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Supplementary Material and Methods 

 

Sample Description 

All ASD participants had a clinical diagnosis of ASD according to DSM-5 or ICD-10 

criteria. We also assessed ASD symptoms using the Autism Diagnostic Observation 

Schedule (ADOS, (1)), and the Autism Diagnostic Interview-Revised (ADI-R, (2)). 

However, individuals with a clinical ASD diagnosis who did not reach cut-offs for ASD 

were not excluded to capture the full (i.e. broader) autism phenotype in the general 

population. Exclusion criteria included significant hearing or visual impairments, a history 

of alcohol and/or substance abuse or dependence in the past year, and the presence of 

MRI contraindications. We also excluded participants without IQ assessments, as well as 

controls with t-scores>70 on the Social Responsiveness Scale-2 (SRS-2, (3)) due to 

inclusion of individuals with mild intellectual disability (ID). Level of intellectual abilities 

was assessed using the Wechsler Abbreviated Scales of Intelligence—Second Edition 

(WASI-II (4)) or — in countries where the WASI is not translated (i.e. The Netherlands, 

Germany and Italy) — the four-subtest short forms of the German, Dutch or Italian WISC-

III/IV (5) for children or WAIS-III/IV (6) for adults. Furthermore, we assessed DSM-5 

Domain B symptoms via the Repetitive Behaviours Scale (RBS-R (7)), and the Short 

Sensory Profiles (SSP (8)). Notably, unlike most questionnaires assessing symptom 

severity, the scale of the SSP is negatively scored, so that larger values indicate less 

severe symptoms. To facilitate the interpretation of brain-behaviour correlations, the 

SSP scores were therefore inversed, so that larger values indicate more severe 

symptoms. In the ASD sample, the presence of other neurodevelopmental conditions and 

psychiatric disorders (except for psychosis or bipolar disorder) was allowed. Given the 

high number of autistic individuals taking regular medication, participants on stable 

medication were also included (see ST1 for details).  

 

MRI Data Quality Assessments 

Structural MRI data was initially available for a total of 709 individuals in the LEAP 

sample, which was acquired across six European ASD centres of excellence: (i) Institute 
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of Psychiatry, Psychology and Neuroscience, King’s College London (IoPPN/KCL, United 

Kingdom), (ii) Autism Research Centre, University of Cambridge (UCAM, United 

Kingdom), (ii) University Medical Centre Utrecht (UMCU, Netherlands), (iv) Radboud 

University Nijmegen Medical Centre (RUNMC, Netherlands), (v) Central Institute of 

Mental Health (CIMH, Germany), and (vi) the University Campus Bio-Medico (UCBM) in 

Rome, Italy. We initially preprocessed all available data using the default pipeline 

implemented in the FreeSurfer v6.0.0 software (http://surfer.nmr.mgh.harvard.edu/). The 

resulting surface reconstructions were visually inspected for reconstruction errors and 

rated by three independent raters, blind to group membership, who had the options to 

either (1) accept a reconstruction ‘as is’ (n=347 or 48.8%), (2) reject ‘as is’ (n=52 or 

7.5%) mostly due to severe (motion) artefacts and/or the existence of extra-brain tissue 

that precluded a successful FreeSurfer reconstruction, or (3) to prescribe manual editing 

(n=310 or 43.7%) in case of smaller (i.e. ‘local’) reconstruction errors. Following manual 

editing, the 310 images were (re)preprocessed and visually (re)assessed. Out of these, 3 

surface reconstructions did not improve significantly and were subsequently excluded 

from the statistical analysis. A further 15 scans were excluded due to scanner upgrades 

and missing FSIQ, which meant that a total of 70 scans (i.e. 9.9%) were excluded overall. 

The overall dropout was approximately equally distributed across sites with 10 out of 88 

scans (i.e., 11.4%) excluded from Cambridge (n=5 ASD, n=5 controls), 31 out of 241 scans 

(i.e., 12.9%) excluded from the IoPPN (n=28 ASD, n=3 controls), 8 out of 69 scans (i.e., 

11.6%) excluded from Mannheim (n=5 ASD, n=3 controls), 13 out of 184 scans (i.e., 7.1%) 

excluded from Nijmegen (n=11 ASD, n=2 controls), and 8 out of 86 scans (i.e., 9.3%) 

excluded from Utrecht (n=7 ASD, n=1 TD). None of the 41 scans from Rome had to be 

excluded. In terms of diagnostic categories, we excluded a total of 46 out of 353 

individuals with ASD (i.e., 13.0%), 10 out of 63 individuals with an intellectual disability 

(ID) and ASD (i.e., 15.9%), 12 out of 266 TD controls (i.e., 4.5%), and 2 out of 27 TD 

controls with ID (i.e. 7.4%) across sites. The final (i.e., analyzed) sample thus consisted 

of 639 individuals (n=360 with ASD, n=279 TD controls). 

To assess the influence of MRI data quality on our results, we also examined the Euler 

number of each of the created FreeSurfer surface reconstructions following manual 

http://surfer.nmr.mgh.harvard.edu/
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editing. The Euler number is a measure of the topological complexity of the reconstructed 

cortical surface as calculated by the sum of the vertices and faces subtracted by the 

number of faces (9). Because the Euler number is calculated separately for each 

hemisphere, we computed the sum of the values across hemispheres here to produce one 

value per subject. We found that there were no significant differences in the total Euler 

number between groups (t596=1.73, p<0.1), which means that both groups are matched in 

terms of the quality of the surface reconstruction SF9a). Moreover, we observed that 

covarying for the total Euler number in the GLM did not significantly affect the magnitude 

or pattern of the between-group differences in CT (SF9b). Last, we repeated the analyses 

of neuroanatomical deviations by including the Euler number as predictor within our 

neurotypical modelling approach. Including the Euler number did not significantly affect 

the individual’s tAIs, the outcomes of the logistic regression, or the spatially distributed 

pattern of the ASD enrichment mask (SF9c,d). It therefore seems that our results are 

largely unaffected by the quality of the surface reconstruction, which is why we did not 

covary for overall reconstruction quality within the main GLM. 

 

Medication 

Given the high number of autistic individuals taking regular medication (30-50% in Europe 

(10, 11) and 70% in US (12)), participants on stable medication were also included. 

Medication status (based on the ATC classification system, Level-1 ATC code “N”) was 

known for n=531 individuals within our sample. Out of those, n=389 individuals were 

medication free at the time of study participation. (181 ASD, 208 TD). Overall, n=142 

participants (122 ASD, 20 TD) were using at least one and a maximum of three different 

medications that included antidepressants (34 ASD, 6 TD), antiepileptics (11 ASD, 2 TD), 

antimigraine preparations (4 ASD, 0 TD), antipsychotics (28 ASD, 0 TD), anxiolytics (2 

ASD, 1 TD), drugs used to treat addictive disorders (0 ASD, 1 TD), hypnotics and 

sedatives (40 ASD, 2 TD), other analgesics and antipyretics (4 ASD, 4 TD), and 

psychostimulants or other mediation to treat ADHD symptoms (47 ASD, 9 TD). A summary 

of the different types of medication used within the ASD and TD group is provided in ST1. 
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To establish the impact of medication status on our results, we initially performed a 

nested-model comparison to test whether the inclusion of medication status as fixed 

effect variable significantly improved the model fit. To do so, we subdivided our sample 

into those with known positive medication status (122 ASD, 20 TD), and those with 

negative or unknown medication status (238 ASD, 259 TD). However, there was no 

significant improvement of model fit when covarying for medication status, which means 

that the main effect of medication status was not significant (SF8a). Furthermore, the 

main clusters of significant between-group differences in CT remained significant when 

including medication status as covariate in the GLM (SF8b). To establish whether 

medication status had an impact on neuroanatomical deviations in CT within the ASD 

group, we also compared the probability of being a neuroanatomical outlier resulting from 

the logistic regression analysis of tAIs between ASD individuals on (n=122) and off 

(n=181) medication. However, ASD individuals with medication use were equally likely to 

be a neuroanatomical outlier than ASD individuals not taking any medication 

(t(253)=0.346, p=0.729) (SF8c). Last, to examine whether medication status impacts on 

neuroanatomical variability within the ASD group, we re-estimated the neurotypical 

model following the inclusion of medication status as a fixed effect, and statistically 

compared variability in tAIs using a Paired Pitman Morgan test for the significance of the 

difference between two variances. There were no significant differences in tAIs variability 

between ASD individuals on and off medication (t(637)=1.75, p=0.1) (SF8d). It was 

therefore concluded that medication status had little or no effect on the presented results. 

 

Surface-based smoothing 

To establish the effect of the surface-based smoothing kernel on our results, and to 

substantiate the choice of the employed kernel, we also examined vertex-wise measures 

of effect sizes associated with the main effect of group, as well as clusters of significant 

between-group differences across kernels with different full width at half maximum 

(FWHM). As can be seen in SF4a, vertex-wise measures of effect sizes (assessed via 

Cohen’s f) increased across the cortex with increasing FWHM from 5mm, 10mm, 15mm, 
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to 20mm. The positive relationship between smoothing kernel and effect sizes was also 

observed on the cluster level, with a larger number of significant clusters being observed 

as the FWHM increased from 5 to 15 mm (SF4b-e). However, increasing the FWHM 

beyond 15mm had a detrimental effect on cluster-level effects, which not only depend on 

the effect sizes at individual vertices, but also on their distribution across the cortex; i.e., 

the effect size of strong focal effects in small (i.e., isolated) brain regions may be reduced 

on the cluster-level when applying a large smoothing kernel, whereas small to medium 

effects in neighboring brain regions might benefit from a larger kernel on the cluster 

level. We also explored the effects of the smoothing kernel on the Levene’s test for 

homogeneity of variances between groups, which are presented in SF5. Overall, the main 

brain regions with increased variability in ASD remained stable across kernels, with a 

larger number of local peaks observed at smaller kernels (5 and 10mm), and fewer but 

larger peaks at larger kernels (15 and 20mm), as would be expected. Based on these 

results, we therefore opted for a smoothing kernel of 15mm in the present study, which 

seems optimally suited to detect between-group differences and variability in CT across 

groups. 

 

Prediction interval threshold 

To establish the effect of the prediction interval (PI) on our results, and to substantiate 

the choice of the employed PI in our study, we also examined the results of the 

neurotypical model based on different PIs (80%, 85%, 90%, 95%, 99%). At each PI 

threshold, we have re-computed the map of neuroanatomical outliers with an enrichment 

of ASD individuals outside the neurotypical PI, which was subsequently used to derive 

the individual’s total degree of neuroanatomical abnormality (tAIs), and the accuracy, 

sensitivity, and specificity of the logistic regression analysis. As can be seen in SF7, the 

choice of the neurotypical PI had a small effect on the spatially distributed patterns of 

neuroanatomical outliers across the cortex, with effect sizes starting to decrease beyond 

a threshold of 90% (left panel of SF7). Changing the PI threshold also had a relatively 

small effect on the overall accuracy of the model, which ranged from 74.5% at a 
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neurotypical PI of 85% to 76.8% at a PI of 95% (right panel of SF7). However, as expected, 

varying the PI significantly impacted on the distribution of the tAIs in the neurotypical 

controls, were little or no variability was observed at a PI of 99% (i.e., 99% of controls 

are within the expected range of variability in CT and hence no variability is observed) 

(middle panel of SF 7). Moreover, at a PI of 95%, the distribution of tAIs within the 

controls remained ‘skwed left’ (i.e. non-symmetric), and hence significantly deviated from 

a Gaussian distribution, which can be problematic for subsequent analysis (e.g. brain-

behavior correlations) that rely on normally distributed data. Only at a neurotypical PI 

equal or lower than 90%, the distribution of tAIs was approximately normal, with sufficient 

variability in both groups, and a prediction accuracy that was comparable to higher PI 

thresholds. For the purpose of our study, we therefore choose a neurotypical PI of 90%, 

as it seems particularly well suited for the quantification of neuroanatomical outliers with 

sufficient variability with both neurotypical controls as well as individuals with ASD. 

 

Site effects 

As our study was a multi-centre MRI investigation with parallel recruitment at six 

European sites, it was important to account for scanner- or site-related confounds that 

may be unrelated to the main effect of group, but may still have an impact on our findings. 

Site effects are typically accounted for via (i) the inclusion of site as a fixed effect factor 

within the GLM, which makes it possible to explicitly model site effects at each cerebral 

vertex-level. However, a variety of other approaches have been suggested including (ii) 

the ComBat batch adjustment method prior to the statistical analysis (13), and (iii) 

including site as a random effect variable within a linear mixed effects model. Here, we 

therefore also examined the robustness of our results across different approaches for 

dealing with site effects. We find that there was little difference between the three 

different techniques overall, and the clusters with a significant between-group difference 

in CT were stable across approaches (SF3). As shown in SF3c,d, including site as a 

random effect within a linear mixed effect model had virtually no effect on our results 

compared to the computationally less intensive fixed effect model. Moreover, applying 
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ComBat correlation prior to statistically modelling did not affect the spatially distributed 

pattern of significant differences overall. However, covarying for site directly within the 

GLM improved effect sizes in the right temporal lobe cluster (in the fixed and random 

effect model), which did not reach statistical significance when applying ComBat 

correction (SF3b). Based on these findings, we therefore opted for the inclusion of site 

as fixed effect factor within the GLM, which also makes our results directly comparable 

to previous multi-centre neuroimaging studies on ASD by our team and others (e.g. (14)). 

 

Effects of Intellectual Disability (ID) 

A number of individuals within our sample had a mild intellectual disability (ID) defined 

as a full-scale IQ < 70 (N=25 controls and N=53 ASD). The non-ASD individuals with ID 

were not included in the neurotypical model, but were included in the analysis of 

between-group differences. To further investigate the potential effects of ID, we also 

compared ASD and non-ASD individuals with ID to those without. We found that both ASD 

and non-ASD individuals with ID differed significantly in CT from their non-ID 

counterparts (see SF15a,c). Overall, however, there was little overlap between the set of 

brain regions associated with the main effect of ID in non-ASD individuals and the set of 

brain regions where ASD individual significantly differed from non-ASD individuals. 

Furthermore, few small clusters remained statistically significant when inter-individual 

variability in full-scale IQ was accounted for within the GLM (SF15b,d). These findings 

suggest that while a mild ID might affect measures of CT in various regions across the 

cortex, these effects can efficiently be accounted for by including full-scale IQ as a 

continuous covariate in the GLM. 

To determine how ID affects the results of the analysis of neuroanatomical outliers, we 

have also repeated our modelling approach by defining the neurotypical range based on 

all non-ASD individuals in our sample (i.e., including those with a mild ID). We find that 

both models (i.e. in-/excluding ID individuals to/from the neurotypical range) resulted in 

a very similar, spatially-distributed pattern of neuroanatomical outliers, and a very similar 

distribution of tAIs within groups (see SF10). There were also no significant differences 
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in the overall accuracy (2(1)=0.11, p=0.75), sensitivity (2(1)=0.33, p=0.56), and 

specificity (2(1)<0.001, p=0.999) between models, which is most likely due to the small 

number of ID controls within our sample (25 out of 279; 0.8%). Taken together, these 

findings suggest that the inclusion of non-ASD individuals with ID only had a minimal 

effect on the presented between-group differences, and the associated patterns of 

neuroanatomical outliers in the ASD group. 

 

Effects of biological sex 

Our sample included both males and females. While a detailed (i.e., thorough) investigation 

of sex differences in the neuroanatomy of ASD would go beyond the scope of the present 

study, we also performed a preliminary analysis of group-by-sex interactions to aid the 

composition of the GLM with regards to included model terms, and also to determine 

whether males or females have a higher or lower probability of being a neuroanatomical 

outlier. When extending the GLM described in the main body of the manuscript by a 

group-by-sex interaction term, we found significant group-by-sex interactions only in 

one larger cluster located in the right medial orbitofrontal cortex (see SF14a). In all other 

areas of the cortex, the group-by-sex interaction remained non-significant on the cluster 

level. In most areas of the cortex, it is therefore sufficient to account for sex effects by 

including biological sex as a fixed effect factor without the group-by-sex interaction 

term.  

Based on the neurotypical model that included both males and females, we also 

established that males were no more likely to be a neuroanatomical outlier than females 

(t(191)=0.34, p=0.72) utilizing the predictive probabilities resulting from the logistic 

regression analyses, which used the individual’s total degree of neuroanatomical 

abnormality (tAIs) within the enrichment mask as predictor (SF17). Last, we have 

established separate models defining the neurotypical range of CT for males and females 

exclusively. Based on these sex-specific models, we find that the probability of being a 

neuroanatomical outlier for ASD females (based on an all-female model; N=90 out of 101 

ASD females) did not significantly differ from the probability of being an outlier for ASD 
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males (based on an all-male sample; N=217 out of 259 ASD males) (2(1)=1.24, p=0.26). 

This is of interest as our results suggest that ASD females are equally likely to be 

neuroanatomical outliers as ASD males despite the well-documented sex bias in the 

prevalence of ASD in the general population. There were also no significant differences 

in the polygenic risk for any of the examined major psychiatric disorders between males 

and females (i.e., p>0.05, two-tailed)(see SF25). 

 

Gene Expression Decoding Analysis 

To link our neuroanatomical findings to underlying genomic mechanisms, we leveraged 

the spatial gene expression data from the Allen Human Brain Atlas (AHBA; (15)) to 

identify a list of genes with a spatial pattern of expression that resembles the 

neuroanatomical patterns highlighted by our statistical neuroimaging analyses. To this 

aim, we initially uploaded (1) the statistical t-map associated with the main effect of group 

(Fig 1b), (2) the Cohen’s f map representing the effect sizes for the main effect of group 

(Fig 1d), as well as (3) the 𝜒2-outlier map with a significant enrichment of ASD individuals 

outside the neurotypical PI90% (Fig 2e) to the Neurovault server (https://neurovault.org). 

Next, using python code embedded within Neurovault and Neurosynth 

(https://neurosynth.org), we performed a gene expression decoding analysis that 

statistically assesses the spatial correlation between our statistical maps and the pattern 

of gene expression for each of a total of 20,787 protein coding genes (16). To do so, the 

six AHBA donor brains are initially co-registered with the MNI atlas (also used by 

FreeSurfer) using nonlinear registration (transcriptomic alignment). At each sampling site 

(i.e. probe), a spherical region-of-interest (ROI) is drawn (default radius r=4mm), and the 

statistical test parameter in each FreeSurfer overlay is averaged within each ROI. This 

resulted in a spatial vector of values for each donor, which was subsequently correlated 

with the normalised gene expression data (see SF20). Here, the analysis constructs a 

linear model for each donor brain, where the slopes encode the spatial correlation 

between each gene’s expression pattern to the statistical neuroimaging map (random 

effects model). In line with the input maps, these analyses were restricted to cortical 

tissue. The slopes are then subjected to a one-sample t-test to identify genes whose 

https://neurovault.org/
https://neurosynth.org/
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spatial expression patterns are consistently highly similar to the imaging maps (i.e. across 

donor brains). The derived list of genes was thresholded at p<.01, which resulted in 

N=546 significant genes for the t-map, N=408 significant genes for the Cohen’s f map, 

and N=662 significant genes for the 𝜒2-outlier map. We chose this ‘liberal’ threshold as 

this analysis did not constitute a hypothesis test per se, but rather a selection step aimed 

at yielding an initial list of genes for the subsequent analyses. Given that both sides of 

our imaging contrasts were of equal relevance, we considered both positive and negative 

t-statistic values. 

 

Gene Enrichment Analyses 

Next, we performed several gene enrichment analyses to establish the biological 

relevance and functional role of decoded genes. All enrichment testing was performed 

using the GeneOverlap package in R (10.18129/B9.bioc.GeneOverlap). Specifically, we 

tested the decoded gene-lists for an enrichment with different gene-sets known to be 

associated with ASD at the genetic and transcriptomic level. At the genetic level, this 

included the 102 rare and de novo protein truncating variants identified in the largest 

exome sequencing study of autism world-wide (17), and the GWAS-significant (i.e. 

common variants) ASD genes provided by Grove et al. (2019) (18). We also included an 

ASD-related gene list compiled by SFARI (SFARI.ASD.genes; categories S, 1, 2, & 3 

downloaded in November 2020 from https://gene.sfari.org/). At the transcriptomic level, 

we included a list of differentially expressed genes (DEGs) (upregulated/downregulated) 

in post-mortem cortex tissue in ASD (19), and genes that are differentially expressed in 

specific cell types in ASD (20). Moreover, we included genes from differentially 

expressed co-expression modules in ASD that map onto specific biological processes 

(21)(22). Notably, these gene sets are partially overlapping, and the number of total and 

intersecting genes across sets are displayed in SF22. Our enrichment tests generated 

enrichment odds ratios, hypergeometric p-values, and FDR-corrected p-values using a 

background total of the 20,787 Neurosynth genes. We also conducted our analyses using 

a more conservative (i.e. restricted) list of 16,541 background genes based on real 

estimates of genes expressed in cortical tissue (19) (see SF21). Only comparisons with 

https://doi.org/doi:10.18129/B9.bioc.GeneOverlap
https://gene.sfari.org/
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p<.05 (FDR corrected) were interpreted further. For reasons of completeness, we also 

performed a cell-type enrichment analysis for the t-map, Cohen’s f-map and 𝜒2-outlier 

map, as well as an enrichment analysis of ASD-related gene sets-based on the F-map 

representing the main effect of sensory subgroups. The results of these additional 

analyses are shown in SF23 and SF24 respectively. 

 

Integration of brain transcriptome data of the developing human brain 

In addition to testing for an enrichment of ASD-related genes, we also tested for an 

enrichment of genes underpinning typical brain development. Here, we used the human 

brain transcriptome dataset by Kang et al. (2011), which covers transcriptome profiles of 

16 different brain regions within a timeframe ranging from embryonic development to late 

adulthood (23). Co-expression patterns of genes within this dataset have previously been 

allocated to a total of 29 co-regulated gene modules that are described in detail in (23). 

To further link our neuroimaging findings to specific genetic mechanisms, we therefore 

also tested for an enrichment of genes within the 29 co-regulated gene modules, using a 

background total of 18,675 genes contained within the modules (23). For this purpose, 2D 

heatmaps representing the time course of gene expression across different brain regions 

were created based on the module ‘eigengene’, as implemented in the MAGMA pipeline 

(24). All presented p-values are FDR corrected for multiple comparisons. Since each 

module has a distinct spatio-temporal pattern of expression, and represents different 

biological processes mediating brain development and ageing, we also compared the 

patterns of differences in CT highlighted by our neuroimaging analyses to the spatio-

temporal expression patterns of the 29 modules. For this purpose, 2D heatmaps 

representing the time course of gene expression across different brain regions were 

created based on the module ‘eigengene’, as implemented in the MAGMA pipeline (24). 
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Genotyping 

DNA isolated from blood or saliva were genotyped at ‘Centre National de Recherche en 

Genomique Humaine’ (CNRGH) in Paris using the Infinium OmniExpress-24v1 BeadChip 

(>700K markers) from Illumina. We excluded participants with a genotyping rate <95%, 

heterozygosity above or below 3SD from the mean, or a mismatch in reported and genetic 

sex. We further removed SNPs that deviated from Hardy-Weinberg Equilibrium 

(p<1x10−6), and had a genotyping call rate below 95% using PLINK v1.9 

(https://www.cog-genomics.org/plink2). Imputation of 17 Mio. SNPs was then performed 

using the 700k genotyped SNPs on the Michigan Imputation Server (25). Given that the 

majority of individuals in the sample were of European ancestry, we used the HRC r1.1 

(2016) reference panel. A Principal Component Analysis (PCA) of variance standardized 

relationship matrix was used to evaluate the ancestry of individuals in the LEAP cohort, 

and to provide components for any covariate adjustments. Here, four genetic components 

(PC1 to PC4) reflecting population stratification were extracted and utilized in further 

analyses. To cluster individuals based on ancestry, we further reduced the dimensionality 

with uniform manifold approximation and projection (UMAP; (26)), reducing the first 8 

PCA components to 2 components for better visualization and easier interpretation. 

Finally, to derive subpopulation clusters, we performed density-based clustering on these 

clusters (HDBSCAN; (27)), and selected individuals of European genetic ancestries. We 

only included unrelated individuals of European ancestries in our analyses with usable 

FreeSurfer reconstructions, leading to a total of N=501 individuals (N=279 ASD, N=222 

TD controls). 

 

Gene-Set analysis of quantitative ASD GWAS data in our sample 

In order to test to what extent the gene sets identified by the GSEA for the 29 co-

expression modules (23) are associated with the ASD genotype, we performed a 

competitive gene-set analysis using MAGMA v1.07 (28). For this purpose, we initially 

performed a quantitative genome-wide association study (GWAS) in the N=501 

individuals with available MRI and genetic data (see above for genotypic information). 

https://www.cog-genomics.org/plink2
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Only SNPs with a MAF>1% were selected. Logistic regression models predicting 

diagnostic category (i.e. ASD vs. TD) were applied with fixed effects for gender, age, iq, 

site, and the first four dimensions of the multidimensional scaling results (population 

stratification) from plinkv1.9. The analysis was implemented using the R package lme4 

(29). The resulting GWAS summary file was subsequently used for gene-set analysis. For 

gene-set analysis, variants were initially annotated to genes based on NCBI (37.3)-hg19 

gene definitions, mapping variants to a gene if they were located in the transcription 

region of that gene, or within 5 kilobase upstream or 1.5 kilobase downstream of the 

transcription region. A gene-analysis was then performed to quantify the degree of 

association each gene has with the ASD phenotype (i.e. diagnosis of ASD vs. control). A 

detailed description of the approach can be found in (28). Briefly, gene analysis in 

MAGMA is based on a multiple linear principal component regression, that uses an F-test 

to compute gene p-values. This model first projects the SNP matrix for a gene onto its 

principal components (PCs), pruning away PCs with very small eigenvalues, and then 

utilizing only those PCs are predictors for the phenotype in the linear regression mode. 

By default, only 0.1% of the variance in the SNP data is pruned away (28). As the GWAS 

data already accounted for principal components related to ancestry, we did not include 

these as covariates in the gene analysis. The gene p-values and gene correlations (i.e. 

LD between genes), are then used to perform the (competitive) gene-set analysis, which 

tests within a regression framework whether the genes in a gene-set are more strongly 

associated with the phenotype of interest than other genes, correcting for potential 

confounds such as gene size, gene density, and potential differences in sample size. Here, 

we ran the MAGMA gene-set analysis with default parameters, testing the Kang et al. 

gene modules highlighted by the enrichment analysis described above. For each gene set, 

MAGMA provides p-values (uncorrected), and following FDR correction. Only the 

corrected p-value were interpreted. 
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Polygenic Scores 

Gene set-based polygenic scores 

To establish the link between the individual’s genotype and neuroanatomical phenotype, 

we initially derived gene set-based polygenic scores (PGSset) across gene sets that were 

significantly enriched in the 𝜒2-outlier map as resulting from the gene expression and 

decoding analysis. This resulted in a polygenic score (PGSDGE) across gene sets M16.up 

(22), CTX.M9.up, CTX.M19.up, and CTX.M20.up (21), ASD.DEGs.up (19), and M2 and M4 

(23), which are differentially expressed in ASD and/or typical brain development. To 

compare the impact of differentially expressed genes with the impact of ASD risk-genes 

on the individuals’ tAIs, we also generated gene-set polygenic scores across the ASD 

risk-genes with rare and de novo variants (ASD.risk.DeNovo) provided by Satterstrom et 

al. (2020) (17), and the common variants (ASD.risk.common) identified by Grove et al. 

(2019) (18) (PGSASD.risk). All genes were initially converted to ENTREZ gene identifiers 

using the gprofiler2 package for R (https://biit.cs.ut.ee/gprofiler). Information on set sizes 

and gene overlap between sets is provided in SF 21. PGSset were calculated using the 

PRSet function in PRSice-2 (https://www.prsice.info; (30)) using an additive model based 

on the independent SNPs present in both the training set (the GWAS summary file), and 

the testing data (the genotyped LEAP cohort). Here, the GWAS summary statistics was 

taken from the largest GWAS study to date with more than 18,381 individuals with ASD 

and 27,969 controls (18). The genes in the gene-sets of interest were matched to their 

genome boundaries according to human assembly GRCh37-hg19. For the LD based SNP 

pruning, we clumped only SNPs with a minor allele frequency (MAF) >1% using a window 

of 1 Mb. Since flanking SNPs not physically located with the gene-set region might also 

influence functions of the set, a cut-off (proxy threshold) of r2=0.8 was used for gene-

set membership (see https://www.prsice.info/prset_detail/ for details). The PGSset were 

calculated at a p-value threshold of 1, because gene-set PGS containing a small portion 

of SNPs may be unrepresentative of the whole gene-set. After clumping, we retained 

132,424 independent SNPs across the entire genome. Our target genome included 

4,356,796 variants that matched a total of 6,645,928 variants included in the base file (i.e. 

https://biit.cs.ut.ee/gprofiler
https://www.prsice.info/
https://www.prsice.info/prset_detail/
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GWAS summary file). PGSset were adjusted for principal component ancestry using 

genetic principal components (PC1 to PC4). For the PGSset, a self-contained p-value and 

a competitive p-value were provided, which respectively tested the association with the 

target phenotype (i.e. Phenotype ~ PRSset + PC1 + ... + PC4 + error), and the enrichment 

of signal of the specific gene-set (see ST4). The competitive p-value was obtained by 

comparing the observed gene-set PRS association with the 5k permuted null p-value 

distribution of random gene-sets PRSs.  

Genome-wide polygenic scores 

As the number of ASD risk genes with common and de novo variants was small overall, 

and only included a total of 1,455 SNPs in our sample (see ST 4), we also computed 

genome-wide PGS (PGSgenome) for ASD (18) and a variety of neuropsychiatric conditions 

including ADHD (31), schizophrenia (32), major depressive disorder (33), epilepsy (34), 

and neuroticism (35). Moreover, we computed PGSgenome for a variety of general 

phenotypic traits, such as Body Mass Index (BMI) (36), intelligence (37), educational 

attainment (38), insomnia (39), and subjective well-being (40). Here, for LD based SNP 

pruning, only SNPs with a MAF>1% and with an R2<0.1 in windows of 500kb were 

selected. PGSgenome were also adjusted for principal component ancestry using PC1 to 

PC4. At the time of the study, PGSgenome were available for 434 individuals (202 controls, 

231 ASD) in our sample. 

Details on set size, the number of variants included, and statistical details for all PGS are 

provided in ST 4. All PGS were standardized (i.e. mean centered and scaled) prior to 

further analysis. 

 

Further Analyses 

Differences in CT in individuals with ‘narrower’ definition of ASD 

In addition to examining the wider autism phenotype, we also explored between-group 

differences in a group of individuals with a ‘narrower’ definition of ASD. Here, the term 

‘narrow’ refers to ASD individuals who, in addition to meeting a clinical diagnosis of ASD 
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according to DSM-5 or ICD-10 criteria, also met the diagnostic cut-offs for ASD on the 

ADOS and the ADI-R (in accordance with (41)). This yielded N=199 ASD individuals, 

which we compared to the N=279 neurotypical controls in terms of their CT. Overall, we 

found that, while the largest clusters with a significant between-group difference in CT 

remained stable across subsets, applying stricter inclusion criteria for ASD did not 

improve effect sizes as would be expected (SF12). Instead, several clusters in the frontal 

and midline brain structures were no longer significant following the exclusion of ASD 

individuals not meeting ADOS and ADI-R cut-off. Such a reduction in effect size might 

partially be related to the smaller sample size in the ‘narrow’ ASD subset (i.e. N=199 vs. 

N=360). However, our finding also implies that restricting the ASD group phenotypically 

to the more severe (i.e. narrower) cases may not necessarily improve the clinical and 

biological homogeneity within the sample. 

 

Between-group differences in CT within age-stratified subgroups 

To further investigate the effects of age on our results, we examined between-group 

differences in CT within age-stratified subgroups that included (i) children (aged 6-11 

years; 60 ASD, 64 TD), (ii) adolescents (aged 12-17 years; 138 ASD, 97 TD), and (ii) 

adults (aged 18-30 years; 162 ASD, 119 TD) as published by (42). We find no significant 

differences in CT during early childhood, with frontal-lobe abnormalities emerging during 

adolescents (see SF13). This is of particular interest as the frontal lobes continue to 

mature until early adulthood (e.g. (43). During adulthood, CT differences were mostly 

observed in medial brain structures including anterior and posterior cingulate regions, 

and the right fusiform gyrus. While these results are well worth reporting, it should be 

noted, however, that the reduced size of effects within age bins might also be a reflection 

of the reduced sample size, with children representing the smallest subset (i.e. N=126 

children, N=235 adolescents, N=280 adults). The findings thus suggest that even a sample 

size of N=126 may not be sufficient to reliably detect CT differences in CT. 
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CT differences across SRS subdomain scores 

In addition to modelling group as a binary fixed-effect factor, we modelled ASD 

symptomatology in cases and controls based on the five (parent-rated) SRS-2 (3) 

subdomains of (i) social communication, (ii) social motivation, (iii) social awareness, (iv) 

social cognition, and (v) autistic mannerisms. More specifically, measures of CT were 

predicted for all individuals in our sample (i.e. cases and controls) using a GLM that 

included the five SRS subdomains while covarying for age, age2, sex, site, and CT0. We 

then examined the spatially distributed pattern of CT associated with each SRS 

subdomain. Overall, the results show that different SRS subdomains are linked to distinct, 

spatially distributed patterns of variability in CT, which together highlight a set of brain 

regions that is similar to brain regions associated with the main effect of group (e.g. 

superior temporal regions, dorsolateral and medial prefrontal regions, cingulate regions) 

(see SF19). Yet, few clusters survived multiple comparison correction; this may be due 

to the reduced sample size (149 TD, 290 ASD). 

 

Analysis of neuroanatomical outliers 

To establish the effects of neuroanatomical outliers on between-group differences in CT, 

we iteratively removed ASD individuals with the largest percentage of neuroanatomical 

outliers based on their tAIs, and re-computed the main effect of group. More specifically, 

we removed ASD individuals if they exceeded the 85th, 90th, and 95th upper percentage of 

the tAIs distribution, which corresponded to a value of 19.81%, 21.07%, and 13.54% of 

vertices within the ASD-outlier mask. Based on the percentiles of distribution, we 

excluded a total of N=54, N=36, and N=18 ASD individuals respectively. As can be seen 

in SF16, the main clusters of significant between-group differences remained stable when 

excluding the upper 5% of outliers in the ASD group, and started to decrease in effect 

size when excluding more than 10% of individuals in the ASD group, potentially as a direct 

result of a reduced sample size. Notably, right-hemisphere differences were more 

sensitive to the removal of outliers than left-hemisphere differences, which mostly 

remained stable even following the removal of more than 15% of outliers. 
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Furthermore, we explored the probability of being a neuroanatomical outliers resulting 

from the logistic regression between (i) individuals taking medication and those without, 

(ii) between males and females, and (iii) as a function of full-scale IQ and age (see SF18). 

There was no significant difference in the probability of being a neuroanatomical outlier 

between individuals taking medication and those without, or between males and females 

(p>0.05, two-tailed). However, the probability of being a neuroanatomical outlier 

decreased significantly with increasing full-scale IQ (FSIQ) (r=-0.18, t(358)=-3.47, 

p<0.001), and with increasing age (r=-0.23, t(358)=-4.48, p<0.001). 
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Supplementary Tables 
 

TABLE S1. Summary of known types of medication taken by participants in the LEAP 
sample 

 ASD TD 

N 122 20 

Antidepressants 
            SSRIs 
            Tetracyclic (TeCA) 
            Tricyclic (TCA) 

34 
29 
2 
3 

6 
5 
1 
0 

Antiepileptics 11 2 

Antimigraine preparations 4 0 

Antipsychotics 
            Aripiprazole 
            Clozapine 
            Pipamperone 
            Quetiapine 
            Risperidone 

28 
6 
1 
2 
1 

18 

0 
0 
0 
0 
0 
1 

Anxiolytics 2 1 

Drugs used in Addictive Disorder 0 1 

Hypnotics & Sedatives 
            Hyoscine butylbromide 
            Melatonin 
            Niaprazine 

40 
1 

38 
1 

2 
0 
2 
0 
 

Other Analgesics & Antipyretics 
            Opioids 
            Others 

4 
1 
3 

4 
0 
4 

Psychostimulants & Other drugs used to treat ADHD 
            Atomoxetine 
            Dexamfetamine 
            Methylphenidate hydrochloride 

47 
3 
1 

43 

9 
2 
0 
7 

Note. Participants may have taken up to 3 different types of medication across the listed categories during 
study participation. Data based on the ATC classification system, Level-1 ATC code “N”) 
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TABLE S2. MRI Acquisition Parameters across sites 

Site Manufacturer Model Software Version Acquisition 

sequence 

Coverage Slices Thickness 

[mm] 

Resolution 

[mm3] 

TR [s] TE 

[ms] 

FA 

[°] 

FOV 

Cambridge Siemens Verio Syngo MR B17 Tfl3d1_ns 256*256 176 1.2 1.1*1.1*1.2 2.3 2.95 9 270 

London GE Medical 

systems 

Discovery mr750 LX MR 

DV23.1_V02_1317.c 

SAG ADNI GO 

ACC SPGR 

256*256 196 1.2 1.1*1.1*1.2 7.31 3.02 11 270 

Mannheim Siemens TimTrio Syngo MR B17 MPRAGE ADNI 256*256 176 1.2 1.1*1.1*1.2 2.3 2.93 9 270 

Nijmegen Siemens Skyra Syngo MRD13 Tfl3d1_16ns 256*256 176 1.2 1.1*1.1*1.2 2.3 2.93 9 270 

Rome GE Medical 

systems 

Signa HDxt 24/LX/MR 

HD16.0_V02_1131.a 

SAG ADNI GO 

ACC SPGR 

256*256 172 1.2 1.1*1.1*1.2 5.96 1.76 11 270 

Utrecht Philips Medical 

Systems 

Achieva/Ingenia 

CX 

3.2.3, 3.2.3.1 ADNI GO 2 256*256 170 1.2 1.1*1.1*1.2 6.76 3.1 9 270 

Note. TR: repetition time; TE: echo time; FA: flip angle; FOV: field of view 
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TABLE S3. Vertex-wise differences in CT for the main effect of group 
Cluster Regional Labels Side BA Vertices tmax p Talairach 

coordinates 

x y z 

ASD > TD controls 

      

1 rostral anterior cingulate 

cortex 

L 24/33 1153 4.14 3.16E-06 -5 30 8 

2 superior temporal gyrus, 

inferior temporal gyrus, 

middle temporal gyrus 

L 20/21/22

/38/41/4

2 

6555 3.54 1.12E-04 -56 -14 -4 

3 rostral anterior cingulate 

cortex 

R 24/33 239 3.55 2.31E-04 5 24 -6 

4 superior temporal gyrus, 

banks superior temporal 

sulcus, supramarginal 

gyrus, middle temporal 

gyrus 

R 20/21/22

/38/41/4

2 

5280 3.78 1.82E-03 63 -35 13 

5 lingual gyrus L 18/19 877 3.01 1.25E-02 -15 -38 -2 

6 precuneus cortex, 

posterior-cingulate 

cortex, isthmus-cingulate 

cortex  

R 23/31 2674 2.70 1.58E-02 12 -43 31 

ASD < TD controls 
      

7 superior frontal gyrus, 

caudal middle frontal 

gyrus, rostral middle 

frontal gyrus, precentral 

gyrus 

L 4/6/8/9 6334 -4.23 5.23E-05 -31 27 35 

8 parahippocampal gyrus, 

fusiform gyrus 

R 18/19/34

/37 

1128 -3.04 2.22E-03 37 -38 -9 

9 temporal pole L 20/38 503 -3.06 4.19E-03 -25 -3 -28 

10 precentral gyrus, 

postcentral gyrus 

R 4/6 4825 -2.80 5.56E-03 38 -9 41 

Note. R, right; L, left; BA, approximate Brodmann area(s); Vertices, number of vertices within the 

cluster; tmax, maximum t-statistic within cluster; F, F-statistic within cluster; p, cluster-corrected p-

value.  
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TABLE S4. Information on gene set-based and genome-wide polygenic scores 
Set ID Set Name Publication N (genes) N (SNPs) R2 p-value  

       

Gene set-based PGS      
p-value 
competitive 

       

1 M16.up Voineagu (2011) 386 2038 0.0041 0.21 0.21 

2 CTX.M9.up Parikshak (2016) 506 3658 0.0001 0.84 0.84 

3 CTX.M19.up Parikshak (2016) 274 1577 0.0034 0.25 0.25 

4 CTX.M20.up Parikshak (2016) 330 2479 0.0028 0.29 0.28 

5 ASD.DEGs.up Gandal (2018) 696 4197 0.0125 0.02* 0.02 

6 M2 Kang (2011) 2744 17993 0.0020 0.38 0.32 

7 M4 Kang (2011) 44 238 0.0047 0.17 0.18 

8 PGSDGE Set ID1 to ID7 3940 24551 0.0003 0.71 0.66 

10 ASD.risk.DeNovo Satterstrom (2020) 102 1206 0.0025 0.32 0.33 

9 ASD.risk.common Grove (2019) 31 252 0.0005 0.64 0.65 

11 PGSASD.risk Set ID9 to ID10 134 1455 0.0008 0.56 0.55 

        

Genome—wide PGS      
p-value 
GWAS 
threshold 

        

12 ASD Grove (2019) - 29591 0.0094 0.027 0.04 

13 ADHD Demontis (2019) - 71033 0.012 0.012 0.17 

14 MDD Howard (2019) - 24435 0.0295 0.0001 0.02 

15 SCZ Ripke (2014) - 10848 005 0.1059 0.01 

16 Neuroticism Nagel (2018) - 17284 0.0262 0.0002 0.03 

17 Insomnia Jansen (2019) - 62002 0.0028 0.225 0.39 

18 Epilepsy ILAE (2014) - 59274 0.0055 0.091 0.20 

19 SWB Okbay (2016) - 4190 0.0019 0.3249 0.01 

20 Intelligence Savage (2018) - 172222 0.0012 0.4223 0.35 

21 BMI Graff (2017) - 29797 0.0037 0.166 0.08 

22 YearsEdu Okbay (2016) - 14468 0.0038 0.159 0.01 

        

Note. N (genes): number of genes per set with ENTREZ identifiers, N (SNPs): number of variants per set, R2: Variance 
explained by the PRS, p-value: self-contained p-value, p-value competitive: p-value resulting from the permutation 
procedure, p-value GWAS threshold, ADHD: Attention Deficit Hyperactivity Disorder, MDD: Major Depressive 
Disorder, SCZ: schizophrenia, SWB: subjective well-being, BMI: Body Mass Index, YearsEdu: years in education, ILAE: 
International League against Epilepsies 

 



Page 29 of 54 

TABLE S5. Short Sensory Profile (8) total and subdomain scores within the ASD group 
Short Sensory Profile ASD (N=264) 

M SD Min Max 

Tactile sensitivity (TAC) 26.77 6.16 9.00 35.00 

Taste / smell sensitivity (TSM) 15.23 4.98 4.00 20.00 

Movement sensitivity (MOV) 12.19 3.35 3.00 15.00 

Under-responsiveness / seeks sensation (USS) 26.71 6.38 9.00 35.00 

Auditory filtering (AFL) 17.44 5.34 6.00 30.00 

Low energy / weak (LEW) 23.43 7.01 6.00 30.00 

Visual / auditory sensitivity (VAS) 18.49 4.98 5.00 25.00 

Total score 139.61 27.31 53.00 190.00 

Note. ASD: autism spectrum disorder, N: sample size, M: mean, SD: standard deviation; Min: minimum; Max: 
maximum 
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Supplementary Figures 

 

FIGURE S1. Distribution of age and FSIQ across groups and sites 

 
(A) Distribution of age in the group of ASD individuals and neurotypical controls. (B) Proportion of 

individuals with and without a mild intellectual disability (ID) in the ASD and non-ASD group across 

sites. 
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FIGURE S2. Effect Sizes for individual model terms 
 

 

Effect Sizes (Cohen’s f) for all components of the general linear model. (A) Distribution of effects 

sizes across all vertices on the cortical surface. (B) Spatially-distributed patterns of effects of 

each model term on the cortical surface. 
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FIGURE S3. Effects of acquisition site 
 

 

 

 
 
Treatment of site effects. (A) Main effect of group treating site as a fixed effect variable. (B) Main 

effect of group following ComBat correction for site effects. (C) Main effect of group treating site 

as a random effect. (D) Correlations within site based on mixed-effects model that treats site as 

random effect. (A) to (C) displays clusters with significantly increased (orange to yellow) and 

decreased (blue to cyan) CT in ASD relative to controls (RFT-based cluster corrected, p<0.05, 

two-tailed). L: left hemisphere, R: right hemisphere 
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FIGURE S4. Effects of smoothing on main effect of group 

 

 
Effect of smoothing kernel on the main effect of group. (A) Vertex-wise effect sizes (Cohen’s f) 
associated with the main effect of group across vertices on the cortical surface given a surface-

based smoothing filter with a full width at half maximum (FWHM) of 5 mm, 10 mm, 15 mm, and 20 

mm. Clusters with significantly increased (orange to yellow) and decreased (blue to cyan) CT in 

ASD relative to controls (RFT-based cluster corrected, p<0.05, two-tailed) given a smoothing 

kernel of 5 mm (B), 10 mm (C), 15 mm (D), and 20 mm (E). L: left hemisphere, R: right hemisphere



Page 34 of 54 

FIGURE S5. Effects of smoothing kernel on Levene’s test 

 
Levene’s test for homogeneity of variances in cortical thickness between ASD individuals and controls at 

different smoothing kernels. The left panel shows the difference in CT variance between ASD individuals and 

controls using a surface-based smoothing filter with a full width at half maximum (FWHM) of 5 mm (A), 10 

mm (B), 15 mm (C), and 20 mm (D). The right panel shows vertices with significantly increased variability 

(red to orange) in the ASD group relative to controls (FDR-corrected, p<0.05). L: left hemisphere, R: right 

hemisphere
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FIGURE S6. Interindividual differences in vertex-level deviations 
 

 

 

 
 
Interindividual differences in vertex-level deviations from the neurotypical range of cortical 

thickness in seven randomly selected  ASD individuals. Colorbars indicate positive (red to yellow) 

and negative (blue to cyan) deflections in unit standard deviations of the neurotypical distributions. 

Standardized deviations are thresholded based on whether a value falls inside (grey) or outside 

the neurotypical 90% Prediction Interval (PI90%) at a given vertex. tAIs: total degree of 

neuroanatomical abnormality assessed as the percentage of vertices falling outside the 

neurotypical PI90% across the cortex. pos:neg: ratio of positive to negative deviations. 
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FIGURE S7. Effects of prediction interval thresholds 

 
Effects of different Prediction Intervals (PIs). The left panel shows vertices with a significant 

enrichment of ASD individuals outside the neurotypical PI at different cut-offs of 99% (A), 95% 

(B), 90% (C), (85%) (D), and 80% (E). The resulting distribution of tAIs for each group are shown 

in the middle panel, and their model characteristics (i.e., accuracy, sensitivity, specificity) are 

shown in the right panel. L: left hemisphere, R: right hemisphere 
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FIGURE S8. Effects of medication status on variability in CT 
 

 
 
Effect of medication status on variability in CT. (A) F-statistic (un-thresholded) resulting from the 

nested-model comparison for the main effect of medication (left panel) and corrected for multiple 

comparisons (RFT-based cluster corrected, p<0.05, two-tailed) (right panel). (B) Main effect of 

group when including known medication status as covariate in the GLM. The left panel shows t-
test statistic for the contrast ASD minus control (un-thresholded). The right panel shows clusters 

with significantly increased (orange to yellow) and decreased (blue to cyan) CT in ASD (RFT-

based cluster corrected, p<0.05, two-tailed). L: left hemisphere, R: right hemisphere. (C) 

Probability of being a neuroanatomical outlier (p(outlier)) for ASD individuals based on the 

individual’s total degree of neuroanatomical abnormality (i.e. tAIs) in cortical thickness within the 

ASD enrichment mask as a function of medication use (non-significant at p<0.05). (D) Distribution 

of tAIs within the ASD enrichment mask based on a predictive model that included medication 

status as predictor. 
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FIGURE S9. Effects of FreeSurfer surface reconstruction quality 
 

 

 

 
 
Influence of FreeSurfer reconstruction quality on between-group differences in CT and 

neuroanatomical outliers. (A) Between-group differences in the Euler Number of the reconstructed 

cortical surfaces summarized across hemispheres. (B) Main effect of group when including the 

Euler Number as covariate in the GLM. The figure shows clusters with significantly increased 

(orange to yellow) and decreased (blue to cyan) CT in ASD (RFT-based cluster corrected, p<0.05, 

two-tailed). (C) Distribution of tAIs within groups and prediction accuracies based on a 

neurotypical model that includes the Euler Number as covariate. (D) Vertices with a significant 

enrichment of ASD individuals outside the neurotypical 90% Prediction Interval (i.e. ASD 

enrichment mask) based on neurotypical model that includes the Euler Number as predictor. L: 

left hemisphere, R: right hemisphere. 
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FIGURE S10. Neurotypical model including controls with mild ID 
 

 

 
Neurotypical model including controls with mild intellectual disability (ID). (A) Vertices with a 

significant enrichment of ASD outside the neurotypical PI90% when including neurotypical 

individuals with a mild ID. (B) Resulting distribution of tAIs and model accuracy. Probability of 

being a neuroanatomical outlier for ASD and non-ASD individuals with a mild ID based on a 

neurotypical model including ID controls (C), and based on a neurotypical model not including ID 

controls (D).
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FIGURE S11. Between-group in CT without covarying for mean CT 
 

 
 

Vertex-wise differences in cortical thickness in ASD individuals without covarying for mean 

cortical thickness across the cortex. (A) t-test statistic for the contrast ASD minus control (un-

thresholded). (B) Clusters with significantly increased (orange to yellow) and decreased (blue to 

cyan) CT in ASD (RFT-based cluster corrected, p<0.05, two-tailed). L: left hemisphere, R: right 

hemisphere 

 

 

 

 

FIGURE S12. CT differences in ‘narrow’ ASD individuals 
 

 
 
Vertex-wise differences in cortical thickness in individuals meeting gold-standard diagnostic 

criteria for ASD relative to controls as defined by (41). (A) T-test statistic for the contrast ASD 

minus control (un-thresholded); L: left hemisphere, R: right hemisphere. (B) Clusters with 

significantly increased (orange to yellow) and decreased (blue to cyan) CT in ASD (RFT-based 

cluster corrected, p<0.05, two-tailed). The group comparison was based on N=199 ASD 

individuals, which were compared to N=279 neurotypical controls. L: left hemisphere, R: right 

hemisphere 
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FIGURE S13. Between-group differences in CT within age groups 
 

 

 
 
Differences in cortical thickness between ASD individuals and neurotypical controls in (A) children 

aged 6 to 11 years, (B) adolescents aged 12 to 17 years, and in (C) adults older than 18 years. 

The left panel shows t-test statistic for the contrast ASD minus control (un-thresholded); L: left 

hemisphere, R: right hemisphere. The right panel shows clusters with significantly increased 

(orange to yellow) and decreased (blue to cyan) CT in ASD (RFT-based cluster corrected, p<0.05, 

two-tailed).
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FIGURE S14. Between-group CT differences in males and females 

 
Group-by-sex interactions and differences in CT in males and females with ASD. (A) Brain regions where 

biological sex significantly modulates neuroanatomical variability in CT as examined via extending the GLM 

by a group-by-sex interaction term. (B) Vertex-wise differences in CT between male ASD individuals 

relative to male neurotypical controls. (C) Vertex-wise differences in CT between female ASD individuals 

relative to female neurotypical controls. The left panel shows t-test statistic for the contrast ASD minus 

control (un-thresholded); L: left hemisphere, R: right hemisphere. For (B) and (C), the right panel shows 

clusters with significantly increased (orange to yellow) and decreased (blue to cyan) CT in ASD (RFT-based 

cluster corrected, p<0.05, two-tailed). Group comparisons within sexes were based on N=259 males with 

ASD and N=178 male controls, and N=101 females with ASD and N=101 female controls. 
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FIGURE S15. CT differences between individuals with and without ID 
 

 

 

 
 
Differences in cortical thickness between individuals with and without mild intellectual disability 

(ID) and those without while controlling for age, site, sex, and mean cortical thickness. Main effect 

of ID in non-ASD individuals without covarying for full-scale IQ (FSIQ) (A), and when controlling 

for FSIQ (B). Main effect of ID in ASD individuals without covarying for full-scale IQ (FSIQ) (C), 

and when controlling for FSIQ (D). The orange to yellow color scale indicates regions with 

increased CT in the ID group relative to the non-ID group, while the blue to cyan color scale 

indicates clusters with decreased CT in the ID group relative to the non-ID group. All results are 

RFT-based cluster corrected at p<0.05, two-tailed. 
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FIGURE S16. Effects of neuroanatomical outliers on main effect of group 

Between-group differences in cortical thickness after the iterative removal of neuroanatomical 

outliers within the ASD group. Panels show main effect of group following the exclusion of 

individuals exceeding the 95th (A), 90th (B), and 85th (C) upper percentile of the tAIs distribution, 

which corresponded to a value of 13.54%, 21.07%, and 19.81% of vertices outside the neurotypical 

90% prediction interval. Based on these percentiles, a total of N=18, N=36, and N=54 ASD 

individuals were removed from the analysis in each iteration, respectively. The resulting maps are 

corrected for multiple comparisons using a Random Field Theory (RFT)-based cluster threshold 

of p<0.05 (two-tailed). The blue to cyan color scale indicates clusters with decreased CT in ASD 

relative to controls, and the orange to yellow color scale indicates clusters with increased CT in 

ASD relative to controls.  
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FIGURE S17. Neuroanatomical outliers by biological sex 
 

 

 

 
 
ASD enrichment mask and distribution of tAIs when estimating neurotypical variability in cortical 

thickness within females and males exclusively. The chi-square enrichment mask of 

neuroanatomical outliers based on the 90% neurotypical prediction interval for the all-female 

model (left panel), and the distribution of tAIs in females (right panel) are shown in (A). The chi-

square enrichment mask of neuroanatomical outliers based on the 90% prediction interval for the 

all-male model (left panel), and the distribution of tAIs in males (right panel) are shown in (B). 

Based on the results within sexes, females with ASD were not more likely to be neuroanatomical 

outliers than males with ASD relative to their respective female (male) reference group (90 out of 

202 for females vs. 101 out of 259 for males, chi-square(1)=1.24, p=0.265). 
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FIGURE S18. Neuroanatomical outliers by demographics 
 

 

 

 
 
Probability of being a neuroanatomical outlier (p(outlier)) for ASD individuals based on the 

individual’s total degree of neuroanatomical abnormality (i.e. tAIs) in cortical thickness within the 

ASD enrichment mask as a function of medication use (A), biological sex (B), full-scale IQ (FSIQ) 

(C), and age (D). There was no significant difference between individuals taking medication and 

those without, or between males and females (p>0.05, two-tailed). However, the probability of 

being a neuroanatomical outlier decreased significantly with increasing full-scale IQ (FSIQ) (r=-

0.18, t(358)=-3.47, p<0.001) and with increasing age (r=-0.23, t(358)=-4.48, p<0.001). 
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FIGURE S19. Variability in CT across SRS-2 subdomains 

Variability in cortical thickness associated with the five SRS-2 subdomains (parent-rated) across groups 

while covarying for age (linear and quadratic), sex, full-scale IQ, site, and mean CT, based on N=290 ASD 

individuals and N=149 neurotypical controls for which parent-rated SRS-2 scores were available. Panels 

show the main effect of SRS-2 subdomains for the domains of (A) social awareness, (B) social cognition, (C) 

social communication, (D) social motivation, and (E) restricted/repetitive behavior (RRB). All results are 

corrected for multiple comparisons using a RFT-based cluster threshold of p<0.05, two-tailed. Orange to 

yellow clusters show increases in CT with increasing SRS-2 scores, and blue to cyan clusters show decreases 

in CT with increasing SRS-2 scores. 
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FIGURE S20. Gene Expression and Decoding Analysis 
 

 
 
Schematic illustration of the gene expression and decoding analysis using the Allen Human Brain 

Atlas (AHBA (15)). Here, the AHBA donor brains are initially co-registered with the MNI atlas 

(also used by FreeSurfer) (i.e. transcriptomic alignment). At each sampling site (i.e. probe), a 

spherical region-of-interest (ROI) is drawn, and the statistics test parameter in each FreeSurfer 

overlay is averaged within each ROI (16). This resulted in a spatial vector of values for each donor, 

which was subsequently correlated with the normalised gene expression in order to identify genes 

whose spatial expression patterns are consistently highly similar to the imaging maps (i.e. across 

donor brains). Note. Expression data was created for illustration purposes only.
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FIGURE S21. Gene Set Enrichment Analysis 
 

 
 

Gene Enrichment Analysis (GEA) given a background total of 16,541 genes (19). (A) GSEA for the 

Cohen’s f-map, t-map, and chi-square outlier map (FDR-corrected p-value < 0.05), (B) GEA for 

the F-map associated with the main effect of sensory subgroup based on gene sets for different 

cell types (44)
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FIGURE S22. Overlap between gene sets 
 

 

 
 
Overlap between the gene sets examined used in the main gene set enrichment analyses. The 

colorscale indicates the number of intersecting genes for each set pair. The barplot in the right 

panel shows the total number of genes per set.
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FIGURE S23. Cell-type enrichment 
 

 

 
Cell-type enrichment for (A) the t-map of statistical between-group differences in CT (see Figure 

1a), the Cohen’s f effect size map associated with the main effect of group (see Figure 1d), and 

the 𝜒2-map of neuroanatomical ASD outliers (see Figure 2e). (B) Significant Odds-ratios (OR) for 

cell-specific gene-sets provided by Velmeshev et al. (2019), and (C) for genes provided by 

Polioudakis et al. (2019). EN: excitatory neuron, IN: interneuron, AST: astrocytes, M: microglia, 

P: pericyte, E: endothelial cell, O: oligodendrocyte precursor, IN: interneuron, EN: excitatory 

neuron, IP: intermediate progenitor, MP: mitotic progenitor, RG: radial glia, *: FDR-corrected p-

value < 0.05, **: FDR-corrected p-value < 0.01.
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FIGURE S24. Gene enrichment sensory subgroups 
 

 

 
 
Enrichment analysis of ASD-related gene sets for the F-map associated with the main effect of 

sensory subgroup (A). (B) Significant Odds-ratios (OR) at an FDR-rate p-value <0.05 resulting 

from the gene set enrichment analyses for genes expressed in the different output maps. Gene 

sets were subdivided into sets with differential gene expression in ASD (ASD DGE), and sets 

representing ASD risk genes that contain either common variants (ASD.risk.common) or rare de 
novo variants (ASD.risk.denovo). Gene sets are annotated and labelled based on their original 

publication. up: upregulated expression in ASD, down: down-regulated expression in ASD, CTX: 

cortex, DEG: differentially expressed gene, *: FDR-corrected p-value < 0.05, **: FDR-corrected 

p-value < 0.01.
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FIGURE S25. Polygenic risk for major psychiatric disorders by sex 
 

 

 

 
 
Polygenic scores (PGS) for major psychiatric disorders by sex. (A) PGS for Autism Spectrum 

Disorder (ASD), (B) PGS for Attention Deficit Hyperactivity Disorder (ADHD), (C) PGS for 

Schizophrenia (SCZ), and (D) PGS for Major Depressive Disorder (MDD). There were no significant 

differences in the polygenic risk for any of these major psychiatric disorders between males and 

females (i.e., p>0.05, two-tailed)..
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FIGURE S26. Model Standard Residual Error 
 

 

 
 
Standard residual error associated with the neurotypical model at each vertex on the cortical 

surface. L: left hemisphere, R: right hemisphere 


