	Time 1		Time 2	
	Two	One	Two	One
	factors	factor	factors	factor
AIC ⁺	15920	16026	7324	7416
BIC⁺	16050	16150	7426	7514
CFI⁺	0.968	0.901	0.956	0.828
TLI⁺	0.953	0.861	0.929	0.743
RMSEA⁺	0.045	0.078	0.056	0.090
X ² difference test ⁺⁺	1284.3 (df=6), p<0.001		709,7 (df=6) p<0.001	

Table S1. Fit Indices for Confirmatory Factor Analysis With Maximum LikelihoodEstimation

⁺Lower values in the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are indicative of better model fit for the two-factor solution. The comparative-fit index (CFI) compares the fit of the proposed model with that of a null model (which assumes no relationship between the observed variables) (Raykov, 2006a). CFI values "in the mid- .90s or above" (Raykov, 2006a) suggest plausible approximations to the data. As can be seen values above 0.95 are only achieved for the two factor model. The Tucker-Lewis Index (TLI) follows a similar principle to that of the CFI and models with TLI close to 1 indicate a good fit (Loehlin, 2004). As can be seen, the two factor models are consistently closer to that. The fit of the proposed model with that of a null model also underlies the logic of the root mean square error of approximation (RMSEA) fit index. An RMSEA of 0.05 or less is considered a good approximation to the data (Raykov, 2006b).

⁺⁺This test, implemented in MplusVersion 5, compares the fit of the two to that of the one factor model. The highly significant result indicates that the two-factor model fits the data better than the one-factor solution.

Table S2. Longitudinal Phenotypic Predictions From Irritability (Excluding the
Stubborn Item) and Headstrong/Hurtful Behaviors to Dimensional Outcomes of
Psychopathology

	Depression (Time 2)	Delinquency (Time 2)
	.14***	.06*
Irritability		
(unic T)	(.09 to .20)	(.00 to .11)
	.01	.19***
Headstrong/ hurtful		
(time 1)	(05 to .07)	(.12 to .27)

This table corresponds to the analyses presented in Table 2 of the main paper, except that the irritability scale here does not include the *stubborn* item.

Cholesky Model	Irritability	Headstrong/Hurtful	Depressive Ratings	Delinquency			
Genetic influences							
Irritability	0.35 (0.25-0.44)	0.66 (0.47-0.84)	0.76 (0.63-0.90)	0.68 (0.53-0.82)			
Headstrong/hurtful		0.34 (0.24-0.44)	0.44 (0.26-0.61)	0.72 (0.58-0.85)			
Depression ratings			0.46 (0.37-0.54)	0.58 (0.45-0.71)			
Delinquency			. ,	0.46 (0.37-0.55)			
Nonshared environmental influences							
Irritability	0.65 (0.56-0.75)	0.27 (0.17-0.36)	0.35 (0.25-0.44)	0.28 (0.17-0.37)			
Headstrong/hurtful	ΥΥΥΥΥ Υ	0.66 (0.56-0.76)	0.20 (0.09-0.30)	0.41 (0.32-0.50)			
Depression ratings			0.54 (0.47-0.63)	0.23 (0.12-0.33)			
Delinquency			()	0.54 (0.45-0.63)			

Table S3. Cross-Sectional Multivariate Genetic Model Results at Time 2

This table corresponds to Table 3 of the main manuscript, except that cross-sectional analyses from time 2, rather than time 1, are presented.

Figure S1a. Longitudinal Cholesky decomposition with depression as part of the model. The irritability scale does not include the *stubborn* item.

Suppl Figure 1b. Longitudinal Cholesky decomposition with delinquency as part of the model. The irritability item does not include the *stubborn* item.

These figures correspond to Figure 2 and b of the main manuscript, except that the *stubborn* item has been removed from the irritability scale.

References

- Loehlin JC: Goodness of Fit Indices: Latent Variable Models, 4th ed. Mahwah, NJ, Lawrence Erlbaum Associates, 2004
- Raykov T, Marcoulides GA: Parameter and Model Identification: A First Course in Structural Equation Modeling. Mahwah, NJ, Lawrence Erlbaum Associates, 2006a
- Raykov T, Marcoulides GA: Confirmatory Factor Analysis: A First Course in Structural Equation Modeling. Mahwah, NJ, Lawrence Erlbaum Associates, 2006b