQTL + TF binding + matched TF motif + DNase peak; 1d=eQTL + TF binding + 

any motif + DNase peak; 1e=eQTL + TF binding + matched TF motif; 1f=eQTL + TF 

binding / DNase peak; 2a=TF binding + matched TF motif + matched DNase Footprint + 

DNase peak; 2b=TF binding + any motif + DNase Footprint + DNase peak; 2c=TF binding + 

matched TF motif + DNase peak; 3a=TF binding + any motif + DNase peak; 3b=TF binding 

+ matched TF motif; 4=TF binding + DNase peak; 5=TF binding or DNase peak; 6=other; 

7=Not available (34).  

The chromatin state represents the accessibility of genomic regions (every 200bp) with 

15 categorical states predicted by a hidden Markov model based on 5 chromatin marks for 

127 epigenomes in the Roadmap Epigenomics Project (35). A lower state indicates increased 

accessibility, with states 1-7 referring to open chromatin states. We annotated the minimum 

chromatin state across tissues to SNPs. The 15-core chromatin states as suggested by 

Roadmap are as follows: 1=Active Transcription Start Site (TSS); 2=Flanking Active TSS; 

3=Transcription at gene 5’ and 3’; 4=Strong transcription; 5= Weak Transcription; 6=Genic 

enhancers; 7=Enhancers; 8=Zinc finger genes & repeats; 9=Heterochromatic; 

10=Bivalent/Poised TSS; 11=Flanking Bivalent/Poised TSS/Enh; 12=Bivalent Enhancer; 

13=Repressed PolyComb; 14=Weak Repressed PolyComb; 15=Quiescent/Low. Standardized 

SNP effect sizes were calculated for the most impactful SNPs by transforming the sample 

size-weighted meta-analysis Z score, in line with Zhu et al. (36).  

Furthermore, using FUMA (27), we linked candidate SNPs to genes applying either of 

three gene mapping strategies: 1) positional mapping to align SNPs to genes based on their 

physical proximity (i.e., within a 10kb window), 2) expression quantitative trait locus (eQTL) 

mapping to match cis-eQTL SNPs to genes whose expression is associated with allelic 

variation at the SNP level, and 3) chromatin interaction mapping to link SNPs to genes based 
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on three-dimensional DNA–DNA interactions between each SNP’s genomic region and 

nearby or distant genes. The eQTL analyses were corrected for multiple comparisons using an 

FDR threshold of 0.05. FUMA contains Hi-C data of over 21 tissue/cell types including 

human brain tissue (https://fuma.ctglab.nl/tutorial#chromatin-interactions). We used an FDR 

of 1 x 10-6 to define significant chromatin interactions based on the suggestion by Schmitt et 

al.(37). After excluding mapped genes in complex LD regions (MHC and 8p23.1), we 

performed Gene Ontology (GO) gene-set analysis and pathway analysis using FUMA (38). In 

addition, the Molecular Signatures Database evaluated enrichment in immunological 

signature gene sets (39). Analyses were corrected for multiple comparisons (Bonferroni 

correction).  

The gene-mapping approach involving three strategies has high sensitivity, but 

increases false positives that bias gene-set and pathway analyses. To reduce false positives, 

we performed mapping of SNPs to genes based on physical proximity as studies suggest that 

the nearest gene is often the causal gene (40). Next, we performed gene-set and pathway 

analysis of these positionally mapped genes. Since we identified a large number of loci, we 

focused on lead SNPs in this gene-mapping analysis, further prioritizing specificity over 

sensitivity to ensure more robust gene-set analyses. We compared the results with findings 

from gene-set and pathway analysis of genes mapped to candidate SNPs using all three 

strategies. 

 

Cross-CVD trait analyses 

We assessed the genetic overlap between the CVD phenotypes. In particular, we estimated the 

genetic correlation (LDSR) between each CVD phenotype and performed bivariate MiXeR 

analyses of most CVD phenotypes. We chose CVD traits for MiXeR based on the type of risk 

factor, selecting one representative of each category of CVD risk factor (e.g. blood lipids, 
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blood pressure, obesity). The selection of CVD risk factors for MiXeR was also influenced by 

the polygenicity and heritability of the traits, which affect the model’s ability to provide 

accurate estimates.  

 

Genomic SEM  

We performed Genomic structural equation modelling (Genomic SEM) (41, 42) to investigate 

the influence of CVD risk factors on the relationship between SCZ and CAD. We followed 

the analysis procedure in (41). We applied a multiple regression model to estimate the effect 

of SCZ on CAD and vice versa controlling for a third variable (e.g. BMI) (41). In addition, 

Genomic SEM was used for mediation analysis to distinguish between direct and indirect 

effects on the relationship between SCZ and CAD (41, 42). Indirect effects indicate the 

influence of the CVD risk factors on this relationship. For further information, see the original 

Genomic SEM publication (42) and method descriptions by Wormington et al. (41). 

 

SUPPLEMENTAL RESULTS 

MiXeR results 

Univariate MiXeR estimated different SNP-based heritability of SCZ and the various CVD 

phenotypes. SCZ (h2
SNP=0.38) and BMI (h2

SNP=0.22) possessed highest h2
SNP, followed by 

DBP, SB, T2D, WHR and lipids (h2
SNP=0.11-0.16) (Table S100). Smoking initiation, 

CigPerDay and CAD had the lowest SNP-based heritability (h2
SNP=0.04-0.07). 

Univariate Q-Q plots demonstrate that MiXeR-based predictions provide accurate estimates 

of the data plots (Figure S1). In addition, the Q-Q plots with SNPs partitioned according to 

MAF & LD score, as expected, show a stronger signal for SNPs with higher MAF and higher 

LD score for all traits (Figure S2). The model predictions for SCZ and BMI follow the same 

pattern, indicating that the model correctly captures the dependency of GWAS association 

statistics on MAF and LD (Figure S2). For other traits, we noted minor departure between 



13 
 

predicted and observed GWAS curves, mostly prominent for SNPs in the bin with low MAF 

and low LD score, which tend to have higher z-score than what is predicted by the MiXeR 

model. This indicates enrichment in additive genetic effects towards low-MAF and low-LD 

SNPs, in line with previously published results (43-46). However, we observe that with 

current MiXeR model the discrepancy between observed and predicted z-score distribution in 

low-MAF and low-LD bin is only prominent towards the tail of z-score distribution, while the 

majority of z-scores were still described accurately by the MiXeR model. Also, the positive 

AIC and BIC values for all univariate analyses indicate significant improvement of the causal 

mixture model over an infinitesimal model (pi=1) (Table S100), indicating that the model 

captures unique pattern of polygenicity for all traits considered in the analysis. The difference 

between observed and predicted z-score distributions towards the tail of z-score distribution is 

relevant for fine-mapping and functional annotation applications, and incorporating these 

aspects of genetic architecture is subject of current development of MiXeR 2.0 model. 

MiXeR results, including number of shared and unique trait-influencing variants and 

corresponding standard error, are presented in Figure 1. Table S100 presents the proportion of 

SCZ-linked variants influencing CVD, and vice versa. The variants explain 90% of the SNP 

heritability in each phenotype. Using MiXeR, we discovered extensive polygenic overlap 

between SCZ and smoking initiation, sharing 8.6K (SE=0.5K) out of 12.5K variants involved, 

as illustrated by the Venn diagram (Figure 1a). The shared variants represent 89.6% of the 

genetic variants influencing SCZ (9.6K) and 77.5% of the variants underlying smoking 

initiation (11.1K) (Table S100). MiXeR also revealed polygenetic overlap between SCZ and 

BMI, sharing 8.1K variants (SE=0.5K) out of 12.6K variants, as visualized in the Venn 

diagram (Figure 1b). The shared variants with BMI represent 83.5% of the genetic variants 

influencing SCZ, and 73.6% of variants influencing BMI (11.0K) (Table S100). Further, 

MiXeR identified genetic overlap with SBP, sharing 2.4K (SE=0.2K) out of 11.7K variants 
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(Figure 1c). The shared variants with SBP represent 24.7% of the variants influencing SCZ 

and 54.5% of the variants influencing SBP (4.4K) (Table S100). MiXeR estimated 1.7K 

(SE=0.2K) shared variants with DBP out of 11.8K variants (Figure 1d). The shared variants 

with DBP make up 17.7% of the variants influencing SCZ and 43.6% of the variants 

influencing DBP (3.9K) (Table S100). Further, MiXeR estimated 1.6K (SE=0.3K) shared 

variants between SCZ and T2D out of 10.3K variants (Figure 1e), constituting 16.7% of SCZ 

influencing variants and 69.6% of variants underlying T2D (2.3K) (Table S100). In addition, 

MiXeR estimated that 1.4K (SE=0.2K) out of 10.1K variants are shared between SCZ and 

HDL (Figure 1f), 1.2K (SE=0.1K) out of 9.9K variants are shared with TG, 0.3K (SE=0.1K) 

out of 10.2K variants are shared with LDL, and 0.3K (SE=0.1K) out of 9.9K variants are 

shared variants with TC (Figure S3). The overlapping variants with HDL constitute 14.4% of 

SCZ-linked variants and 77.8% of variants influencing HDL (Table S100). The overlapping 

variants with TG constitute 12.4% of SCZ-linked variants and 85.7% of variants influencing 

TG (Table S100). The shared variants with TC and LDL represent 3.1% of SCZ-linked 

variants and 33.3% of variants associated with TC and LDL (Table S100). MiXeR predicted 

that 0.5K (SE=0.2K) out of 10.5K variants are jointly influencing SCZ and CAD (Figure S4). 

The overlapping variants represent 5.2% of SCZ influencing variants, while 34.5% of variants 

influencing CAD (Table S100). The model estimated that 1.2K (SE=0.3K) out of 11.2K 

variants are influencing both SCZ and WHR (Figure S10). The shared variants represent 

12.1% of SCZ influencing variants and 43.5% of WHR influencing variants (Table S100).  

The bivariate MiXeR estimates adequately model the GWAS data, as indicated by the 

model-based Q-Q plots following the actual Q-Q plots (Figures S3-10). The negative log-

likelihood plots also illustrated adequate model fit, as indicated by a clearly defined minimum 

on the curve (Figures S3-10). Further, AIC demonstrated sufficient power of the model (Table 

S101). The positive AIC values indicate that the MiXeR model is adequately powered to 
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differentiate the estimated polygenic overlap from minimum possible overlap (best vs. min. 

overlap) and maximum possible overlap (best vs. max. overlap) (Table S101). MiXeR was 

not applied for CigPerDay due to inadequate model fit, as shown in the negative log-

likelihood plots not displaying a clear minimum on the curve (Figure S11). MiXeR does not 

seem to reliably estimate the number of variants influencing CigPerDay (Figure S11). 

We estimated DC, i.e. the percentage of shared variants between SCZ and each CVD 

phenotype out of the total number of SNPs influencing both traits. The DC (mean, SD) for 

SCZ and smoking was 83.0% (4.0), SCZ and BMI was 78% (4.9), SCZ and SBP was 33.8% 

(3.4), SCZ and DBP was 25.1% (3.3), SCZ and T2D was 27.1% (4.0), SCZ and HDL was 

23.9% (3.2), SCZ and TG was 20.9% (2.6), SCZ and LDL was 6.0% (2.3), SCZ and TC was 

5.9% (2.3), and SCZ and CAD was 9.9% (3.4), and SCZ and WHR was 19.0% (4.7). 

 

Visualizing cross-trait enrichment  

In the conditional Q-Q plots, we observed enrichment in SCZ SNPs as a function of the 

significance of associations with CVD phenotypes (Figure S12), indicating polygenic overlap. 

The reverse conditional Q-Q plots also illustrated enrichment in CVD phenotypes given 

associations with SCZ (Figure S13). This indicates polygenic overlap between SCZ and CVD 

phenotypes. 

 

Conditional FDR results  

To increase statistical power, we leveraged the pleiotropic enrichment using condFDR 

analysis and re-ranked SCZ SNPs conditional on their association with CVD phenotypes, and 

vice versa. At condFDR<0.01, we identified 362 loci associated with SCZ conditional on 

smoking initiation; 325 loci conditional on SBP; 317 loci conditional on DBP, 303 

conditional on WHR, 307 conditional on CigPerDay, 332 loci conditional on TG, 331 loci 
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conditional on HDL, 279 loci conditional on LDL, 272 loci conditional on TC, 299 loci 

conditional on BMI, 291 loci conditional on T2D, and 246 loci conditional on CAD (Tables 

S1-12). Next, we identified multiple loci associated with CVD phenotypes conditional on 

associations with SCZ (Tables S13-24).  

 

Effect directions of shared lead SNPs between SCZ and CVD phenotypes 

We evaluated the directionality of allelic effects of the shared lead SNPs between the 

phenotypes by investigating their z-scores (Tables S25-36 and S101). We discovered the same 

effect direction in 105/304 loci (34.5%) in SCZ and BMI, 202/293 (68.9%) in SCZ and 

smoking initiation, 81/129 (62.8%) in SCZ and CigPerDay, 140/294 (47.6%) in SCZ and 

SBP, 124/ 259 (47.9%) in SCZ and DBP, 69/147 (46.9%) in T2D and SCZ, 145/307 (47.2%) 

in TG and SCZ, 169/304 (55.6%) in HDL and SCZ, 81/158 (51.3%) in LDL and SCZ, 95/176 

(53.5%) in TC and SCZ, 20/35 (57.1%) in CAD and SCZ, and 101/193 (52.3%) in WHR and 

SCZ (Tables S25-36). 

 

Validation: Concordance and significance of shared loci in independent samples 

The results from replication analysis are provided in Tables S41-47. Some of the lead SNP or 

nearby candidate SNPs lacked summary statistics in the replication dataset (Not available, 

NA) and thus their replicability could not be assessed. 223 of 287 lead SNPs in loci shared 

between SCZ and BMI (77%; exact binomial P = 5.8 x 10-28) and 205 of 271 lead SNPs in 

loci shared between SCZ and SBP (76%; exact binomial P = 4.71 x 10-18) were sign 

concordant in the independent SCZ GWAS (Tables S41-42). Of these SNPs, 73 and 58, 

respectively, had P < 0.05 in the replication SCZ sample (Tables S41-42). 204 of 268 lead 

SNPs in loci shared between SCZ and smoking initiation (76%; exact binomial P = 1.66 x 10-

18) and 93 of 121 lead SNPs in loci shared between SCZ and CigPerDay (77%; exact 
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binomial P = 1.22 x 10-9) were sign concordant in the independent SCZ GWAS (Tables S43-

44). Of these SNPs, 44 and 26, respectively, had P < 0.05 in the replication SCZ sample 

(Tables S43-44). 226 of 278 lead SNPs in loci shared between SCZ and TG (81%; exact 

binomial P = 2.47 x 10-27) and 212 of 275 lead SNPs in loci shared between SCZ and HDL 

(77%; exact binomial P = 2.51 x 10-20) were sign concordant in the independent SCZ GWAS 

(Tables S45-46). Of these SNPs, 57 and 50, respectively, had P < 0.05 in the replication SCZ 

sample (Tables S45-46). 27 of 34 lead SNPs in loci shared between SCZ and CAD (79%; 

exact binomial P = 0.0004) were sign concordant in the independent SCZ GWAS (Table S47). 

Of these SNPs, nine had P < 0.05 in the replication SCZ sample (Table S47). 

233 of 288 lead SNPs in loci shared between SCZ and BMI (81%; exact binomial P = 

5.98 x 10-20) and 268 of 294 lead SNPs in loci shared between SCZ and SBP (91%; exact 

binomial P = 4.15 x 10-52) were sign concordant in the independent GWASs for BMI and SBP 

(Tables S41-42). Of these SNPs, 74 and 91, respectively, had P < 0.05 in these replication 

samples for BMI and SBP (Tables S41-42). 186 of 242 lead SNPs in loci shared between SCZ 

and smoking initiation (77%; exact binomial P = 8.75 x 10-18) and 75 of 113 lead SNPs in loci 

shared between SCZ and CigPerDay (66%; exact binomial P = 0.0003) were sign concordant 

in the replication samples for smoking phenotypes (Tables S43-44). Of these SNPs, 40 and 

16, respectively, had P < 0.05 in independent GWAS samples for smoking (Tables S43-44). 

205 of 294 lead SNPs in loci shared between SCZ and TG (70%; exact binomial P = 5.39 x 

10-12) and 199 of 289 lead SNPs in loci shared between SCZ and HDL (69%; exact 

binomial P = 1.03 x 10-10) were sign concordant in the replication samples for lipids 

(Tables S45-46). Of these SNPs, 41 and 41, respectively, had P < 0.05 in the replication 

samples for lipids (Tables S45-46). 24 of 29 lead SNPs in loci shared between SCZ and CAD 

(83%; exact binomial P = 0.0002) were sign concordant in the replication CAD sample (Table 

S47). Of these SNPs, three had P < 0.05 in the replication sample for CAD (Table S47). 
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Note that the replication GWAS samples were considerably smaller than the discovery 

samples, which reduced the power to detect significant lead SNPs. The replication samples 

were around 1/2 (SCZ, SBP) to 1/9 (smoking, lipids, CAD) of the primary sample sizes. 

Given the smaller sample sizes, the number of replicated lead SNPs with nominal significance 

is as expected. The consistency of associations in replication datasets is similar to that of other 

GWASs of complex traits (31, 32). 

 

Gene-mapping of candidate SNPs  

Gene-mapping of candidate SNPs: By applying FUMA, we mapped candidate SNPs jointly 

associated with SCZ and CVD phenotypes to protein-coding genes. We linked the candidate 

SNPs in the shared loci between SCZ and BMI to 2047 protein-coding genes (Table S60). 

Positional gene-mapping aligned SNPs to 799 genes, eQTL gene-mapping implicated 1081 

genes, and chromatin interaction mapping indicated 1394 genes (Table S60). 357 genes were 

implicated by all three mapping strategies, providing higher credibility for these genes (Table 

S60). We linked the candidate SNPs in the shared loci between SCZ and WHR to 2246 

protein-coding genes (Table S61). Positional gene-mapping aligned SNPs to 847 genes, eQTL 

gene-mapping implicated 1065 genes, and chromatin interaction mapping indicated 1786 

genes (Table S61). 438 genes were implicated by all three mapping strategies, providing 

higher credibility for these genes (Table S61). Furthermore, we linked the candidate SNPs in 

the shared loci between SCZ and smoking initiation to 1895 protein-coding genes, of which 

357 genes were implicate by all three strategies (Table S62). Positional gene-mapping aligned 

SNPs to 797 genes, eQTL gene-mapping implicated 999 genes, and chromatin interaction 

mapping indicated 1328 genes (Table S62). We linked the candidate SNPs in the shared loci 

between SCZ and CigPerDay to 899 protein-coding genes, of which 161 genes were implicate 

by all three strategies (Table S63). Positional gene-mapping aligned SNPs 364 genes, eQTL 



19 
 

gene-mapping implicated 450 genes, and chromatin interaction mapping indicated 627 genes 

(Table S63). We linked the candidate SNPs in the shared loci between SCZ and TG to 2212 

protein-coding genes, of which 336 genes were implicate by all three strategies (Table S64). 

Positional gene-mapping aligned SNPs to 874 genes, eQTL gene-mapping implicated 1165 

genes, and chromatin interaction mapping indicated 1499 genes (Table S64). We linked the 

candidate SNPs in the shared loci between SCZ and HDL to 2158 protein-coding genes, of 

which 313 genes were implicate by all three strategies (Table S65). Positional gene-mapping 

aligned SNPs to 774 genes, eQTL gene-mapping implicated 1145 genes, and chromatin 

interaction mapping indicated 1416 genes (Table S65). We linked the candidate SNPs in the 

shared loci between SCZ and LDL to 1511 protein-coding genes, of which 189 genes were 

implicate by all three strategies (Table S66). Positional gene-mapping aligned SNPs to 466 

genes, eQTL gene-mapping implicated 805 genes, and chromatin interaction mapping 

indicated 963 genes (Table S66). We linked the candidate SNPs in the shared loci between 

SCZ and TC to 1741 protein-coding genes, of which 243 genes were implicate by all three 

strategies (Table S67). Positional gene-mapping aligned SNPs to 573 genes, eQTL gene-

mapping implicated 895 genes, and chromatin interaction mapping indicated 1206 genes 

(Table S67). The candidate SNPs in the shared loci between SCZ and SBP were mapped to 

2558 protein-coding genes, of which 555 genes were implicate by all three strategies (Table 

S68). Positional gene-mapping aligned SNPs to 1080 genes, eQTL gene-mapping implicated 

1359 genes, and chromatin interaction mapping indicated 1046 genes (Table S68). We linked 

the candidate SNPs in the shared loci between SCZ and DBP to 2460 protein-coding genes, of 

which 595 genes were implicate by all three strategies (Table S69). Positional gene-mapping 

aligned SNPs 1121 genes, eQTL gene-mapping implicated 1365 genes, and chromatin 

interaction mapping indicated 1788 genes (Table S69). We linked the candidate SNPs in the 

shared loci between SCZ and T2D to 1445 protein-coding genes, of which 269 genes were 
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implicate by all three strategies (Table S70). Positional gene-mapping aligned SNPs to 517 

genes, eQTL gene-mapping implicated 780 genes, and chromatin interaction mapping 

indicated 1053 genes (Table S70). We linked the candidate SNPs in the shared loci between 

SCZ and CAD to 451 protein-coding genes, of which 75 genes were implicate by all three 

strategies (Table S71). Positional gene-mapping aligned SNPs to 147 genes, eQTL gene-

mapping implicated 264 genes, and chromatin interaction mapping indicated 318 genes 

(Table S71). The gene-mapping of the candidate SNPs jointly associated with SCZ and CVD 

phenotypes largely implicated genes expressed in brain tissue (adult and fetal cortex) and 

immune cells (Tables S60-71).  

 

Gene-set and pathway analysis of genes nearest to lead SNPs 

We performed gene-set and pathway analyses of genes nearest to lead SNPs. The analyses 

implicated that genes nearest to lead SNPs jointly associated with SCZ and BMI were 

enriched in several Gene Ontology (GO) terms, including “regulation of transmembrane 

transport”, “regulation of cell development”, “regulation of synaptic plasticity” and several 

neuronal gene-sets (Table S72). No significant GO-terms were enriched among the genes 

nearest to lead SNPs shared between SCZ and WHR, but a pathway termed “KEGG 

Alzheimer’s Disease” appeared significant (Table S73). Gene-set analysis of the genes nearest 

to the lead SNPs shared between SCZ and smoking initiation also indicated several GO terms, 

with a predominance of gene-sets related to neurodevelopment, including “central nervous 

system development” and “neuron development” (Table S74). The GO gene-set analysis of 

the nearest mapped genes for SCZ and lipids implicated “positive regulation of RNA 

biosynthetic process” and “cell-cell signaling” and several neuronal (e.g. “neuron 

differentiation”), synaptic (e.g. “synapse organization”) and nucleic acid binding (e.g. 

“sequence specific DNA binding”) gene-sets (Tables S75-77). The GO gene-sets enriched 
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with genes nearest to lead SNPs associated with SCZ and SBP/DBP included "homophilic 

cell adhesion via plasma membrane adhesion molecules" and "cell-cell adhesion via plasma 

membrane adhesion molecules” as well as several neuronal and synaptic gene-sets (Tables 

S78-79). In addition, immunological gene-sets were enriched with the genes nearest to lead 

SNPs associated with SCZ and TG, HDL, SBP (Tables S75-76; 78). There were no 

significantly enriched gene-sets with genes nearest to lead SNPs shared between SCZ and 

T2D and CAD. 

The analyses implicated pathways overrepresented among the genes nearest to lead 

SNPs shared between SCZ and smoking initiation, including “Pathways Affected in Adenoid 

Cystic Carcinoma” (Table S74). Pathway analysis of the genes mapped to SCZ and TG 

indicated "MAPK Signaling Pathway" and "Brain-Derived Neurotrophic Factor (BDNF) 

signaling pathway" (Table S75). Pathway analysis of the genes mapped to SCZ and SBP and 

DBP indicated "MAPK Signaling Pathway", "Brain-Derived Neurotrophic Factor (BDNF) 

signaling pathway". "Energy Metabolism" and “Adherens junction” (Tables S78-79). There 

were no pathways significantly overrepresented with genes nearest to lead SNPs shared 

between SCZ and BMI, TC, LDL, HDL, T2D and CAD. 

 

Genes-set analysis of genes mapped to candidate SNPs 

Gene-set analysis revealed that mapped genes for SCZ and BMI were enriched in four Gene 

Ontology (GO) terms, including “hemophilic cell adhesion via plasma membrane adhesion 

molecules” and “MRNA binding” (Table S80). The mapped genes for SCZ and WHR were 

also enriched in several GO terms, including “homophilic cell adhesion via plasma membrane 

adhesion molecules” and “amide biosynthetic process” (Table S81). The mapped genes for 

SCZ and smoking initiation were enriched in several GO terms, with a predominance of gene-

sets related to neurodevelopment, including “central nervous system development” (Table 

S82). The genes mapped to SCZ and lipids were enriched in GO terms associated with inter- 
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and intracellular processes and structures, including “homophilic cell adhesion via plasma 

membrane adhesion molecules”, “intracellular transport” and “mitochondrion” (Tables S83-

86). Mapped genes for SCZ and SBP and DBP were most significantly enriched in the GO 

terms “homophilic cell adhesion via plasma membrane adhesion molecules”, “synapse 

organization” and several neuronal gene-sets, including “neuron projection” (Tables S87-88). 

Analysis of mapped genes for SCZ and T2D implicated enriched gene-sets involving 

molecular functions, including “adenyl nucleotide binding” and “ribonucleotide binding” 

(Table S89). There were no significant GO results for the genes mapped to SCZ and 

CigPerDay and CAD (Table S90). However, the analyses showed enrichment in several 

immunological signature gene-sets across all CVD phenotypes (Tables S80-91).  

 

Pathway analysis of genes mapped to candidate SNPs 

Pathway analysis of the genes mapped to SCZ and CigPerDay indicated “glycine, serine and 

threonine metabolism” (Table S92). Pathway analysis of the genes mapped to SCZ and T2D 

indicated “ppara pathway” (Table S93). This pathway involves gene regulation by 

Peroxisome Proliferators via Peroxisome proliferator-activated receptor-α (PPARα). Analysis 

of the genes mapped to SCZ and lipids implicated enrichment in “prion disease pathway” 

(Tables S94-97). Prion diseases are rare, neurodegenerative diseases caused by an infectious 

agent known as a prion. Pathway analysis for SCZ and TG also indicated “EPONFKB 

pathway” (Table S94), which is a pathway involving erythropoietin mediated neuroprotection 

through NF-kB. Pathway analysis for SCZ and HDL revealed “mRNA processing” (Table 

S95). This process involves the conversion of precursor messenger RNA into mature 

messenger RNA (mRNA). Pathway analysis for SCZ and WHR indicated “mRNA 

Processing” (Table S98). 
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 Some of the GWAS summary statistics (for SCZ, lipids and smoking) include imputed 

data from the Haplotype Reference Consortium (HRC). FUMA does not include HRC-

imputed data in the reference dataset. Thus, we checked if there were any SNPs identified 

with cond/conjFDR that were lost in the FUMA analyses and found that no SNPs were 

missing functional annotation.  

 

Genomic SEM results 

We used Genomic SEM to further analyze the relationship between SCZ and CVD. In 

particular, we investigated the effect of BMI and smoking initiation on the genetic 

relationship between SCZ and CAD. Based on the results above (rg) (Table S101), BMI and 

smoking initiation are positively correlated with CAD, while SCZ demonstrates a negative 

genetic correlation with BMI and a positive genetic correlation with smoking initiation. Thus, 

we controlled for the effect of these CVD risk factors with both positive (smoking) and 

negative (BMI) associations with SCZ on the relationship between SCZ and CAD. We 

hypothesized that controlling for these CVD risk factors would modify the association 

between SCZ and CAD. In addition, we performed similar analyses with other CVD risk 

factors (one representative of each CVD risk category (e.g. blood pressure, lipids and T2D) 

that shared variants with mixed effect directions in SCZ and CAD (Table S101). 

 

Multiple regression 

Figure S17 shows the path diagrams for each of the models examined: The correlations 

between SCZ and CAD (Figure S17a-b) controlling for BMI were non-significant, similar to 

the bivariate correlations calculated with LDSR (Table S101). In particular, the path from 

SCZ to CAD (rg=0.016, p=0.531, Figure S17a) and vice versa (rg=0.017, p=0.531, Figure 

S17b) were close to zero. The correlations between SCZ and CAD (Figure S17c-d) 
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controlling for smoking initiation were also weak, yet significant (SCZ to CAD rg=-0.055, 

p=0.041; CAD to SCZ rg=-0.056, p=0.042). This indicates that controlling for the effect of 

smoking initiation and BMI have little to no impact on the relationship between SCZ and 

CAD. The analyses controlling for other CVD risk factors (lipid, SBP, T2D) did not 

significantly change the genetic correlation between SCZ and CAD (rg<-0.018), p>0.528) 

(Figure S17c-i). The residual variance for CAD and SCZ was high (>0.83, number to the right 

in Figure S17), indicating that most of the variance in CAD and SCZ is not explained by the 

models. 

 

Mediation 

Figure S18 shows the mediation models for SCZ and CAD with CVD risk factors as 

mediators. The correlations produced from the total effect path c (Figure S18) are the same as 

the bivariate correlations produced through LDSR (Table S101). The indirect effect is the 

product of paths a and b (Figure S18). This results in a minor indirect effect of BMI (rg=-

0.035, p=5.016x10-9) (Figure S18a) and smoking initiation (rg=0.036, p=7.639x10-8 (Figure 

S18b). BMI as a mediator lowers the correlation between SCZ and CAD, while smoking as a 

mediator increases the correlation, although both correlations are still close to zero. The 

analyses with other CVD risk factors except for SBP (rg=0.034, p=0.5694) also suggest a 

statistically significant, yet minor, indirect effect (HDL rg=0.0167, p=4.439x10-3; T2D 

rg=0.0255, p=2.887x10-3) on the relationship between SCZ and CAD (Figure S18c-e).  

 

Multiple regression vs mediation analyses 

The direct effect of SCZ on CAD and vice versa controlling for CVD risk factors (except for 

smoking initiation) was statistically insignificant in multiple regression analyses (Figure S17), 

while the indirect effects in the mediation models were statistically significant except for SBP 
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(Figure S18). This difference is probably due to the fact that tests for indirect effects have 

more power than the tests for direct effects (47). 
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SCZ BMI Smoking initiation 

CigPerDay 
 

SBP DBP 

HDL LDL TC 

TG T2D CAD 

Figure S1. Univariate Q-Q plots for distribution of expected p-values under a null model (no SNPs 
associated with the phenotype) (x axis) versus observed p-values (y axis). Univariate Q-Q plots 
demonstrate that MiXeR-based predictions provide accurate estimates of the data Q-Q plots. Blue lines 
indicate p-values of SNPs observed in GWAS summary statistics with grey shading indicating 95% 
confidence interval. Orange lines indicate model predictions. The dashed line is the expected Q-Q plot 
under null (no SNPs associated with the phenotype). The vertical axes are limited to the genome-wide 
significance threshold of p<5×10−8, to highlight behavior of polygenic component. Points on the Q-Q plot 
are weighted according to LD structure, using n=64 iterations of random pruning at LD threshold r2=0.1. 

WHR 
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A) SCZ 

Figure S2. A) Univariate Q-Q plots for subsets of SNPs, showing observed schizophrenia 

(SCZ) GWAS p-values (in blue) and model prediction (in orange). Grey shading indicating 

95% confidence interval. All SNPs were partitioned into 9 groups according to minor allele 

frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q plots show a 

stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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  B) BMI 

Figure S2. B) Univariate Q-Q plots for subsets of SNPs, showing observed body mass index 

(BMI) GWAS p-values (in blue) and model prediction (in orange). Grey shading indicating 

95% confidence interval. All SNPs were partitioned into 9 groups according to minor allele 

frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q plots show a 

stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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Figure S2. C) Univariate Q-Q plots for subsets of SNPs, showing observed smoking initiation 

GWAS p-values (in blue) and model prediction (in orange). Grey shading indicating 95% 

confidence interval. All SNPs were partitioned into 9 groups according to minor allele 

frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q plots show a 

stronger GWAS signal for SNPs with higher MAF and larger total LD score.  

C) Smoking initiation 
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D) CigPerDay 

Figure S2. D) Univariate Q-Q plots for subsets of SNPs, showing observed cigarettes per day 

(CigPerDay) GWAS p-values (in blue) and model prediction (in orange). Grey shading 

indicating 95% confidence interval. All SNPs were partitioned into 9 groups according to 

minor allele frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q 

plots show a stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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Figure S2. E) Univariate Q-Q plots for subsets of SNPs, showing observed systolic blood 

pressure (SBP) GWAS p-values (in blue) and model prediction (in orange). Grey shading 

indicating 95% confidence interval. All SNPs were partitioned into 9 groups according to 

minor allele frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q 

plots show a stronger GWAS signal for SNPs with higher MAF and larger total LD score.  

E) SBP 
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  F) DBP 

Figure S2. F) Univariate Q-Q plots for subsets of SNPs, showing observed diastolic blood 

pressure (DBP) GWAS p-values (in blue) and model prediction (in orange). Grey shading 

indicating 95% confidence interval. All SNPs were partitioned into 9 groups according to 

minor allele frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q 

plots show a stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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Figure S2. G) Univariate Q-Q plots for subsets of SNPs, showing observed high-density 

lipoprotein cholesterol (HDL) GWAS p-values (in blue) and model prediction (in orange). 

Grey shading indicating 95% confidence interval. All SNPs were partitioned into 9 groups 

according to minor allele frequency (MAF) and total linkage disequilibrium (LD) score. 

Observed Q-Q plots show a stronger GWAS signal for SNPs with higher MAF and larger total 

LD score.  

G) HDL 
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  H) LDL 

Figure S2. H) Univariate Q-Q plots for subsets of SNPs, showing observed low-density 

lipoprotein cholesterol (LDL) GWAS p-values (in blue) and model prediction (in orange). 

Grey shading indicating 95% confidence interval. All SNPs were partitioned into 9 groups 

according to minor allele frequency (MAF) and total linkage disequilibrium (LD) score. 

Observed Q-Q plots show a stronger GWAS signal for SNPs with higher MAF and larger total 

LD score.  
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  I) TC 

Figure S2. I) Univariate Q-Q plots for subsets of SNPs, showing observed total cholesterol 

(TC) GWAS p-values (in blue) and model prediction (in orange). Grey shading indicating 95% 

confidence interval. All SNPs were partitioned into 9 groups according to minor allele 

frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q plots show a 

stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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  J) TG 

Figure S2. J) Univariate Q-Q plots for subsets of SNPs, showing observed triglycerides (TG) 

GWAS p-values (in blue) and model prediction (in orange). Grey shading indicating 95% 

confidence interval. All SNPs were partitioned into 9 groups according to minor allele 

frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q plots show a 

stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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  K) T2D 

Figure S2. K) Univariate Q-Q plots for subsets of SNPs, showing observed type 2 diabetes 

(T2D) GWAS p-values (in blue) and model prediction (in orange). Grey shading indicating 

95% confidence interval. All SNPs were partitioned into 9 groups according to minor allele 

frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q plots show a 

stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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L) CAD 

Figure S2. L) Univariate Q-Q plots for subsets of SNPs, showing observed coronary artery 

disease (CAD) GWAS p-values (in blue) and model prediction (in orange). Grey shading 

indicating 95% confidence interval. All SNPs were partitioned into 9 groups according to 

minor allele frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q 

plots show a stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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M) WHR 

Figure S2. M) Univariate Q-Q plots for subsets of SNPs, showing observed waist-to-hip ratio 

(WHR) GWAS p-values (in blue) and model prediction (in orange). Grey shading indicating 

95% confidence interval. All SNPs were partitioned into 9 groups according to minor allele 

frequency (MAF) and total linkage disequilibrium (LD) score. Observed Q-Q plots show a 

stronger GWAS signal for SNPs with higher MAF and larger total LD score.  
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Figure S3. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of 

shared and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) 

and lipids (HDL, TG, LDL, and TC) (orange). The numbers in the Venn diagram indicate the estimated quantity of 

trait-influencing variants (in thousands), explaining 90% of SNP heritability in each phenotype, followed by standard 

error. Conditional Q–Q plots of observed versus expected −log10 p-values in the primary trait as a function of 

significance of association with a secondary trait at the level of p < 0.1, p < 0.01, p < 0.001. Blue line indicates all 

SNPs. Dotted lines in blue, orange, green, and red indicate model predictions for each stratum. Black dotted line is the 

expected Q–Q plot under null hypothesis. Negative log-likelihood plot: minus log-likelihood calculated for the 

bivariate model as a function of 𝜋𝜋 parameter. The remaining parameters of the model were constrained to their fitted 

values. Figure generated from MiXeR. 
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Figure S4. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of 

shared and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) and 

coronary artery disease (CAD) (orange). The numbers in the Venn diagram indicate the estimated quantity of trait-

influencing variants (in thousands), followed by standard error. Appearance of the Q-Q plot and negative log-likelihood 

plot are described below Figure S3. Figure generated from MiXeR. 
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Figure S5. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of 

shared and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) and 

smoking initiation (orange). The numbers in the Venn diagram indicate the estimated quantity of trait-influencing 

variants (in thousands), explaining 90% of SNP heritability in each phenotype, followed by standard error. Appearance 

of the Q-Q plot and negative log-likelihood plot are described below Figure S3. Figure generated from MiXeR. 
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Figure S6. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of 

shared and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) and 

body mass index (BMI) (orange). The numbers in the Venn diagram indicate the estimated quantity of trait-influencing 

variants (in thousands), explaining 90% of SNP heritability in each phenotype, followed by standard error. Appearance 

of the Q-Q plot and negative log-likelihood plot are described below Figure S3. Figure generated from MiXeR. 
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Figure S7. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of shared 

and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) and systolic 

blood pressure (SBP) (orange). The numbers in the Venn diagram indicate the estimated quantity of trait-influencing 

variants (in thousands), followed by standard error. Appearance of the Q-Q plot and negative log-likelihood plot are 

described below Figure S3. Figure generated from MiXeR. 



45 
 

  

  Figure S8. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of 

shared and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) and 

diastolic blood pressure (DBP) (orange). The numbers in the Venn diagram indicate the estimated quantity of trait-

influencing variants (in thousands), followed by standard error. Appearance of the Q-Q plot and negative log-likelihood 

plot are described below Figure S3. Figure generated from MiXeR. 
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Figure S9. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of 

shared and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) and 

type 2 diabetes (T2D) (orange). The numbers in the Venn diagram indicate the estimated quantity of trait-influencing 

variants (in thousands), followed by standard error. Appearance of the Q-Q plot and negative log-likelihood plot are 

described below Figure S3. Figure generated from MiXeR. 
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  Figure S10. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of 

shared and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) and 

waist-to-hip ratio (WHR) adjusted for BMI (orange). The numbers in the Venn diagram indicate the estimated quantity 

of trait-influencing variants (in thousands), followed by standard error. Appearance of the Q-Q plot and negative log-

likelihood plot are described below Figure S3. Figure generated from MiXeR. 
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Figure S11. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagrams of 

shared and unique trait-influencing variants, showing polygenic overlap (gray) between schizophrenia (SCZ) (blue) and 

Cigarettes per day (orange). The numbers in the Venn diagram indicate the estimated quantity of trait-influencing 

variants (in thousands), explaining 90% of SNP heritability in each phenotype, followed by standard error. Appearance 

of the Q-Q plot and negative log-likelihood plot are described below Figure S3. Figure generated from MiXeR. 
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Figure S12. Polygenic overlap between SCZ and CVD phenotype. Conditional Q-Q plots of nominal 

versus empirical −log10p values (corrected for inflation) in SCZ below the standard GWAS threshold 

of p < 5 × 10−8 as a function of significance of association with CVD phenotype, at the level of p < 

0.1, p < 0.01, p < 0.001, respectively. The blue lines indicate all SNPs. The dashed lines indicate the 

null hypothesis. Abbreviations: SCZ, schizophrenia; CVD, cardiovascular disease; BMI, body mass 

index; TG, triglycerides; HDL, high-density lipoprotein cholesterol; LDL, low density lipoprotein 

cholesterol; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2D, 

type 2 diabetes; CAD, coronary artery disease; WHR, waist-to-hip ratio adjusted for BMI. The 

conditional Q-Q plots build on the condFDR method. 
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Figure S13. Polygenic overlap between SCZ and CVD phenotype. Conditional Q-Q plots of nominal 

versus empirical −log10p values (corrected for inflation) in CVD phenotype below the standard 

GWAS threshold of p < 5 × 10−8 as a function of significance of association with SCZ, at the level of 

p < 0.1, p < 0.01, p < 0.001, respectively. The blue lines indicate all SNPs. The dashed lines indicate 

the null hypothesis. Abbreviations: SCZ, schizophrenia; CVD, cardiovascular disease; BMI, body 

mass index; TG, triglycerides; HDL, high-density lipoprotein cholesterol; LDL, low density 

lipoprotein cholesterol; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; T2D, type 2 diabetes; CAD, coronary artery disease; WHR, waist-to-hip ratio adjusted for 

BMI. The conditional Q-Q plots build on the condFDR method. 
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Figure S14. The figure provides an overview of the number of common lead SNPs for schizophrenia 

and more than one cardiovascular disease (CVD) phenotype at conjFDR<0.05. The bars to the right 

(vertical) provide information about the number of lead SNPs that are common to specific CVD 

phenotypes (e.g. BMI and lipids). The bars to the left (horizontal) show, for each CVD phenotypes, 

the number of lead SNPs that are found for at least one other CVD phenotype. Further information is 

available in Table S37. Abbreviations: CAD, coronary heart disease; T2D, type 2 diabetes; SBP, 

systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WHR, waist-to-hip 

ratio adjusted for BMI; HDL, high-density lipoprotein cholesterol; LDL, low- density lipoprotein 

cholesterol; TC, total cholesterol; TG, triglycerides. 
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Figure S15. Matrix of the genetic correlations between CVD phenotypes, and between SCZ and 

CVD phenotypes. Blue denotes positive genetic correlation; red indicates negative genetic 

correlation. Genetic correlations that are significantly different from zero after Bonferroni 

correction are marked with an asterisk. Abbreviations: BMI, body mass index; CAD, coronary 

artery disease; DBP, diastolic blood pressure; SBP, systolic blood pressure; HDL, high-density 

lipoprotein cholesterol; LDL, low density lipoprotein cholesterol; TG, triglycerides; TC, total 

cholesterol; T2D, type 2 diabetes; WHR, waist-to-hip ratio adjusting for BMI; SCZ, schizophrenia; 

CVD, cardiovascular disease.  
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Figure S16. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic 

overlap (gray) between cardiovascular disease (CVD) phenotypes. The numbers in the Venn 

diagram indicate the estimated quantity of trait-influencing variants (in thousands), followed by 

standard error. Appearance of the Q-Q plot and negative log-likelihood plot are described below 

Figure S3. Figure generated from MiXeR. Abbreviations: BMI, body mass index; TG, 

triglycerides; SBP, systolic blood pressure; T2D, type 2 diabetes; CAD, coronary artery disease. 
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Figure S17. Genomic Structural Equation Modeling of schizophrenia (SCZ), coronary artery disease 

(CAD) and CVD risk factors. Paths diagrams for model A-I are presented: The path from SCZ to CAD 

(A) and vice versa (B) while controlling for body mass index (BMI). The path from SCZ to CAD (C) 

and vice versa (D) while controlling for smoking initiation. The path from SCZ to CAD (E) and vice 

versa (F) while controlling for high-density lipoprotein (HDL). The path from SCZ to CAD (G) and 

vice versa (H) while controlling for systolic blood pressure (SBP). The path from SCZ to CAD (I) and 

vice versa (J) while controlling for type 2 diabetes (T2D). Single-headed arrows represent a partial 

correlation, while double-headed arrows represent a bivariate correlation calculated with LDSR. The 

residual variance is shown to the right in each diagram.  
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Figure S18. Mediation analyses with Genomic Structural Equation Modeling. Path diagrams with 

CVD risk factors as mediators of the relationship between schizophrenia (SCZ) and coronary artery 

disease (CAD), including factor loadings for each path. Standard errors are included in parenthesis. 

Each path is labeled, where c is the total effect for the path between SCZ and CAD, and c’ is the direct 

path from SCZ to CAD, and the indirect effect is the product of paths a and b (a*b). Models assessing 

c 
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the effect of body mass index (BMI) (A), smoking initiation (B), high-density lipoprotein (HDL) (C), 

systolic blood pressure (SBP) (D) and type 2 diabetes (T2D) (E).  
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