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Supplementary Results 

 

A. Developmental characterization of organoids using bulk RNA sequencing and 

immunofluorescence confocal microcopy 

Early progenitor markers PAX6 and NESTIN (NES gene) maintained consistent levels throughout 

organoid development. Basal progenitor markers TBR2 (EOMES gene) and HOPX progressively 

increased in expression across organoid maturation with significant peaks at day 158, likely 

reflective of increased neuronal maturation (Figure 1B, Table S2). Young neuronal marker MAP2 

and mature neuronal markers TBR1 and CTIP2 (BCL11B gene) appeared later in organoid 

development but maintained constant levels as the organoids increased in age, from day 40 on with 

a significant peak at day 120 (Figure 1C, Table S2). Immunofluorescence staining in day 40 and 

day 90 organoids supported these findings at the protein level (Figure 1D). This cell-type 

distribution is consistent with a gradual maturing of the three-dimensional brain-like structure 

centered on the functional unit of the ventricle, with progenitors populating the apical surface of 

the ventricular zone and migrating toward the basal surface of the cortical plate as they 

differentiate.  

 

B. Annotations of cell types based on marker genes in single-cell transcriptome data 

All 17 identified cell clusters fit within three cell classes based on well-established markers(1-7) 

as follows (Figure 3B, Figure 3C inset table). Non-Neural Progenitors (n=2,274), representing 

the cells that have not been poised for a neuronal lineage differentiation, were characterized by 
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expression of epithelial marker EPCAM (Figure S3) and tight junction protein OCLN, as well as 

stromal markers LUM and extracellular markers like collagens COL1A2. Importantly, these cells 

do not express PAX6 at high levels, which appears during the mesenchymal-to-epithelial transition 

from neuroepithelia to radial glia and is indicative of a commitment toward neuronal lineage. 

development. The cell types that contribute to the Non-Neural Progenitor cell class are the 

neuroepithelia (NE) being primarily made up of day 30 cells and distinctly expressing cell cycling 

markers LIN28A and ASPM, in addition to OCLN and EPCAM. The Epithelial Stromal cells (ES) 

cluster distinctly expresses a combination of early markers EDN1 (endothelial), CD68 (associated 

to microglia and other peripheral cells), TSTD1, CDH1, all of which have been shown by other 

groups to be associated with neuroepithelial cells (Figure 3B; Figure S3). Finally, the 

Mesenchymal cells (M) which express structural proteins like LUM and DCN and collagens like 

COL1A2, and the Endothelial cells (E) which express EDN1, round out this cell class. 

The second cell class represents the Neural Progenitors (n=7,576 cells), defined by appearance of 

PAX6 (Figure 3C-D; Figure S3), and consisting of 5 clusters including most notably Glial 

Precursors (GP) which express oligodendrocyte precursor as well as astrocyte marker S100B and 

glial precursor transcription factor SOX10; Proliferative Precursors (PP) defined by expression of 

cycling markers TOP2A, MIK67, ASPM; Early Progenitors / Neuronal Precursors (EP) which 

express progenitor markers VIM and PAX6 as well as neuronal lineage markers NES, NCAM1; and 

Radial Glia (RG) expressing markers PAX6, SOX2, HES1, HES5, and CDH2 (Figure 3B; Figure 

S3). This is the most inclusive and heterogeneous class of cells, showing the potential of organoid-

derived progenitor cells to differentiate into the majority of cell types present in the human brain. 

However, their abundance also highlights the early stage of development modeled in this system.  

The third cell class represents the Neurons (n=4,152 cells) and is defined by expression of neuronal 

markers STMN2 and DCX (Figure 3C-D; Figure S3). It includes the most immature and 

heterogeneous immature Neurons (iN) which express MAP2, DCX, some dorsal markers like 

NEUROD1 and NEUROD4 as well as ventral marker OTX2, but also some retinal markers like 

CRX and RCVRN. In spite of some ventral markers present, our organoids primarily seem to 

differentiate along a dorsal lineage, with the immature Dorsal Neurons (iDN) expressing MAP2, 

DCX, and some dorsal-specific NEUROD6 and the most differentiated Dorsal Neurons (DN) 

expressing NEUROD6 abundantly, as well as glutamatergic receptor GRIA2 and synaptic protein 

SNAP25 (Figure 3B; Figure S3).  

 

C. Cell-type distribution in cerebral organoids across developmental time shows 

neuronal maturation 

When separating cells by developmental time-point, by-and-large the same cell-types were 

represented and identified by the same markers, with the main difference being relative cell 

abundance (Figure 3C; Figure S3A-C). For example, the proportion of Neuroepithelial cells (NE) 

decreased as the organoids aged (Chi-square=15.58, p-value=0.0004) while the proportion of more 

differentiated cell-types like the Dorsal Neurons (DN) increased (Chi-square=6.03, p-

value=0.049) (Figure 3C). 

Even more prominently than with individual cell-types, the percent of cells in each cell class across 

organoid age changed with maturity. Non-Neural Progenitors decreased from 26% at day 30 to 
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12% cells at day 60 and 9% at day 90 (Chi-square=12.5, p-value=0.002) while there was not 

significant change in Neural Progenitors (p-value=0.75), with this class covering just above 50% 

of cells at all ages. Neurons increased progressively with organoid age from 19% to 32% to 39% 

of cells at day 30, day 60, and day 90, respectively (Chi-square=9.8, p-value=0.007; Figure 3D).  

 

D. Cell-type specific glucocorticoid response in organoids is GR-dependent 

Since glucocorticoid-response has previously been established by our group and others in different 

tissue types like peripheral blood cells(8) as well as more recently neuronal cell types like 

hippocampal progenitors(9), we wanted to test the overlap of these previous findings with our 

results from GC-exposure in organoids. We first tested whether the effects we observed following 

glucocorticoid exposure were dependent on expression of the glucocorticoid receptor (NR3C1 

gene). We found that cells with sufficient mRNA levels of NR3C1 and thus positive for this gene’s 

expression in our data, displayed significantly higher absolute fold changes in all three cell classes 

(p-value <0.0001) compared to NR3C1-negative cells after Dex treatment (Figure 4H). This fold-

change distribution was tested in a set of genes that was previously determined to be indicative of 

glucocorticoid-response in a human hippocampal progenitor cell line following a similar acute 

stimulation paradigm(9). This supports the notion that the observed Dex-response phenotype of 

individual cells is indeed mediated via cell-intrinsic GR.  

 

E. Cell-type-specific differential expression in fine clusters defined by scRNAseq 

At the 17-cluster level, we found significant differentially-expressed genes (DEGs) in 9 clusters, 

ranging from one to 55 DEGs (q-value≤0.05; Figure 5A, Table S8). Radial Glia (RG) had the 

most significant DEGs (n=55) followed by the immature Dorsal Neurons (iDN, n=47 genes), the 

Dorsal Neurons (DN, n=38 genes), and the Proliferative Progenitors (PP, n=37 genes) (q-

value≤0.05; Figure 5A, Table S8). No gene was DE in more than four clusters, but 5 genes were 

shared among the four clusters with most DEGs (PP, RG, iDN, and DN) (Figure 5B). Of these, 

MGARP was up-regulated, while C1orf61, LINC01551, NEUROD6, and NFIA were down-

regulated by Dex. The direction of DE fold-change (FC) was consistent across all three time-points 

(Tables S5-7), indicating a cell-type and not temporally-dependent effect. Genes associated with 

neuronal phenotypes like NEUROD6, C1orf61, and NFIA were among the most strongly down-

regulated in multiple clusters (Figure 5B inset table for FC). The DN cluster exhibited the largest 

FCs, with the top 6 ranked transcripts by p-value displaying absolute FC above 2.0 (Table S8). 

Interestingly, all these transcripts were down-regulated by Dex, and included NEUROD6, C1orf61, 

NFIA, and NFIB, suggesting possible disruptive effects of GR-activation on neuronal 

differentiation and maturation, however power in this 17-cluster DEG analysis was limited. 

 

F. Enrichment of Intellectual Disability-associated genes carrying loss-of-function 

mutations in coarse cells classes from Line1 organoids 

To assess the impact of genetic mutations in neurodevelopmental disorders among the genes we 

found DE in our case-control comparisons, we tested enrichment against a gene list focusing 
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specifically on genes carrying loss-of-function mutations associated with ID from the 

Developmental Brain Disorders Database (DBDD)(10) (gene list in Table S13). We started with 

the DEGs from the coarse cell-class groupings. When testing for enrichments within genes with 

ID-related loss-of-function mutations in DBDD, we found a highly significant enrichment of 

DEGs in Neurons only (q-value=5.97x10-8; OR=5.6, Figure S5B; Table S13), finding which 

proved to be driven by GR-activation, with 0 of 1,000 permuted iterations of the test gene list 

reaching p-value≤ the nominal p-value (Figure S5B; Table S13). This enrichment was based on 

17 DEGs mapping to ID-associated genes with loss-of-function mutations, including the NRXN1, 

TCF4, TBR1 and PAX6 genes where multiple pathogenic mutations have been linked to 

neurodevelopmental disorders. When breaking the analysis down by 17 cell-types, this result was 

consistent and even more pronounced in the most mature cell cluster, the Dorsal Neurons (q-

value=5.05x10-8, OR=25.80; permutation-based empirical q-value=0.004; Table S13). 

 

Supplementary Materials and Methods 

I. hiPSCs and Organoids 

Line 1 induced pluripotent stem cells were derived via reprogramming from NuFF3-RQ human 

newborn foreskin feeder fibroblasts, male (GSC-3404, GlobalStem)(11). Line 2 cells were 

generated using a plasmid-based protocol for derivation of integration-free human iPSCs from 

peripheral blood mononuclear cells(12) from a female donor collected at the Max Planck Institute 

for Psychiatry through the BeCOME study(13). Line 3 hiPSCs were reprogrammed from a female 

donor’s skin fibroblasts (HPS0076- 409b2, RIKEN BRC cell bank)(14, 15). All hiPSCs were 

cultured on 6-well plates (Thermo Fisher) coated with 1:30 Matrigel (Corning) in mTesR1 basic 

medium supplemented with 1x mTesR1 supplement (Stem Cell Technologies) at 37°C, with 5% 

CO2. Cerebral organoids (COs) were generated as previously described(16), starting with 9,000 

hiPSCs dissociated into single cells using StemPro Accutase Cell Dissociation Reagent (Life 

Technologies) per each well in U-shaped low attachment 96-well tissue culture plates (Corning) 

in hES medium (DMEM/F12-GlutaMAX supplemented with 20% Knockout Serum Replacement, 

3% FBS, 1% Non-essential amino acids, 0.1 mM 2-mercaptoethanol, 4 ng/ml bFGF and 50 µM 

Rock inhibitor Y27632) for 6 days in order to form embryoid bodies (EBs). On day 6, EBs were 

transferred into low attachment 24-well plates in Neural Induction (NIM) medium (DMEM/F12 

GlutaMAX-supplemented with 1:100 N2 supplement, 1% Non-essential amino acids and 5 µg/ml 

Heparin) and cultured for an additional 6 days. On day 12 EBs were embedded in Matrigel 

(Corning, 354234) drops and transferred to 10-cm tissue culture plates in Neural Differentiation 

medium (NDM) without Vitamin A medium (DMEM/F12GlutaMAX and Neurobasal in ratio 1:1 

supplemented with 1:100 N2 supplement 1:100 B27 without Vitamin A, 0.5% Non-essential 

amino acids, insulin 2.5 µg/ml, 1:100 Antibiotic-Antimycotic and 50 µM 2-mercaptoethanol) in 

order to form organoids. 4 days after Matrigel embedding, organoids were transferred into an 

orbital shaker and cultured in NDM with Vitamin A (DMEM/F12GlutaMAX and Neurobasal in 

ratio 1:1 supplemented with 1:100 N2 supplement 1:100 B27 with Vitamin A, 0.5% Non-essential 

amino acids, insulin 2.5 µg/ml, 1:100 Antibiotic-Antimycotic and 50 µM 2-mercaptoethanol). 
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Organoids were grown in these conditions at 37°C with 5% CO2 until collection for RNA 

extractions, cryopreservation, or single-cell dissociation.   

II. Glucocorticoid stimulation 

Our primary intention in the experiments described here was to model clinical sGC exposure 

using dexamethasone (Dex), a synthetic glucocorticoid known to bind preferentially to the GR, 

though not exclusively. While Dex can activate the GR at much lower concentrations in 

vitro(17), the doses recommended to pregnant mothers consist of 24mg Dexamethasone 

phosphate given as 4 intramuscular injections at 12 hourly intervals. A single 6mg dose would 

reach a Cmax of 65–95 ng/ml at Tmax 3 hours (18), which would equal to a concentration of 

~165-242nM from a single dose and as high as 968nM over the treatment duration, depending on 

how fast this is processed by the system. The maternal/fetal blood concentration ratio has been 

reported to be anywhere from 0.4 to 1 days after administration (18-21), so we would expect at 

the very least that the fetus could be exposed to concentrations of 66-968nM. Even if there are 

differences related to size of the mother or fetus further altering these ratios, these should not 

make a great impact on the amount of compound reaching different tissues, as synthetic GCs like 

Dex are known to pass through placental membranes.  

Organoids of different ages depending on experiment were treated with glucocorticoids (GCs) by 

dissolving Dexamethasone (Dex) to the appropriate concentration (10nM, 100nM, or 1000nM) in 

DMSO and subsequently in the culture medium. 4 hours or 12 hours exposure time was employed, 

and all exposures were performed in triplicate experiments.  

For long-term effects of acute glucocorticoid exposure, a 12-hour treatment of 100nM Dex or 

Vehicle (DMSO) was administered and whole organoids were collected and snap-frozen, followed 

by RNA extraction and qPCR analyses with candidate genes. The time points for organoid 

collections were as follows: 12 hours (immediately after exposure), 2 days, 6 days, and 8 days 

following the single acute exposure (during which time the organoids were kept in normal 

conditions). For immunohistochemistry and cell counting experiments, only the 8-day wait period 

was used and organoids were fixed and stained as in the following section.  

III. Immunofluorescence 

Organoids were fixed using 4% paraformaldehyde for 45 minutes at 4oC, cryopreserved with 30% 

sucrose, fixed in optimal cutting temperature (OCT) compound (Thermo Fisher Scientific) and 

stored at -20oC prior to cutting 16 um cryosections. For immunofluorescence, sections were post-

fixed using 4% PFA for 10 mins and permeabilized with 0.3% Triton for 5 mins. Sections were 

subsequently blocked with 0.1% TWEEN, 10% Normal Goat Serum and 3% BSA. Primary and 

secondary antibodies were diluted in blocking solution, and fluorescent staining was visualized 

and analyzed using a Leica laser-scanning microscope.  For staining with PAX6 and SATB2 the 

slides were put through antigen retrieval before fixing with paraformaldehyde. More specifically, 
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the slides were incubated with citric buffer (0.01 M, pH 6.0) for 1 min at 720 Watt and 10 mins at 

120 Watt, left to cool down at room temperature for 20 mins and washed once with PBS. 

Antibodies  

Antigen Dilution Vendor Catalog # 

DAPI 1:1000 Sigma Aldrich D9542 

PAX6 1:500 Biozol BLD-901301 

SOX2 1:500 Cell Signaling 2748 

HOPX 1:1000 Santa Cruz HPA030180 

CTIP2 1:500 Abcam ab18465 

SATB2 1:500 Abcam Ab51502 

TBR1 1:500 Abcam ab31940  

MAP2 1:500 Sigma Aldrich M4403 

TBR2 1:500 Abcam ab23345 

NESTIN 1:500 Santa Cruz sc23927 

GR (D8H2) 1:100 Cell Signaling 3660S 

 

IV. Cell counting 

a. GR-positive cells 

To determine the cell compartment localization of GR-positive cells, multiple IF images (at 40x 

magnification) were scored for either vehicle (DMSO; n=7 pictures) or treated (100nM Dex; n=9 

pictures). Cells were counted as having either nuclear-only (referred to as ‘nuclear’) or a 

combination of cytoplasmic and nuclear (referred to as ‘both’) GR protein staining. Roughly 1000 

cells were counted in each condition, and statistical analyses were performed on percentage values 

using Chi-square tests with Yates correction. 

b. Neuronal layer markers  

To determine the abundance of TBR1-positive, CTIP2-positive and SATB2-positive neurons in 

organoids treated with 100nM Dex or Vehicle followed by an 8-day waiting period, multiple IF 

images of ventricles (at 25x magnification) were taken (n=17-21 ventricles for each marker, either 

Dex or Veh). The ventricle and cortical plate were marked based on DAPI-positive nuclei 

organization, and neuron-marker-positive cells were counted only within each ventricular zone 

only. Cell counts were normalized to the ventricular zone surface area, and group differences were 

computed using unpaired t-tests. 
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V. Bulk RNA sequencing 

Organoids (following 17, 23, 40, 70, 120, 140, or 158 days in culture) were collected for bulk RNA 

extractions using the RNeasy Mini extraction kit (74104, Qiagen) according to the manufacturer’s 

instructions. RNA quality and concentrations were measured on an Agilent 2100 Bioanalyzer 

(Agilent). Three replicates were analyzed per time point, every sample containing 1-3 pooled 

organoids. Sequencing libraries were prepared from a starting amount of 100ng total RNA using 

the NEBNext® Ultra™ DNA Library Prep Kit for Illumina (E7370L, New England Biolabs) using 

ribosomal depletion as a selection method, and sequenced paired-end on an Illumina HiSeq4000 

system at the Helmholtz Zentrum Core Facility (Munich, DE). 5 libraries were pooled per lane for 

a total coverage of on average 50 M reads/library. Raw reads were processed using FastQC(22) 

and cutadapt(23) and aligned using the STAR aligner(24). The counts data were batch-corrected, 

normalized and analyzed and using the ImpulseDE2 framework(25). For practical representation 

in the heatmap (Figure 1), all genes were normalized to 1.  Individual genes were plotted using 

GraphPad Prism V6 using log2-transformed values and mean  standard deviation. 

To confirm the developmental specificity of our cerebral organoid data, we integrated bulk gene 

expression data with several transcriptional data sets from human post-mortem brain tissue and 

other hiPSC-derived models. We used a recently described approach to integrate these data(26, 

27). In brief, a total of 15 independent studies were analyzed covering 2,716 independent samples 

and 11,572 genes. These studies span a broad collection of developmentally specific gene 

expression, covering expression related to hiPSCs, hiPSC-derived NPCs, hiPSC-derived neurons, 

bulk prenatal brain tissue (early, mid and late fetal stages) as well as bulk postnatal brain tissue 

(early, mid and late stages). All expression values were converted to log2 RPKM and collectively 

normalized using quantile normalization from the limma R package(28). These data, along with 

our bulk cerebral organoid expression data were projected into a low-dimensional space using 

singular value decomposition analysis. The first two principal components were used to depict 

developmental trajectories.  

VI. Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) 

Total RNA was extracted from organoids using the RNeasy Mini extraction kit (74104, Qiagen) 

according to the manufacturer’s instructions. Complementary DNA (cDNA) synthesis was 

performed using the Maxima H Minus Reverse Transcriptase (Thermo Fisher) along with 

oligo(dT)16 primers (Invitrogen) and random hexamers (IDT DNA) in a 1:1 ratio. Real-time PCR 

reactions were run in quadruplicate using PrimeTime qPCR Primer Assays (IDT DNA) and 

PrimeTime® Gene Expression Master Mix (IDT DNA) on an ABI PRISM 7900HT Sequence 

Detection System (Applied Biosystems) or a LightCycler 480 Instrument II (Roche). Relative gene 

expression levels were quantified using the absolute quantification method, and using GAPDH, 

POLR2A and YWHAZ as endogenous genes. Statistical differences between groups were analyzed 

by Two-Way repeated measures ANOVA with Dunnet’s post-hoc multiple comparisons tests. 

Statistical significance was calculated, and graphs were plotted using GraphPad Prism 7. A p-value 
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of ≤0.05 was considered statistically significant and marked as *, and ≤0.1 was considered 

suggestive of a trend for significance and marked as # in graphs. 

Gene ID Gene name PrimeTime Assay 

SOX2 SRY (sex determining region Y)-box 2 Hs.PT.58.237897.g 

PAX6 Paired box protein Pax-6 Hs.PT.58.38519242 

MAP2 Microtubule-associated protein 2 Hs.PT.58.20103440 

TUBB3 Class III β-tubulin Hs.PT.58.20385221 

NR3C1 Glucocorticoid Receptor Hs.PT.58.27480377 

FKBP5 FKBP prolyl isomerase 5; FK506 binding protein 5 Hs.PT.58.20523859 

SGK1 Serum and glucocorticoid-regulated kinase 1 Hs.PT.58.19153459.gs 

TSC22D3 GILZ; glucocorticoid (GC)-induced leucine zipper Hs.PT.58.4331913 

ZBTB16 Zinc finger and BTB domain containing 16 Hs.PT.58.605743 

MGARP Mitochondria localized glutamic acid rich protein Hs.PT.58.41038142 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase Hs.PT.39a.22214836 

POLR2A RNA Polymerase II Subunit A Hs.PT.39a.19639531 

YWHAZ Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase 

Activation Protein Zeta 

Hs.PT.39a.22214858 

 

VII. Single-cell RNA sequencing 

a. Data collection 

Whole organoids (after 30, 60, or 90 days in culture) were treated with Dex (100nM) or Vehicle 

(DMSO) for 12 hours until harvesting for single-cell preparation. Single cells were dissociated 

using StemPro Accutase Cell Dissociation Reagent (Life Technologies), filtered through 30uM 

and 20uM filters (Miltenyi Biotec) and cleaned of debris using a Percoll (Sigma, P1644) gradient. 

Single cells were resuspended in ice-cold Phosphate-Buffered Saline (PBS) supplemented with 

0.04% Bovine Serum Albumin and prepared for single-cell separation. All experiments in 

organoids from Line 1 hiPSCs were performed in quadruplicate at all three time points, with a 

paired design of a treatment (Dex) or control (Veh) condition per each experiment/iCell8 chip, for 

a total of 12 chips, using the iCELL8 Single-Cell System (Wafergen, Takara Bio) according to the 

manufacturer’s recommendations. Briefly, cells were stained with Propidium Iodide (for dead 

cells) and DAPI (for live cells) on ice for 5-10 minutes and dispensed in the loading plate. 

Following microfluidic separation, iCell8 chips were imaged using the built-in fluorescence 

microscope and snap-frozen and stored at -80oC until library preparation. Based on fluorescence 

labeling, only wells containing live single cells were selected for library preparation, which was 

performed according to the manufacturer’s guidelines using the iCell8 Chip and Reagent Kit using 

in-chip RT-PCR amplification chemistry (Wafergen, Takara Bio) and Nextera XT DNA Library 

Preparation Kit and Nextera XT Index Kit (Illumina). All experiments from Line 2- and Line 3-

derived organoids were performed at day 90 in quadruplicate in a pair-wise design with a treatment 

(Dex) or control (Veh) condition ran in parallel. Single cells were run through the Chromium 
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controller to form gel emulsion beads containing barcoded single cells and prepared into single-

cell libraries using the Chromium Single Cell 3’ Reagent Kits v2 according to the manufacturer’s 

recommendations without any modifications (10X Genomics). All libraries were assessed using a 

High Sensitivity DNA Analysis Kit for the 2100 Bioanalyzer (Agilent) and KAPA Library 

Quantification kit for Illumina (KAPA Biosystems), and sequencing was performed paired-end 

with 26nt/100nt configuration on an Illumina HiSeq4000 system at the Helmholtz Zentrum 

Sequencing Core Facility (Munich, DE). 

b. Data Analysis 

b.1. Pre-processing and quality control of single-cell RNAseq data 

Sequencing of the iCell8 single cell libraries (from Line 1-derived hiPSCs) was performed on an 

Illumina HiSeq4000 (Illumina, San Diego, CA), 1 lane per chip, generating paired-end reads of 

100 bp length. The initial quality check was performed using FastQC(22) before demultiplexing 

the cells by their barcode with Je multiplexer version 1.0.6(29) requiring a perfect match of the 

sequence. Subsequent adaptor trimming was performed using cutadapt version 1.11(30). For read 

alignment, the STAR module(24) of the Cell Ranger 2.1.1 release with the corresponding reference 

index of GRCh38 version 1.2.0 was used, both provided by 10x Genomics. Only uniquely aligned 

reads with a minimum overlap of 31 bp to the transcriptome were regarded for gene quantification 

with the featureCounts package version 1.6.4(31). We converted Ensemble Gene IDs to Gene 

Symbols using the R package BED(32) with database version UCB-Human 2019.10.11. 

Sequencing of the 10x Genomics single-cell libraries (from Line2- and Line3-derived organoids) 

was performed on an Illumina NovaSeq (Illumina, San Diego, CA), generating paired-end reads 

of 100 bp length. Count matrices were obtained from the fastq-files using Cell Ranger v3.0.2 with 

the transcriptome hg38_ensrel94. 

We carried out all downstream analyses using the python-based Scanpy package(33) 

(https://github.com/theislab/scanpy) unless stated otherwise. To remove low quality cells in the 

iCell8 data, we filtered cells with a high fraction of reads from mitochondrial genes (20% or more 

- indicating stressed or dying cells), cells with <2,000 or > 600,000 total reads, as well as cells 

expressing < 600 genes. We also removed cells that were labelled as empty wells as part of the 

iCell8 library preparation procedure. In addition, we excluded genes with expression in < 20 cells. 

When analysing cells from one of the three time-points of the iCell8 data separately we removed 

all genes with expression in < 10 cells of the time-point in question. Unless stated otherwise, we 

carried out all following analyses with cells from all time-points of the iCell8 data combined as 

well as separately for each of the three time-points (day 30, 60 and 90). 

Given the overall higher quality and sensitivity of the 10x data, more stringent filters for lower 

quality cells were applied here. Cells with a high fraction of reads from mitochondrial genes (25% 

or more - indicating stressed or dying cells), cells with <1,200 or > 150,000 total reads, as well as 
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cells expressing < 700 genes were removed from the expression matrix. All genes which were 

expressed in less than 20 cells of the total data were also removed from the expression matrix. 

b.2. Normalisation and batch correction 

To approximate the effect of sequencing depth in the data, we used the computeSumFactors() 

function from the R package scran(34). To remove this effect, we divided the reads of each cell 

by its associated size factor as computed by scran. We log-transformed the data and used the 

resulting expression matrix for computing marker genes as well as for differential expression 

analysis downstream. For the 10x data, we also used this log-normalised version of the data as 

input for any visualisations (both computing low-dimensional embeddings as well as visualising 

expression levels of individual genes). 

For the visualisation of expression levels of individual genes form the iCell8 data, we removed 

technical variation introduced by handling of the different iCell8 chips using the Scanpy 

implementation of the combat package(35). For improved interpretability of plots representing 

gene expression, we limited colour scales and axis limits to combat-corrected expression values 

between 0 and 8. This ensures comparability between the visualisation of the expression values 

of different genes prevents outlier cells with extremely high expression values from dominating 

visualisations and also ensures that negative expression values produced by combat are not 

affecting visualisations.  

The small positive and negative expression values introduced by combat in places of zero gene 

expression are particularly problematic when relying on dot plots to visualise the expression of 

marker genes. While this behaviour is a natural result of the underlying regression approach 

combat uses to remove technical variation, this result is not compatible with a dot plot as a marker 

gene visualisation tool.  This is because the concept of a dot-plot relies heavily on the absence of 

expression of a gene in all but a few cells. In order to ensure compatibility between combat-

correction and dot plot visualisations of marker genes, we adjusted the expression matrix in the 

following way: (1) we computed the median expression of each gene after combat correction while 

excluding all values from the median calculation that were zero before combat correction; (2) we 

set all entries in the post-combat expression matrix to zero which were zero before combat 

correction and at the same time were below the previously computed median expression value of 

the respective gene. This way, we only allowed combat to activate the expression of genes if the 

combat-corrected expression value was above the median expression value of that gene. On the 

one hand this prevents combat to turn on expression of spurious genes by a small amount and on 

the other hand still allows for turning on gene expression if the batch effect dominates the 

expression of a particular gene. 

In order to obtain a meaningful low-dimensional embedding of the iCell8 data, we carried out a 

separate normalisation and batch correction step starting again from the raw count data as before. 

We used a negative binomial generalised linear regression model with regularised over-dispersion 
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parameter theta, as introduced in(36), with the iCell8 chip ID as a batch covariate. To this end we 

used the R function norm.nb.reg( ) from the github repository associated with(36) 

(https://github.com/ChristophH/in-lineage). We constructed the normalised expression matrix 

from the Pearson residuals of the regression model. 

b.3. Low dimensional embedding, visualisation and clustering 

We computed the single-cell neighbourhood graph on the 50 first principal components of the 

negative binomial residuals’ expression matrix using 15 nearest neighbours. We used Uniform 

Manifold Approximation and Projection (UMAP)(37) for visualising the data in two dimensions. 

For clustering and cell type identification we used louvain-based clustering(38) at varying 

resolution in different parts of the data manifold as implemented in louvain-igraph 

(https://github.com/vtraag/louvain-igraph) and adopted by Scanpy. We annotated cell types 

based on the expression of known marker genes. We merged clusters if only reflecting further 

heterogeneity within a cell type not discussed in this manuscript. For the exact steps of clustering 

and annotation and the parameters used consult the available code. In different figures varying 

resolutions of subtype clustering are shown in this manuscript. We identified characteristic gene 

signatures of each cluster by testing for differential expression of a single cluster against all other 

cells using a t-test with overestimated variance implemented in the sc.tl.rank_genes_groups() 

function of Scanpy. 

b.4. Differential Expression Testing 

We used the MAST(39) package for all single-cell differential expression analyses. MAST uses 

a two-part linear (‘hurdle’) model to match the distribution of scRNA sequencing data. We tested 

differential expression between Dex and Vehicle samples in different subgroups of cells. Firstly, 

we tested the effect in each of the fine clusters of the iCell8 data individually. Secondly, we 

investigated the same effect, but instead considering the three coarser cell classes in the iCell8 

and 10x data. We included the number of genes expressed in each cell as a covariate in the 

MAST expression model. To correct for the batch effect of iCell8 individual experiments/chips, 

we additionally included the chip ID as a covariate in the MAST model for the iCell8 data. After 

fitting the model we used a likelihood ratio test to test for differential expression between 

conditions. As an output from MAST we obtained raw p-values, p-values corrected for multiple 

testing with the Benjamini-Hochberg approach (false discovery rate) and log2 fold changes of 

gene expression between conditions. We used a false discovery rate  0.05 as a significance 

threshold. 

b.5. Treatment response in NR3C1-positive vs. -negative cells 

To investigate dependence of the Dex response on expression of the GR, we fitted the MAST 

model as described above for each of the three coarser cell classes in the iCell8 data and obtained 

log2foldchanges between cells that do or do not express the gene NR3C1 (GR). As a next step, we 

intersected the full gene list with genes previously identified to be differentially responsive to Dex 

in hippocampal progenitors(9). We then used the Wilcoxon signed-ranks test to ask if there was a 
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significant difference in the response between NR3C1-positive and -negative cells in each of the 

three cell-type groups. Results were deemed significant at a p-value  0.05. This analysis was only 

done for cells from all three time-points combined. 

b.6. Enrichment analyses 

Enrichment analyses were carried out only on the differential expression results of cells 

from all three time-points combined (iCell8 data) and on cells from the day-90 time point (iCell8 

and 10x data). 

1. FUMA 

Enrichment of differentially-expressed genes against genes carrying SNPs with Genome-

Wide Association to a variety of traits was tested using the FUMA algorithm(40) by inputting the 

various DE gene lists into the GENE2FUNC software. This analysis references the NHGRI-EBI 

GWAS Catalogue(41) (https://www.ebi.ac.uk/gwas/) most recently updated on 27 May 2019 and 

containing 943 traits from different studies. We ran an enrichment analysis separately for the DE 

genes (FDR  0.05) in the Non-Neural Progenitors, Neural Progenitors, and Neurons cells classes 

and limited the analysis to traits where 5 or more genes overlapped with the respective test gene 

sets (corrected p  0.05). We categorized all traits as ‘brain/behaviour’ or ‘other’ in the full list of 

traits for each cell class where at least one gene was shared. We assessed significant divergence 

from the ‘master’ trait list using a Chi square test, with significance set at p  0.05. 

 To explore the genes driving these enrichments, we focused on the enriched GWAS terms 

shared across at least 2 of the Lines1-3 (Table S16A-B) specifically in the DEG lists from the 

Neurons cell classes from day 90 organoids. A total of 107 genes were found to contribute to the 

significant enrichments (Table S16C), with some appearing in multiple terms across multiple cell 

lines’ DEG lists. We counted the number of contributions for each gene and ranked them by this 

count, from 25 to 1(Table S16C).  

 

2. Enrichment analyses for disease-associated genes 

To test for enrichment of selected gene-sets in the differentially expressed genes (FDR  

0.05), we used a hypergeometric test as implemented in the package diffxpy 

(https://github.com/theislab/diffxpy/). We tested for enrichment of all Gene Ontology Biological 

Function sets (v6.2), obtained from the Molecular Signatures Database(42, 43). We furthermore 

tested for enrichment of genes sets associated to disease as follows. (1) Genes mapping to SNPs 

with genome-wide significance in the genome-wide meta-analysis of the Cross-Disorder Group of 

the Psychiatric Genomics Consortium, which included 8 mental illnesses(44) (gene list in Table 

S11). (2) Gene sets from the DisGeNET database(45), which includes curated lists of disease-

associated genes not only from genetic associations, but also from gene expression analyses and 

pharmacological studies. Here we focused on two phenotypes: Autism Spectrum Disorders (ASD) 

and Neurodevelopmental Disorders (ND), and used Height as a non-brain-related phenotype (Gene 

list in Table S12). (3) Genes carrying loss-of-function mutations and associated with Intellectual 

Disability from the most recent Developmental Brain Disorders Database 

https://www.ebi.ac.uk/gwas/
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(DBDB: https://www.dbdb.urmc.rochester.edu/home; Updated March 2019)(10) (gene list in 

Table S13).  

 

We carried out enrichment tests in the following subgroupings: fine clusters individually and each 

of the three coarse cell classes individually. We applied Benjamini-Hochberg FDR correction on 

the cluster level (correcting for multiple testing within different groups of cells) as well as on the 

enrichment list level for the number of compared gene lists when using more than one gene set at 

once as with sets obtained from the DisGeNET database. 

 

We repeated the above-mentioned enrichment analyses in data from 90-day-old organoids (iCell8 

day-90 and 10x day-90 data). Here, we applied an additional log2 fold-change  +/-0.15 threshold 

on the differential gene expression results besides the FDR  0.05 filter to compensate the higher 

sensitivity in the additional differential expression results from the 10x genomics data. 

3. Permutation testing of enrichment results 

To ensure that enrichment analyses results were not simply reflective of high expression levels of 

marker genes in particular cell types or classes, we generated 1,000 permutations of equal-sized 

gene sets that also had the same mean expression distribution as the significant DE gene sets from 

each cell class (in iCell8 data at day 90 and all three time-points combined and in the 10x day-90 

data). The latter was achieved using 5 equal-gene-number bins where the mean gene expression 

was matched by bin. We then repeated all previous enrichment analyses using each of the permuted 

genes sets and counted the number of times a p-value ≤ the nominal p-value was reached. We used 

this to compute empirical p-values and corrected for the number of comparisons (both number of 

cell types/classes with significant enrichment results to consider, as well as the number of gene 

lists tested) using Bonferroni correction. Additionally, we repeated the same permutation analysis 

without binning of genes by expression but randomly sampling the same number of genes from all 

non-differentially expressed genes as found significantly differentially expressed. 

c. Software specifications 

For the analysis of the iCell8 data we used Python v3.6.8 with Scanpy v1.4, anndata v0.6.18, 

h5py v2.9.0 and diffxpy v0.6.3. We used R version 3.6.0 with packages scran v1.12.0, MAST 

v1.10.0 and BED v1.1.5 with database version with UCB-Human 2019.04.23.  

For the analysis of the 10xGenomics data we used Python v3.7.7 with Scanpy v1.4.6, anndata 

v0.7.1, h5py v2.10.0 and diffxpy v0.7.4. We used R version 3.6.3 with packages scran v1.14.6, 

MAST v1.12.0 and BED v1.2.3 with database version with UCB-Human 2019.04.23. 

We used matplotlib and seaborn to generate figures. Versions of packages required by Scanpy 

that might influence numerical results are indicated in the custom scripts. 

https://www.dbdb.urmc.rochester.edu/home
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d.  Data and code 

Primary data and processed data are available at the Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo) as follows: bulk RNA sequencing data are available at 

GSE181405 and single-cell RNA sequencing data are available at GSE189535. Code for all 

analyses is available at https://doi.org/10.5281/zenodo.5772643. 
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Supplementary Figures 

 

 

FIGURE S1. Transcriptional characterization of organoids’ developmental trajectory. A-B. 

RNA expression levels of established neural progenitor (A) and neuronal (B) markers in bulk 

RNAseq data at days-17-158 in culture. C-D. Organoids characterization by known progenitor and 

neuron markers using immunofluorescence and confocal microscopy at protein expression levels 

at days 40 (C) or 90 (D) in culture. Progenitor markers: PAX6 (green), NESTIN (NES gene, red), 

TBR2 (EOMES gene, green), HOPX (green in day 40 and grey in day 90). Neuron markers: MAP2 

(red in day 40 and green in day 90), TBR1 (green in day 40 and grey in day 90), CTIP2 (BCL11B 

gene, red). For all images in C-D, DAPI is used as nuclear marker (blue). 
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FIGURE S2. UMAPs for cell-types or cell classes from Cell Line 1. LIN28A, OCLN, CD34, 

LUM, EDN1, S100B, TRPM1, MKI67, PAX6, DAPL1, NEUROD1, DCX, GAP43, C1orf61, 

MROH8, GAL, SLN, EPCAM, VIM, STMN2 are referenced in dot plot in Figure S3 for cell-type 

characterization and cell class characterization.  
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FIGURE S3. Cell-type characterization using single-cell RNA sequencing. A. Definition of 

the 14 identifiable cell types in developmental order from Neuroepithelial cells (NE, top) to Dorsal 

Neurons (DN, bottom), abbreviations, number of cells in each cluster, cell class assigned to, and 

the genes defining each cluster identity. B. Dot plot showing the average expression by cluster and 
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percent of cells expressing each of the top 1-2 genes defining each cluster. C. Distribution of total 

cell numbers by fine cell-types across organoid age (day 30, 60, 90). D. Distribution of cell classes 

across organoid age (day 30, 60, 90). E. UMAP plot depicting the cells from organoids that 

received treatment (red, n=6800 cells) or vehicle (grey, n=7202 cells), showing even distribution 

of treated/untreated cells. 
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FIGURE S4. Cell type characterization by individual days. A-C. UMAP plot of cell-type 

clustering individually reported for day 30, 60, or 90. D-F. UMAP plot of NR3C1 gene (GR 

protein) expression individually reported for day 30, 60, or 90. G-I. UMAP plot of NR3C2 gene 
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(MR protein) expression individually reported for day 30, 60, or 90. J. Violin plot of NR3C1 

expression individually reported for day 30, 60, or 90 in all combined cells. Inset table: percent of 

total cells at each day expressing NR3C1 at detectable levels. K-L. Violin plots of NR3C1 

expression individually reported for day 30, 60, or 90 in individual cell types of interest: K, 

Mesenchymal cells (M) clusters; L: Radial Glia (RG) cells clusters. 

 

 

 

 

 

 

FIGURE S5. Quantification of nuclear translocation of GR protein following Dex treatment, in 

Non-Neural Cells (A), Neural Progenitors (B) and Neurons (C). 
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FIGURE S6. Cell-type-specific differential gene expression in organoids. A. Differential gene 

expression by single-cell cluster. Bubble plots show number of differentially-expressed genes 

(DEGs; y-axis) by average NR3C1 expression (x-axis) in all 9 clusters with at least one significant 

DEG. B. Venn diagram depicting the intersection between lists of DE genes for the top four 

clusters by number of DE genes (PP, RG, iDN, and DN). The 5 genes shared by all four clusters 

are highlighted in the table along their differential expression fold change for each cluster.  
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FIGURE S7. Increased formation of new neurons 8 days removal of acute (12hr) Dexamethasone 

(Dex) stimulation. Immunofluorescence staining was performed in organoids aged 60 days with 

100nM Dex or vehicle control (DMSO). After 12 hours, the treatment media was replaced with 

wild-type conditions, and organoids were grown for an additional 8 days. Following confocal 

microscopy imaging of 17-20 ventricles per condition, ventricular zones were marked, and TBR1-

, CTIP2-, and SATB2-positive cells were counted. Counts were normalized by ventricular area, as 

there was no difference in density of DAPI-positive nuclei between Dex and Vehicle. Group 

differences were compared using unpaired t-tests. 
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FIGURE S8. A-B. Permutations (n=1000) of DGN gene lists enrichment test in mean-matched 

non-significant (q-value >0.05) genes from Neurons (A) or Neural Progenitors (B) DE analyses. 

C-D. Permutations (n=1000) of DBDD intellectual disabilities enrichment test in Mean-matched 

non-significant (q-value >0.05) genes from Neurons (C) and Neural Progenitors (D) or DE 

analyses.  
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FIGURE S9. UMAP graphs of expression of cell-class-specific genes in Line1 (A), Line2 (B) and 

Line3 (C) –derived single cell transcriptomes. 
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 Supplementary Table Legends (supplementary tables appear in a separate document, 

appi.ajp.2021.21010095.ds002.xlsx) 

Table S1: Bulk RNAseq counts matrix. Batch-corrected and normalized gene expression counts 

for each of 21 RNAseq libraries, following ImpulseDE2 analysis. Genes in Column 1 are presented 

as Ensembl IDs. Each library/sample name is presented as "DayX_replicate". 

 

Table S2: ImpulseDE2 results depicting genes that peak (significantly different from the other 

days) at each organoid developmental time point. Genes' normalized expression levels are 

represented visually in Figure 1A via a heatmap. 

 

Table S3: Quantitative PCR differential expression after dose-time experiment in bulk organoids 

at day 45 in culture. Treatment was done in the medium with Dexamethasone dissolved in DMSO 

(10nM, 100nM, and 1000nM concentrations). The vehicle condition was DMSO. Triplicate 

biological experiments were used for the treatment, and the qPCR analyses were run in 

quadruplicate technical replicates. Analysis of qPCR data was done using the absolute 

quantification method.  

 

Table S4: Cluster markers - cell types and cell classes. 

 

Table S5: Significant DE results for day-30 organoids, based on cluster classification (in 13 

named cell-type clusters) and cell class (in 3 cells classes). 

 

Table S6: Significant DE results for day-60 organoids, based on cluster classification (in 13 

named cell-type clusters) and cell class (in 3 cells classes). 

 

Table S7: Significant DE results for day-90 organoids, based on cluster classification (in 13 

named cell-type clusters) and cell class (in 3 cells classes). 

 

Table S8: Significant differentially-expressed genes from Alldays combined analysis, based on 

cluster (in 9 named cell-type clusters with significant results) and cell class (in 3 cells classes) 

classification. 

 

Table S9: Annotation of DEGs shared by non-Neural Progenitors, Neural Progenitors, and 

Neurons in Alldays analysis. Gene ontology analysis in DE genes from three cell classes. 

Enrichment tested against Biological Process (BP) GO terms and multiple testing corrections 

performed using Benjamini-Hochberg correction against number of terms and number of test 

genes sets. 

 

Table S10: DEGs from Alldays analyses now repeated to include log2FC and q-values from the 

individual analyses at Day30, Day60 and Day90 from Table S8. Counts of each time a day-specific 

result had a log2FC value in the opposite direction from Alldays and also was significant (q-value 

≤0.05). The most frequent direction switch happens in the NP DEGs at day 30 with 2.2% genes 
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switching. In neither of the three cells classes DEGs does direction change in any gene in any more 

than one age. 

 

Table S11: FUMA GWAS enrichment results. GWAS-significant traits with 5 or more 

overlapping genes to the test gene set (DE after Dex in Non-Neural Progenitors, Neural Progenitors 

or Neurons in organoids) were included in the enrichment analysis. Benjamini-Hochberg multiple 

testing correction was done for each test gene set against the number of traits included in analysis. 

 

Table S12: Enrichment analyses of psychiatric disease-related gene sets associated genome-wide 

significant common variants from the genome-wide meta-analysis of the Cross-Disorder Group of 

the Psychiatric Genomics Consortium. 

 

Table S13: Enrichment analyses of neurodevelopmental disease-related gene sets from the 

DisGeNET database. 

 

Table S14: Enrichment of genes with Loss-of-Function mutation associated with Intellectual 

Disability from the Developmental Brain Disorders Database (DBDD) genes database (last 

updated Mar 2018). 

 

Table S15: Significant DE results for day-90 organoids derived from validation cell Lines 1 and 

2, based on cell class (in 3 cells classes). 

 

Table S16: FUMA GWAS enrichment results for validation datasets at day 90. GWAS-

significant traits with 5 or more overlapping genes to the test gene set (DE after Dex in Neurons 

from organoids derived from Lines1-3 at 90 days in culture) were included in the enrichment 

analysis. Benjamini-Hochberg multiple testing correction was done for each test gene set against 

the number of traits included in analysis. 

 

Table S17: Shared genes driving significant enrichment of GWAS terms across Lines1-3 

neurons DEGs. A. Significant GWAS terms shared across all from the FUMA analysis (Table 

S15) shared by at least two of the 3 Lines (n=12), and the genetic background in which it as 

identified. Only 'Irritable mood' was shared across all three, while 11 other terms were shared by 

two enrichment analyses. B. Genes associated with the 'Irritable mood' GWAS. C. Genes 

associated with any of the 12 terms (n=107 genes), including the number of total contributions of 

each gene to enrichments across the analyses for the three datasets from neurons in Line1- 3, the 

log2 fold-change values for each of the three neurons analyses (Line1, 2, 3), and gene 

annotations. 

 

Table S18: Enrichment analyses of psychiatric disease-related gene sets associated genome-wide 

significant common variants from the genome-wide meta-analysis of the Cross-Disorder Group 

of the Psychiatric Genomics Consortium (upper) and genes with Loss-of-Function mutation 

associated with Intellectual Disability from the Developmental Brain Disorders Database 

(DBDD) genes database (lower). Results from Lines 1-3 at day-90 organoids. 

 


