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Supplementary Methods 
 

Clinical Assessments. The PTSD Checklist for DSM-IV (PCL-IV)1 measures the distress 

caused by each clinical symptom over the past month, using a 5‐point scale ranging from 1 (not 

at all) to 5 (extremely distressing). At each time-point, PCL item scores were summed to yield a 

secondary continuous measure of PTSD symptom severity, in addition to CAPS total scores. 

The PCL was shown to have high test-retest reliability over a three-day period (r = 0.96) and 

very high internal consistency (α = 0.97), as well as a high correlation with CAPS2. The Beck 

Anxiety Inventory (BAI)3 measures common symptoms of anxiety over the past week using 

individual item scores ranging from 0 (not al all) to 3 (severely). It was shown to discriminate 

anxious diagnostic groups (panic disorder, generalized anxiety disorder, etc.) from non-anxious 

diagnostic groups (major depression, dysthymic disorder, etc.), and was moderately correlated 

with other anxiety rating scales4. At each time-point, BAI item scores were summed to yield a 

continuous measure of anxiety symptom severity. 

 

functional MRI (fMRI) Tasks. Threat Reactivity Task. To probe participants’ reactivity to social 

threat cues, we used the well-known Hariri’s face-matching task5. In this paradigm, participants 

were instructed to select the face (located at the bottom right or bottom left of the screen) that 

matches the target face (located at the top of the screen), as accurately and as quickly as 

possible. The task included four blocks of shapes, and four blocks of emotional faces (angry, 

fearful, surprised, and neutral faces). The order of the emotional faces blocks was 

counterbalanced between subjects, as well as within-subjects across different time-points, using 

four different orders for this task.  
Reward Reactivity fMRI Task. To probe participants’ reward reactivity, we used an interactive 

naturalistic gambling game, termed the ‘Safe or Risky Domino Choice’ (SRDC) task. The 

effectiveness of the SRDC to detect individuals’ sensitivity to risk, punishment, and reward was 

previously validated in both healthy and clinical populations6–11. In this task, individuals played a 

2-player competitive game, in which they were required to make risky choices to win. While 

participants were told that the opponent is the experimenter and that their choices can increase 

their chances of winning, the computer randomly generated the opponent’s responses in a 

predetermined pattern to allow a balanced design (exposing the player’s choices 50% of the 

time). Each round of the game is composed of four intervals. First, the player chooses which 

chip to play next, either a matching choice (e.g., a chip with at least one of the master chip’s 

numbers) or a non-matching choice. Next, they move the cursor to the chosen chip and place it 
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facing down adjacent to the master chip. Participants then wait for the opponent’s response to 

see whether he/she challenges their choice by uncovering the chosen chip or not. Players’ 

choices and opponents’ responses are interactively determined by the flow of the game round 

after round, creating a natural progression of a game situation that lasts 4 minutes or until the 

player wins the game by disposing of all his/her chips. Each player played consecutively for 14 

minutes (approximately 3–4 game rounds). The focus of this work was on the neural responses 

to different outcomes, specifically while receiving rewards vs. when receiving punishments. For 

more details, see Fig. 1 in Ben-Zion et al. (2021)12 and its supplementary methods.  

 

fMRI Data Preprocessing. Raw DICOM data images were converted to NIFTI format and 

organized to conform to the ‘Brain Imaging Data Structure’ specifications (BIDS)13. Quality 

control steps of both the anatomical and functional data were conducted using: (1) Visual 

inspection for conversion errors and data exclusion criteria (e.g., anatomical abnormalities, 

signal drop-out); (2) MRI Quality Control (MRIQC)14 tool developed by the Poldrack Lab at 

Stanford University for the use at the Center for Reproducible Neuroscience (CRN). 

Preprocessing was conducted using fMRIPrep version 1.5.815, a Nipype based tool16, and 

included:  

(1) Preprocessing of the anatomical data. Within the fMRIPrep framework, T1-weighted (T1w) 

images were corrected for intensity non-uniformity (INU) using `N4BiasFieldCorrection’17 version 

2.1.0, distributed with `AntsApplyTransforms` (ANTs) version 2.2.0. The T1w-reference was 

then skull-stripped with a Nipype implementation of the `antsBrainExtraction.sh` workflow (ANTs 

version 2.2.0), using OASIS30-ANTs as a target template. A T1w-reference map was computed 

after registration of the INU-corrected T1w images using `mri_robust_template` (FreeSurfer 

version 6.0.1). Volume-based spatial normalization to the ICBM 152 Nonlinear Asymmetrical 

template version 2009c (‘MNI152NLin2009cAsym’)18 was performed through nonlinear 

registration with `antsRegistration` tool (ANTs version 2.2.0), using brain-extracted versions of 

both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white 

matter (WM), and gray matter (GM) were performed on the brain-extracted T1w images using 

FMRIB’s Automated Segmentation Tool (‘FAST’), as part of FSL version 5.0.9 19. 

(2) Preprocessing of the functional data. For each of the BOLD runs found per subject (across 

all tasks and sessions), the following preprocessing was performed. First, a reference volume 

and its skull-stripped version were generated using a custom methodology of fMRIPrep. 

Susceptibility distortion correction (SDC) was omitted. The BOLD reference was then co-

registered to the T1w reference using ‘bbregister’ (FreeSurfer) which implements boundary-
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based registration20. Co-registration was configured with 9 degrees of freedom to account for 

distortions remaining in the BOLD reference. Head-motion parameters with respect to the BOLD 

reference (transformation matrices, and six corresponding rotation and translation parameters) 

were estimated before any spatiotemporal filtering using `mcflirt` (FSL version 5.0.9)21. BOLD 

runs were slice-time corrected using `3dTshift` from AFNI version 16.2.07. The BOLD time-

series (including slice-timing correction) were resampled onto their original, native space by 

applying the transforms to correct for head-motion. These resampled BOLD time-series will be 

referred to as ‘preprocessed BOLD in original space’, or just ‘preprocessed BOLD’. First, a 

reference volume and its skull-stripped version were generated using a custom methodology of 

fMRIPrep. Several confounding time-series were calculated based on the preprocessed BOLD: 

framewise displacement (FD), DVARS, and three region-wise global signals (extracted within 

the CSF, WM, and whole-brain masks). Additionally, a set of physiological regressors were 

extracted to allow for component-based noise correction (‘CompCor’)22. Principal components 

were estimated after high-pass filtering of the pre-processed BOLD time-series (using a discrete 

cosine filter with 128s cut-off) for the two ‘CompCor’ variants: temporal (‘tCompCor’) and 

anatomical (‘aCompCor’). Six ‘tCompCor‘ components were then calculated including only the 

top 5% variable voxels within that subcortical mask. For aCompCor, six components were 

calculated within the intersection of the subcortical mask and the union of CSF and WM masks 

calculated in T1w space, after their projection to the native space of each functional run. For 

each CompCor decomposition, the k components with the largest singular values were retained, 

sufficient to explain 50% of the variance across the nuisance mask. The remaining components 

were dropped from consideration. The head-motion estimates calculated in the correction step 

were also placed within the corresponding confounds file. The confound time series derived 

from head motion estimates and global signals were expanded with the inclusion of temporal 

derivatives and quadratic terms. Frames that exceeded a threshold of 0.5mm FD or 1.5 

standardized DVARS were annotated as motion outliers. All re-samplings were performed with 

a single interpolation step by composing all the pertinent transformations. Gridded (volumetric) 

re-samplings were performed using ‘antsApplyTransforms’ (ANTs), configured with Lanczos 

interpolation to minimize the smoothing effects of other kernels23. Non-gridded (surface) re-

samplings were performed using `mri_vol2surf` (FreeSurfer). Many internal operations of 

FMRIPREP use `Nilearn` version 0.6.224, mostly within the BOLD-processing workflow. Finally, 

spatial smoothing was performed with an isotropic Gaussian kernel of 6mm FWHM (full-width at 

half-maximum). 
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fMRI Data Analysis. Analysis of the functional data of both fMRI tasks was performed using 

Statistical Parametric Mapping (SPM)25 version 12 (SPM-12). For the threat reactivity task, 

blocks of fearful and neutral stimuli were modeled separately using the onset and duration time 

of each block, convolved with a canonical hemodynamic response function. The neural contrast 

of watching fearful faces vs. watching neural faces (i.e., Fearful > Neutral) was used for the 

region-of-interest (ROI) extraction. For the reward reactivity task, neural responses to outcomes 

of rewards and punishments were as separate experimental conditions in an event-related 

design. A ”false” condition was modeled including trials in which participants had no actual 

choice (i.e., when only matching or only non-matching chips remained to choose from), and 

when they did not respond within the defined time (i.e., within 10 seconds after the “go” signal). 

to choose a chip (during 10 seconds starting with the “go” signal). Movement events were 

modeled when players had to move and choose a chip (during both “ready” and “go” intervals). 

The implicit baseline was defined as both decision-making intervals (“choose”) and false rounds 

(“false”). The neural contrast of receiving both rewarding outcomes versus receiving both 

punishing outcomes, (i.e., Rewards > Punishments) was used for the ROI extraction. In all first-

level models, white matter, CSF and global signal time courses were included as nuisance 

regressors. The full details of the analysis of the threat and reward tasks reactivity task can be 

found in Ben-Zion et al. (2020)26 and Ben-Zion et al. (2021)12, respectively.  

Participants’ mean activations (average beta weights) across all voxels in each region-of-

interest (ROI) were extracted from individuals’ first-level contrasts using the MarsBaR toolbox27. 

In line with Stevens et al.28, all ROIs were defined bilaterally using anatomical boundaries. For 

the threat reactivity task, ROIs included the amygdala29, insula30, subgenual anterior cingulate 

cortex (sgACC) and dorsolateral anterior cingulate cortex (dACC) as defined by Brodmann 

Areas 25 and 32, respectively. For the reward reactivity task, ROIs included the nucleus 

accumbens (NAcc)31, orbitofrontal cortex (OFC)32 and amygdala29. Similar to the original article, 

we did not require that all ROIs show significant task-related activation, as some regions with 

high inter-individual variability may not be significantly activated in group-level analyses28. Like 

Stevens et al., fMRI data from each ROI were z-scored to minimize range effects (prior to 

clustering). Outliers were further replaced with a cap score at M±3SD. 

 

Clustering Analysis. In more details, we first obtained the covariance matrix of the fMRI tasks 

and ROIs used for the clustering analysis (7 features). Second, we simulated n=1999 random 

samples with the size of our original dataset (n=130) from this covariance matrix assuming the 

variables to be multivariate and normally distributed. Third, we ran the same hierarchical 



Page 6 of 14 
 

clustering procedure (as performed on the real data) on each random sample and calculated the 

best obtained Hartigan’s distance metric and Silhouette width metric. Thereby, we obtained an 

empirical null distribution of these two distance metrics. The p-value was then defined as the 

ranks of the indices values in the null distribution smaller than the value of the indices observed 

in the original data. 
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Supplemental Results 
 
Participants’ Demographic and Clinical Characteristics. Chi-square tests (categorical 

variables) and independent t-tests (continuous variables) were used to assess the differences in 

participants’ demographic and clinical characteristics between this study (n=130; see Table 1 in 

the main text) and the original one28 (discovery: n=69, replication: n=77; see Table 1 in Stevens 

et al.28). First, there was no significant difference in age between this study’s participants to 

those in the discovery (t=1.754, p=0.081) or replication (t=0.747, p=0.456) cohorts of the original 

study. Second, there was a significant difference in gender between this study’s sample and the 

discovery cohort of Stevens et al. (χ2=12.629, p<0.001), which included more females (74%) 

compared to our cohort (48%). Nevertheless, there was no significant difference in gender 

between this study’s participants to those in the replication cohort of Stevens et al. (χ2=3.598, 

p=0.058). Third, there was a significant difference in trauma type between our cohort and both 

discovery (χ2=7.035, p=0.008) and replication (χ2=30.428, p<0.001) cohorts of the original work. 

While the discovery cohort had more MVA survivors (69 out of 69, 100%) than the sample in 

this work (115 out of 130, 88%), the replication cohort had significantly fewer MVA survivors (41 

out of 77, 53%). Finally, participants in this report had an average of 14.25±2.74 education 

years, with a 95% confidence interval (CI) ranging from 13.76 to 14.75 years. This is 

comparable to the qualitative description of education level in both cohorts of Stevens et al., 

where the majority of individuals were between ‘High-school diploma/GED’ to a bachelor’s 

degree (discovery: 63 out of 69, 91%; replication: 63 out of 77, 83%). We were not able to find 

in the original study information to compare participants’ marital status or severity of PTSD and 

anxiety. Furthermore, this dataset did not include, hence could not compare, other demographic 

characteristics that were reported in Stevens et al.’s work: race/ethnicity, employment status, 

yearly family income, and childhood maltreatment assessment. Finally, it is possible that the 

clusters in both studies reflect other pre-trauma factors that were not measured, such as genetic 

markers, family history, or temperament33.  
 

Whole-brain Activations during Reward Reactivity Task. While the two studies used 

different fMRI tasks to probe reward reactivity (SRDC paradigm12 versus Delgado’s monetary 

reward task34), whole-brain neural activations seem to be qualitatively similar. Brain images 

showing task-responsive voxels across all participants in the original work for the contrast of 

Monetary Gains > Losses (Fig. 1D in Stevens et al., 202128 ) overlap with those found for all 

participants in this work for the contrast of Rewards > Punishments in our work (Fig. S1 in Ben-
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Zion et al., 202112), with the most significant positive activations in reward areas (NAcc / Ventral 

Striatum).  

  
Clustering of Individuals Using Task-based fMRI at One-Month Posttrauma. To avoid 

redundancy, and in line with Stevens et al.28, we reported the 4-cluster solution in the main text 

and the 2-cluster solution here in the supplemental results.  

Assessment of the different fMRI activation patterns at one-month posttrauma among the two-

cluster solution revealed a subgroup of 18 individuals showing high reactivity of all the brain 

regions to threat and rewards (Cluster 2 in Fig. S2.b). Examining the clustering tree (Fig. S2.a), 

we a subgroup (Cluster 2, n=18) which is identical to Cluster 4 in the four-cluster solution (see 

Fig. 2b). The other large group (Cluster 1, n=112) showed average activation across brain 

regions to threat and rewards (contrast estimates~0). This cluster includes all three subgroups 

found in the four-cluster solution together (Clusters 1-3 in Fig. 2c).  

The assignment for the two clusters was unrelated to any of the demographic characteristics 

(participant’s age, gender, or marital status; for all: p>0.05).  

Finally, the 2-cluster solution showed the optimal Silhouette width index. Using a simulation 

approach aiming to test the significance of the clusters34,35, we found that this index was 

statistically significant (Silhouette width index=0.240, p=0.005; Fig. S1.c). In other words, it is 

unusual to observe such an index when the hierarchical clustering is performed on a 

multivariate normally distributed dataset (with no clusters), supporting the fact that two clusters 

(as shown in Fig. S2) were more likely than no clusters at all.  
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Supplementary Figures  
 
Figure S1. Optimal Number of Clusters and Clustering Significance. a. Weighted sum of 

squares for within-cluster point distances across a range of cluster solutions (from k=1 to k=6 

clusters). The optimal solution according to Hartigan’s distance index is denoted with a dotted 

line. b. Silhouette width for a range of cluster solutions after hierarchical clustering using Wilk’s 

criterion. Width summarizes the distance of points within a cluster relative to points outside the 

cluster. The dotted line indicates maximum silhouette width, representing the optimal solution. c. 
The null distribution of Hartigan’s distance index. Although this index is maximized at k=4 

clusters, these results are not unusual even for the data simulated from a Gaussian distribution 

with no clusters. Those criteria do not imply evidence for the existence of clusters in our data. 
d. The null distribution of Silhouette width index. Results are unusual compared to data 

simulated from a Gaussian distribution with no clusters, providing evidence for the existence of 

this 2-cluster solution in our data.   
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Figure S2. fMRI Profiles of the Two Clusters among Trauma Survivors (n=130). a. 
Dendrogram illustrates the two-cluster solution (different colors). b. Cluster differences (mean 

and SD) for standardized contrast estimates extracted from the ROIs across the threat (fearful > 

neutral faces) and reward (rewards > punishments) contrasts. T=Threat, R=Reward, 

Amy=Amygdala 
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Figure S3. PTSD and Anxiety at 14-months Posttrauma among the Two Clusters of 
Trauma Survivors. Boxplots presenting the four clusters created based on neuroimaging data 

at 1-month posttrauma and their future clinical symptoms at 14-months posttrauma: CAPS-4 

total scores (a), CAPS-5 total scores (b), PCL total scores (c), BAI total scores (d).  
T3 = 14-months following ED admission.  
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