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Supplementary Methods  

Neurocognitive test battery 

Neurocognitive functioning was tested using a standardized computer-based neurocognitive test battery 

which assesses multiple cognitive domains, including memory, attention, control, processing speed, 

executive functions and emotion processing. A detailed description of the tests and tasks can be found 

elsewhere [1]. Importantly, impairments in some of these domains are common in PTSD patients [2]. 

The specific cognitive measures extracted and used for analysis are specified in supplemental Table S3. 

 

MRI data acquisition and preprocessing 

General scan parameters.  

All resting-state fMRI scans were eight minutes in length. Participants were scanned either on the 

Stanford GE 750 scanner or at NYU on a Siemens 3T Skyra scanner. Both sites acquired 32 axial slices 

with 3.5mm thickness using an echo-planar gradient-echo T2-weighted pulse sequence (repetition time, 

2000ms; echo time, 29 ms; flip angle, 90 degrees; slice spacing, 0; field of view, 20cm; matrix size, 

64x64). A high-resolution T1-weighted structural scan was acquired as follows: three-dimensional 

MPRAGE in the sagittal place with the following parameters: inversion time = 450 ms, TR = 8.21 ms, TE = 

3.22 ms, flip angle = 15°, field of view = 24 cm, 184 slices, matrix = 256x256, acquired resolution = 0.9375 

x 0.9375 x 1.0 mm. The quality of fMRI scans was monitored by MRI center staff weekly with scans of a 

Functional Biomedical Informatics Research Network (fBIRN) agar phantom, as previously described [3] 

[4]. 



The following text is reproduced from [5] . As this was a two-site study, prior to study initiation, we 

harmonized image acquisition sequences across the two scanners. This involved both assessing image 

quality and signal to noise ratio (SNR) of images acquired using different parameters at each site, as well 

as acquisition of the same sequences on several traveling non-study control participants. Scanning of 

traveling non-study controls was repeated at roughly mid-study. Though the same acquisition sequences 

were used at both sites, differences between scanners are expected. For example, the echo-planar 

resting-state scans typically had more ventral prefrontal and temporal lobe susceptibility-artifact 

dropout at the Stanford site than the NYU site. These differences in acquisition site were accounted for 

using a site variable in all statistical models. 

During the progress of the study, assessment of signal quality and stability was done as follows. For each 

scan, quality was assessed by quantitative and qualitative factors, with results regularly reported to MRI 

center staff and principle investigators at weekly meetings.  Quantitative factors include: scan 

parameters (check for correctness), slice-based signal to noise ratio, and total root mean square head 

motion as well as framewise displacement. We also monitored scanner performance by tracking 

reference voltage, imaging frequency, and bias field correction over time. Reference voltage (aka RF 

transmit reference voltage) determines the amplitude of the RF pulses. Imaging frequency variations can 

indicate scanner problems. The scanner’s central frequency is typically set to the resonance frequency of 

water photons.  Measurements of this are proportional to the field strength, and imaging frequency is a 

common calibration parameter and can be found in every image’s DICOM header. Variations that 

exceed reference values can indicate magnet drift or RF instability. Qualitative factors were assessed 

visually by a trained image quality assessor.  These included field of view clipping, wrapping, dropout, 

ringing/ striping, blurring, ghosting, RF problems (noise, spikes, leakage), and inhomogeneity.  

fMRI preprocessing 

The first 5 acquired volumes (10 seconds) were dropped, the data were then motion corrected using 



FSL’s mcFLIRT (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT). The non-linear registration to standard 

space was performed using FSL’s FNIRT, registration from functional to T1-weighted structural images 

was estimated using FSL’s implementation of boundary-based registration 

(fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT_BBR). The functional time series was residualized with respect to six 

motion parameters (estimated using mcFLIRT) and with respect to the mean white matter (WM) and 

cerebral spinal fluid (CSF) signal that was estimated using an MNI-space defined WM/CSF mask 

transformed to the native functional space.  The data were then spatially smoothed with full-width half-

maximum (FWHM) Gaussian of 6mm, consistent with our prior work and how our connectivity atlas was 

previously used [6]. Next, ICA AROMA was applied on the data in its non-aggressive mode and volumes 

with framewise-displacement of >0.5 mm were removed from the data to ensure the removal of any 

remaining motion artifacts. Lastly, a bandpass filter was applied to data using cut-off frequencies of 

0.008Hz – 0.1Hz. Only subjects with maximum root mean square motion <2mm and fewer than 20 

scrubbed volumes were included in analyses. The resulting NIFTIs were transformed to the MNI 

standard space for downstream analysis. 

 

Parcel-level time series extraction from fMRI data 

The mean time series was extracted for 133 brain regions based on a recently-published cortical 

parcellation into 100 parcels derived from an independent resting-state fMRI cohort [7] combined with a 

set of 33 subcortical parcels that include 14 cerebellar parcels [8], 13 striatal parcels [9] right and left 

Amygdala, right and left hippocampus [10] and right and left thalamus [11]. The mean time series for 

each parcel was estimated by calculating a weighted average of the BOLD signals of all voxels in a parcel. 

To control for local differences in signal quality on a per subject basis, and further improve signal quality, 

only voxels for which  the signal to noise ratio (SNR) was higher than 100 were used as suggested in [12]. 



SNR was estimated by dividing the mean BOLD across time with its standard deviation. Weighted 

average was calculated using equation S1 below. Next, parcel-level BOLD signals were centered and 

scaled using the z-scoring procedure described in [13].   

Equation S1: Weighted average BOLD signal  

Where Vi is the BOLD signal of voxel i, and Wi is the weight of the i-th voxel, which was defined as the 

maximum of 0 and the Pearson correlation coefficient between Vi and the unweighted average BOLD 

signal across all the voxels in the parcel.  

EEG data acquisition, preprocessing and source localization 

EEG recordings were acquired with a BrainAmp DC amplifier (sampling rate: 5 kHz; measurement range: 

± 16.384 mv; cut-off frequencies of the analog high-pass and low-pass filters: 0 and 1 kHz) and the Easy 

EEG cap with 64 extra-flat, freely rotatable, sintered Ag-AgCl electrodes (Brain Products GmbH, 

Germany). The electrode montage followed an equidistant arrangement extending from below the 

cheekbone back to below the inion. Electrode impedances were kept below 5 kΩ. An electrode attached 

to the tip of the nose was used as the reference. Participants were seated on a comfortable reclining 

chair and were instructed to remain awake and let their mind wander in the 3-minute eyes closed 

paradigm and fixate a given point for 3 minutes in the eyes open paradigm. Recordings were 

immediately assessed for quality using a custom MATLAB script and rerun if necessary.  

Offline preprocessing of recordings was conducted using a custom MATLAB pipeline calling selected 

functions from the EEGLAB toolbox. [14]  A detailed step-by-step description of our preprocessing 

pipeline can be found in [15]. However, in more general terms, preprocessing proceeded as follows: EEG 

data were downsampled to 250 Hz, notch filtered to remove 60 Hz line noise and its harmonic, and 

bandpass filtered between 1 Hz and 50 Hz using a zero-phase finite impulse response filter. Bad channel 



(mean 0.9, SD 2.3 rejected channels) and paroxysmal segment (mean 96.5, SD 6.8, percent time points 

retained) rejections were performed in a semi-automatic manner, assessing extreme or flatline 

amplitudes, channel correlations, and robust paroxysmal spike measures with custom pipelines and EEG 

expert validation. Rejected channels were spherically interpolated and paroxysmal segments excised. To 

remove remaining artifacts including ocular, heartbeat, and high-frequency persistent muscle artifact, 

the extended information maximization (Infomax) algorithm, widely used for independent components 

analysis (ICA), was then performed on the data reduced in dimensionality by principal components 

analysis (PCA). The number of the dimensions was determined to be the least number of principal 

components that account for more than 99.9% of the total variance. Artefactual independent 

components were likewise identified by combination of custom pipelines identifying extreme skew in 

component topographical weights, stereotypical power spectral density profiles, deviant robust 

statistics, etc., confirmed by EEG expert, and then rejected. 

Source localization to the cortical surface was performed using the Brainstorm toolbox [16]. A three-

layer symmetric boundary element model of the head was computed with the OpenMEEG [17] plugin 

based on a Montreal Neurological Institute (MNI) brain template. Rotating dipoles at 5003 vertices were 

generated on the cortical surface. The lead-field matrix was obtained by projecting the standard 

electrode positions onto the scalp. For each subject, an imaging kernel that maps from the channel 

space EEG to the source space current density was then estimated by the minimum norm estimation 

approach with depth weighting and regularization. In the method validation study, current densities 

obtained from native and MNI template head models were compared and MNI template head models 

were found to be sufficient. For each vertex, the current density time series were reduced from their 3 

orthogonal axes to a single principal direction by PCA, then bandpass filtered into canonical frequency 

bands associated with different neurophysiological processes: theta (4-7 Hz), alpha (8-12 Hz), beta (13-

30 Hz), and gamma (31-50 Hz). The current density time series at each canonical frequency band were 



Hilbert transformed to yield source space analytical time series. Welch’s periodogram was calculated in 

source space to generate the power spectral density for comparison with the orthogonalization method.  

In order to calculate resting EEG power envelope connectivity, the analytical time series at each vertex 

of source space was orthogonalized with respect to all other vertices and power envelopes were then 

calculated from each of the orthogonalized analytical time series [15]. Pearson’s correlation coefficient 

between the power envelopes was calculated for each vertex pair. The connectivity matrix was next 

averaged with its transpose and corrected for underestimation inherent to orthogonalization [18].  

EEG power envelope connectivity feature extraction 

Resting EEG power envelope connectivity was calculated among 31 cortical regions that were previously 

defined and used for this type of analysis [15] [19]. For each pair of regions, connectivity was calculated 

by averaging over all corresponding vertex pairs. As a result, 465 unique region-region connectivity 

values were computed in each of the 4 frequency bands, in each of two resting paradigms (eyes open 

and closed). 

Using tolerance intervals to identify abnormal resting state fMRI connectivity features in PTSD cases 

We used a tolerance interval (TI)-based method to examine neurobiological heterogeneity within PTSD 

patients. A tolerance interval is a statistical interval designed to measure the proportion of the 

population expected to be in a given interval with confidence. TIs have been used for mapping individual 

abnormalities with respect to a reference population [20] [21] [22] [23] [24]. One typically constructs 

confidence intervals for the sample average. Analogously, tolerance intervals are like confidence 

intervals but for the estimates of percentage of the population instead of the sample 

average. Importantly, tolerance intervals take the inherent sampling variability in the sample mean and 

sample standard deviation of a distribution into account when making statements of the percentage of 



the population. In contrast, a confidence interval for the sample mean only takes the uncertainty in the 

sample mean into account.  

We used the “tolerance” R package (https://cran.r-project.org/web/packages/tolerance/tolerance.pdf) 

for non-parametric estimation of 2-sided TIs for each node-to-network connectivity measure to obtain a 

range within which 90% (proportion=0.9) of the TEHC population is expected to fall with a 10% 

confidence level (alpha=0.1). Parameters were chosen while accounting for the required sample size 

using the ssnorm function provided in the tolerance package to best suit the number of subjects. 

CLICK clustering analysis 

The CLICK algorithm does not make any prior assumptions on the number or the structure of the 

clusters. It treats each sample in the data as a node in a weighted graph and uses a recursive minimum -

cut approach to partition the graph into components. Probabilistic meaning is assigned to edge weights 

and the stopping criterion, which gives the algorithm high accuracy in identifying tight groups of 

elements that are likely to belong to the same true cluster, while allowing non-clustered elements 

(singletons) [25]. We used the existing CLICK implementation available in 

http://acgt.cs.tau.ac.il/expander/expander.html, with Pearson correlation coefficient as a measure of 

similarity between each two subjects.  

 

Cluster stability estimation 

Cluster stability was estimated based on the consistency of cluster co-occurrence for each pair of 

patients across the 500 subsampling iterations in the following manner: for each clustering solution, a 

binary co-occurrence matrix was generated, which for every pair of patients, contains the value 1 if they 

were assigned to the same cluster and 0 if not. Next, a stability matrix (S) of size nXn (n being the 

https://cran.r-project.org/web/packages/tolerance/tolerance.pdf
http://acgt.cs.tau.ac.il/expander/expander.html


number of clustered samples, i.e. patients) was generated by averaging these pairwise co-occurrence 

matrix across subsamples, and then summarized into a single stability index using equation S2 below. 

Equation S2: Stability index   

To estimate the significance of the resulting stability index, we applied the entire process of features 

selection and clustering on a set of 100 random permutations of the original case/control labels. This 

allowed us to generate a null distribution of stability index values. Due to runtime limitation we settled 

for 100 random case-control label permutations and in each permutation, we used 100 subsamples of 

90% of the data instead of 500 that were used in the above process. For each permutation we recorded 

the average stability of cluster assignment across subsamples. 

  

Statistical analysis 

In order to control for false discovery rate when examining clinical and cognitive differences between 

clusters we used the Benjamini-Hochberg false discovery rate estimation procedure [26].  

Significance of classification accuracy was assessed using 1000 random permutation of cluster labels. 

Examining feature and cluster utility in case/control classification 

We used the k-nearest neighbors algorithm (k-NN) with k=5 to train a classifier on our set of node-net 

rsfMRI functional connectivity within the same data, to distinguish between TEHCs and PTSD patients. K-

NN was selected due to its simplicity, intuitiveness as well as known robustness to noisy training data 

and competitive performance in many domains [27]. K was set to 5, but a range of k=3-9 was tested and 

found to yield similar performance. The classification performance was assessed using a 10X10-fold-

cross-validation analysis. In addition, in order to account for uneven cluster sizes, we used a 



bootstrapping (random sampling with replacement) up-sampling technique to increase the size of the 

smaller class. This up-sampling procedure was done only on the training set to avoid biasing the 

validation sets or having samples of training data in the validation sets. This procedure was repeated for 

each cluster separately to test whether treating each cluster as a separate class/label would improve 

classification performance. Accuracy significance was assessed using 1000 random label permutations. 

 

Cluster Validation using rsEEG-based classification 

EEG power envelope connectivity features were calculated at each of the four frequency bands for 67 

TEHCs and 60 PTSD cases (35 from cluster1, 20 from cluster2 and 5 unclustered) for whom both good 

quality rsfMRI and rsEEG data were collected. These data were compared between the two rsfMRI-

identified clusters using machine learning, as they represent a single, but multi-dimensional, data 

modality (unlike the clinical and behavioral measures that were tested). For machine learning, we used 

K-NN with k=5 to train a classifier with simultaneous feature selection to distinguish between the two 

clusters. K-NN was selected due to its simplicity, intuitiveness as well as known robustness to noisy 

training data and competitive performance in many domains [27]. The classification performance was 

assessed using 10X10-fold-cross-validation. In addition, in order to account for uneven cluster sizes, we 

used bootstrapping (random sampling with replacement) to increase the size of the smaller cluster. This 

up-sampling procedure was done only on the training set to avoid biasing validation sets or having 

samples of training data in the validation sets. This procedure was repeated with each of the 2 

paradigms and each of the 4 frequency bands. Accuracy significance was assessed using 1000 random 

label permutations.  



 

Supplementary Results 

Utility of feature and clusters in case/control classification  

We used K-NN to train a classifier on our set of node-net rsfMRI functional connectivity within the same 

data, to distinguish between TEHCs and PTSD patients. Classification performance was assessed using 

10X10-fold-cross-validation. This procedure was repeated for each cluster separately to test whether 

treating each cluster as a separate class/label would improve classification performance. Performance 

significance was assessed using 1000 random label permutations. Results are shown in Figure S4. The 

identified subgroups improve case/control discriminability leading to significant accuracy using both TI-

based features and independently selected features. However, while using independent feature 

selection leads to significant sensitivity and specificity, using the set of consistently selected TI-based 

features lead to very low (below chance level) sensitivity but superior (highly significant) specificity. 

Notably, classification accuracy does not go above chance level when treating all PTSD patients as one 

group regardless of the features used. 

Classification of patients into clusters using resting state EEG data  

To further validate that the identified clusters indeed reflect PTSD subtypes with distinct 

neurobiological correlates, we trained a k-NN model to distinguish between the two clusters using 

resting state EEG power envelope connectivity features that were available for 60 of the patients (35 

from cluster1, 20 from cluster2 and 5 unclustered) and for 67 of the TEHCs. Figure S5 shows the results 

of the classification analysis. Our classifier was able to distinguish between the two patient clusters with 

an accuracy of 68% (p<0.005), with a sensitivity of 73% in detecting cluster2 and 62% in detecting 

cluster1 (Figure S5a). This was done using features extracted from the eyes open beta frequency 

condition. The connectivity features that contributed most to the classification are shown in Figure S5b 



and involve regions of the frontoparietal and visual networks as well as regions of the default mode and 

ventral attention networks.  

 

Supplementary Tables and Figures 

Table S1A. Demographic Characteristics of PTSD and TEHC Groups 

Abbreviations: CAPS, Clinician Administered PTSD Scale for DSM-5; BDI, Beck Depression Inventory 

  TEHCs PTSD     
Characteristic (n = 105) (n = 87) Stat value P value 
Age, mean (SD), y 32 (7.7) 32.7 (6.9) 0.66 (t) 0.51 
Males, No. (%) 93 (88.6) 76 (87.4) 0.07 (χ2)  0.8 
Educational attainment, mean (SD), y  15.5 (2.1) 15.3 (2.1) -0.58 (t) 0.56 
Site distribution, No. Stanford (%) 34 (32.4) 23 (26.4) 0.8 (χ2) 0.37 
Clinical Assessments, mean (SD)         
CAPS total score 3 (4.1) 24.6 (10.6) 16.8 (t) < .00001 
     CAPS subscale B score 0.5 (1.1) 5.9 (3.4) 13.6 (t) < .00001 
     CAPS subscale C score 0.2 (0.9) 3.2 (1.9) 12.9 (t) < .00001 
     CAPS subscale D score 0.6 (1.5) 7.6 (5.2) 11.3 (t) < .00001 
     CAPS subscale E score 1.7 (2.4) 7.9 (3.6) 12.5 (t) < .00001 
BDI total score 3.9 (6.1) 17.3 (11) 9.1 (t) < .00001 
Comorbidity, No. subjects (%)         
Major Depressive Disorder 0 (0) 24 (27.6)     
Traumatic Brain Injury 0 (0) 32 (36.8)     
Both 0 (0) 22 (25.3)    
 

Table S1B. Demographic and clinical characteristics of the two sites 

 Stanford NYU   

Characteristic (n = 57) (n = 135) Stat value P value 
PTSD cases, No. (%) 23 (40.4) 64 (34)   
Age, mean (SD), y 32.1 (7.3) 32.4 (7.4) -0.27 (t) 0.79 
Males, No. (%) 51 (89.5) 118 (87.4) 0.16 (χ2)  0.69 
Educational attainment, mean (SD), y  15.1 (1.8) 15.5 (2.2) -1.19 (t) 0.24 
     
Clinical Assessments within cases,         



mean (SD) 
CAPS total score 29 (10.3) 23.2 (10.3) -2.02 (z) 0.04 
     CAPS subscale B score 6.4 (4.1) 5.8 (3.1) -0.24 (z) 0.81 
     CAPS subscale C score 3.65 (2) 3.09 (1.8) -1.49 (z) 0.14 
     CAPS subscale D score 9.4 (4.7) 7 (5.3) -1.9 (z) 0.052 
     CAPS subscale E score 9.6 (3.6) 7.3 (3.5) -2.1 (z) 0.033 
BDI total score 24.5 (7.5) 15.4 (11.1) -2.99 (z) 0.003 
Comorbidity within cases, No. 
subjects (%)        
Major Depressive Disorder 11 (19.3) 13 (9.6) 6.4 (χ2) 0.01 
Traumatic Brain Injury 8 (14) 24 (17.8) 0.05 (χ2) 0.82 
Both 6 (10.5) 8 (5.9) 2.3 (χ2) 0.13 
 

 

Table S2. Demographic Characteristics of PTSD clusters 

Abbreviations: CAPS, Clinician Administered PTSD Scale for DSM-5; BDI, Beck Depression Inventory 

  Cluster 1 Cluster 2     
Characteristic (n = 49) (n = 30) Stat value P value 
Age, mean (SD), y 32.9 (7.4) 32.2 (6.9) 0.41 (t) 0.68 
Males, No. (%) 41 (83.7) 28 (93.3) 1.57(χ2) 0.21 
Educational attainment mean (SD), y  15.2 (2.2) 15.4 (2.2) -0.46(t) 0.64 
Site distribution, No. Stanford (%) 15 (30.6) 6 (20) 1.07(χ2) 0.3 
Subject level motion (max abs 
displacement), mean (SD) 0.59 (0.32) 0.63 (0.45) 0.22 (z) 0.83 
Clinical Assessments, mean (SD)         
CAPS total score 22 (8.4) 28.5 (11.9) -2.17 (z) 0.03 
     CAPS subscale B score 4.8 (2.4) 7.6 (3.9) -3.4 (z) < .001 
     CAPS subscale C score 3 (1.8) 3.7 (1.8) -1.5 (z) 0.14 
     CAPS subscale D score 6.8 (4.4) 8.7 (5.7) -1.5 (z) 0. 14 
     CAPS subscale E score 7.4 (3.5) 85 (3.9) -0.94(z) 0.35 
BDI total score 16.1 (9.6) 19 (12.2) -0.72 (z) 0.47 
Comorbidity, No. subjects (%)         
Major Depressive Disorder 12 (24.5) 12 (40) 2.1  (χ2)  0.15  
Traumatic Brain Injury 14 (28.6) 17 (56.7) 6.16 (χ2) 0.01 
Both 7(14.3) 7 (23.3) 1.04 (χ2) 0.3  
 



Table S3: Clinical and cognitive measures: 

Domain Test measures derived  
Verbal Memory Word list learning task Total learning score, delayed recognition score 
Sustained Attention Continuous Performance Task Percentage of correct responses, mean reaction time 

to correct responses 
Working Memory  Digit Span forward  Maximum length of digits correctly entered in a 

correct order, number of correct trials  
Inhibitory Control  Color-word Stroop 

interference task 
Difference between mean reaction time when 
responding to font color and responding to color 
word (for correct responses only)  

Response Inhibition Go/NoGo task Percentage of correct responses, mean reaction time 
to “go” trials.  

Processing Speed 
 

Choice reaction time task Average time taken to press the left or right arrow to 
correspond with which circle (left or right) is 
highlighted in each trial 

Response Speed Motor Tapping Number of times subject was able to tap the 
spacebar in 30 seconds with their dominant hand 

Information processing 
efficiency (switching) 

Trail making test Difference between total time to complete a whole 
sequence of digits and letters to the whole time to 
complete sequence of digits.  

Executive functions Maze Total time to complete the maze correctly, number 
of trials taken to complete the maze correctly, 
number of errors (total, overruns) 

Emotion Identification Emotion recognition Interference scores computed by subtracting the 
mean accuracy/mean reaction time for identifying 
neutral faces from the mean accuracy/reaction time 
to identify emotional faces.  

Emotion bias Delayed emotion recognition Interference scores computed by subtracting the 
mean accuracy/mean reaction time for recognition 
of neutral faces from the mean accuracy/reaction 
time for recognition of emotional faces. 

PTSD Clinician administered PTSD 
questionnaire for DSM 5 past 
month (CAPS-5) 
 
 

Structured clinical interview. Sum of scores for each 
cluster: Criterion B: Re-experiencing; Criterion C: 
Avoidance; Criterion D: Negative alterations in 
cognitions and mood; Criterion E: Alterations in 
arousal and reactivity; Past moth total score. 

Quality of Life WHO Quality of Life Brief 
questionnaire (WHO-QOL-
BREF) [28] 

Self-report questionnaire with 26 items. Scores are 
derived for 4 subscales: physical, psychological, 
social, environmental and a measure of overall 
quality of life. 

Depression  Beck Depression Inventory – II 
(BDI-II) [29] 
 

Self-report questionnaire with 21 items added up to 
one total score. 

Trauma Early Trauma Inventory– Self 
Report (ETI-SR) [30] 
 

Self-report questionnaire with 62 items. Scores 
derived for 4 domains of childhood traumatic events: 
general trauma, physical, emotional, and sexual 



 abuse, as well as a total score.  
Affect  Positive and Negative Affect 

Schedule (PANAS) [31] 
 

20 item self-report questionnaire deriving two 
subscale scores: positive affect (PA) and negative 
affect (NA)   

 

 

Table S4: Brain regions used for resting EEG functional connectivity feature extractions (shown in 

Figure S5b) 

Region acronym Region Associated brain network 
LV1, RV1 Left and right primary visual cortex Visual 

LSMC, RSMC Left and right sensorimotor cortex Sensorimotor 
LIFG, RIFG Left and right inferior frontal gyrus Dorsal attention 
LIPS, RIPS Left and right intraparietal sulcus Dorsal attention 
LFEF, RFEF Left and right frontal eye fields Dorsal attention 
LSEF, RSEF Left and right supplementary eye fields Dorsal attention 

PCC Posterior cingulate cortex Default mode 
MPFC Medial prefrontal cortex Default mode 

LANG, RANG Left and right angular gyrus Default mode 
LPMFG, RPMFG Left and right posterior middle frontal gyrus Frontoparietal 

LIPL, RIPL Left and right inferior parietal lobule Frontoparietal 
LORB, RORB Left and right orbital cortex Frontoparietal 
LMTG, RMTG Left and right middle temporal gyrus Frontoparietal 

LAMFG, RAMFG Left and right posterior middle frontal gyrus Ventral attention 
LINS, RINS Left and right insula Ventral attention 

DACC Dorsal anterior cingulate cortex Ventral attention 
LSUP, RSUP Left and right supramarginal gyrus Ventral attention 

 

 

 



 

Figure S1: a visualization of all 31 node-network functional connectivity features that were consistently 
selected in over 70% of the subsamples. For each feature, the node is shown as overplay on the 
standard brain, while the network is indicated by the overlay color. Network colors are indicated in the 
network maps at the bottom of the figure. Visualization was created using the BrainNet viewer [32].  

 



 

Figure S2: Results of CLICK clustering over features selected across a range of TI and consistency rate 
parameters. (a) The number of selected features as a function of alpha values and proportion values. (b) 
The co-occurrence of each pair of subjects in the cross-TI parameter clustering solution (1=same cluster 
(yellow), 0=not same cluster (blue)). The matrix is organized based on the order of the clustering 
solution reported in the manuscript. This matrix reflects the consistency between the two solutions. (c) 
The effect of used consistency rate threshold on the number of selected features (for TIs generated with 
alpha=0.1, proportion=90%) (d) The mean co-occurrence of each pair of subjects across clustering 
solution generated with different consistency rate thresholds (65-90%, in increments of 5%).  The matrix 
is organized based on the order of the clustering solution reported in the manuscript.  

 



 

Figure S3: Identified clusters using the set of 28 connectivity features that were consistently selected 
using a t-test in > 70% of the 500 runs. The frequency at which each pair of patients were assigned to 
the same cluster across the 500 runs is shown in (a) and reflects cluster stability (matrix rows and 
columns are patients ordered according to the final clustering solution). Two case clusters were 
identified. Connectivity values for the 28 features organized by cluster order are shown in (d).  



 

Figure S4: Case/control classification performance when training a k-NN model on the set of node-net 
fMRI connectivity features. Performance was estimated using a 10X10 cross validation framework and 
significance was assessed using 1000 random label permutations. (a)Classification performance using 
the set of 31 consistently selected features for controls vs. all cases (blue), controls vs. cluster1 (orange) 
and controls vs. cluster2 (gray). (b) Classification performance using independent within-fold feature 
selection (taking the 31 most distinctive features in each fold) for controls vs. all cases (blue), controls 
vs. cluster1 (orange) and controls vs. cluster2 (gray). 

 

 



 

Figure S5: Distinction between the two rsfMRI abnormality-defined PTSD subgroups using resting-state 
EEG connectivity analyses and machine learning: Our classifier was able to distinguish between the two 
patient clusters with an accuracy of 68% (p<0.005), with a sensitivity of 73% in detecting cluster2 and 
62% in detecting cluster1 (a). Feature selection frequencies are shown in (b) where values indicate the 
frequency at which every feature selection across the 10X10 models. Discriminative (most frequently 
selected) EEG features involved regions of the visual and ventral attention networks. 
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