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SUPPLEMENTAL METHODS 

Probabilistic reversal learning task: design 
In our version of the task, each participant completed 80 trials, 40 before and 40 after a single 
reversal.  We believe that this design allows one to meaningfully apply reinforcement learning 
models for the following reasons.  Longer tasks with multiple reversals offer superior detection 
power for neuroimaging studies (1, 2).  However, on multiple-reversal tasks participants often 
adopt a strategy-based approach (e.g. switch after 3 errors), a phenomenon noted in earlier 
studies (1, 2), making reinforcement learning models less applicable.  Thus, we feel that a task 
with a single reversal, where participants lack a definite reversal expectation, is best suited for 
modeling individual differences in trial-by-trial learning.  Additionally, our version of the task was 
not ‘adaptive’: all participants completed the same number of trials regardless of their 
performance.  Further, all experienced the same trial-by-trial stimulus-reinforcement 
contingencies. 
 
Model selection 
We aimed to identify a model that would both fit the participants’ behavior and adequately 
represent relevant individual differences in its parameters, distinguishing between participants 
who perform qualitatively differently on the probabilistic reversal learning task.  Importantly, in 
order to test our main hypothesis, the model was required to represent attention to 
reinforcement history vs. the last trial, as distinct from attention to valence (rewards vs. 
punishments).  
 
Reinforcement learning model 
Optimal expected values of choosing stimulus 1 vs. stimulus 2 using a prior and a prediction 
error were computed using the Rescorla-Wagner rule (3): 
 
(1)  For rewarded trials: 

 
)(*.* 1-s1t11-s1ts1t ErewardratelearningEmemoryE tsrewards   

 
For punished trials: 
 

)(*.* 1-s1t11-s1ts1t EpunishmentratelearningEmemoryE tsspunishment   

 
where Es1 t-1 is the expected value of the stimulus from the previous trial, and the difference 
between the experienced outcome and the previously expected outcome (prior), and (rewards1t 
–Es1t-1) or (punishments1t –Es1t-1), is the prediction error. The memory reflects how much one’s 
choice is determined by the reward and punishment history on all previous trials.  Low memory 
results in rapid switches of choice in response to reward/punishment on the last trial.  The 
learning rate from rewards and learning rate from punishments reflected the impact that 
reward or punishment on trial t-1 had on the subject’s choice on trial t. 
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Rescorla-Wagner reinforcement learning models are known to learn more slowly than humans 
or non-human primates (4), partly because they are ignorant of the structure of the environment.  
By contrast, human subjects performing this task received instructions that one stimulus would 
be ‘correct’ while the other would be ‘wrong’, and thus were able to exploit their knowledge of 
task structure.  Trying to overcome this limitation at least in part, we incorporated the knowledge 
that stimulus values are reciprocal into our modified Rescorla-Wagner model.  The expected 
value for the non-chosen stimulus (s2 in this case) was updated reciprocally to the expected 
value of the chosen stimulus, reflecting the instructions:  
 
(2) tsts EE 12   

 
 
In this case, a full update is applied to the unselected stimulus.  Since it has been proposed that 
agents may apply only a partial update to the unselected stimulus (5), we have also tested a 
partial double update model, described below. 
 
The probability of choosing the stimulus based on its expected value was calculated as: 
 
(3) )*]10([ 11 tsts EnExploratiosigmoidP   

 
where sigmoid(z)=1/[1+exp(-z)].  The exploration parameter reflects the randomness of choice, 
varying between 0 and 10. At low exploration parameter values, the choice is mostly based on 
the reinforcement history represented in Es1 t (exploitation). When the exploration parameter 
reaches the value of 10, the agent’s choice completely ignores the reinforcement history, 
becoming completely stochastic.  Exploration on probabilistic learning tasks in humans may 
reflect purely random choice or certain false assumptions about the environment (e.g. that the 
reinforced stimulus alternates every two trials or is always presented on the left).  In general, 
exploration can be adaptive in a dynamic environment where reinforcement contingencies 
change unpredictably. 
 
We fitted our model to the subjects’ behavioral data using a non-linear gradient descent simplex  
function (6) which incorporates hard constraints into a Nedler-Mead ‘amoeba’ optimization 
algorithm, implemented in MATLAB 7.6.0 (The MathWorks, Inc.).  To find the best set of 
parameters to represent the pattern of subject’s choices, we maximized the likelihood function 
l(parameters|y) for each subject, where y is the subject’s set  of choices.  Towards this end, for 
tth trial, we calculated the probability that the model with a given set of parameters would select 
the option actually chosen by the subject, P(choicet|parameters). Thus, for all trials: 
 

(4) 
t

t parameterschoicePyparametersl )|()|(  

Because of numerical precision constraints when calculating the product of very small numbers 
in MATLAB, we maximized the log-likelihood as recommended by Wallisch and colleagues (7): 
 

(5) 
t

t parameterschoicePyparametersl )]|(log[)]|(log[  
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Partial double update model 
We have tested an alternative model, in which a reward or punishment associated with the 
selected stimulus results in only a partial update of the value of the unselected stimulus (5).  For 
example, when punished for selecting s1, one may not be completely certain that he/she would 
have been rewarded for selecting s2.  Compared to the full double update model described 
above, this model uses an additional free parameter ε.  It reflects the degree to which the 
unselected stimulus s2 is updated as a result of prediction error for the selected stimulus s1 : 
 
(2a) tststs updateEE 1122 *   

 
where updates1t  is learning.raterewards*(rewards1t –Es1t-1) for rewarded trials or learning.ratepunish.* 
(punishments1t –Es1t-1) for punished trials.  The probability of choosing the stimulus was 
calculated as a function of the difference between its expected value and the expected value of 
the other stimulus: 
 
(3a) ])[*]10([ 211 tststs EEnExploratiosigmoidP   

 
Otherwise, the partial double update model is identical to the full double update model 
described above, and includes five free parameters: memory, learning rate from rewards, 
learning rate from punishments, exploration, and ε.   
 
Simplified 3-parameter full double update model 
We have also tested a simplified model, which included learning rate from rewards, learning rate 
from punishments, and exploration as free parameters and fixed the memory parameter at 1.  
Otherwise, the simplified model was identical to the full double update model above. 
 
Model comparison 
To compare the goodness of the best fit between the models, we first calculated the Bayesian 
information criterion (BIC), which penalizes models with a greater number of free parameters: 
 
(6) BIC = –2 log l + k * log n 
 
where l is the likelihood for the best set of parameters, k is the number of free parameters, and 
n is the number of trials.  To determine the extent to which model parameters captured 
individual differences between participants, we also examined correlations between these 
parameters and the following behavioral indices: perseverative errors, switches, and 
probabilistic switches (switches following non-contingent punishment). 
 
RESULTS 
 
Probabilistic reversal learning: model comparisons 
Fits for the full double update model were insignificantly better for healthy controls (mean log 
l=20.0), non-suicidal depressed (mean log l=25.9), and for suicide ideators (mean log l=21.6) 
than for suicide attempters (mean log l=30.0; F(3,61)=1.0, p=0.40, post-hoc: NS).  
 
Allowing for a partial double update did not improve model fits.  Overall, fits were similar for 
both models (Figure S1), and mean Bayesian information criterion (BIC) was higher for the 
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partial double update model (68.7) than for the full double update model (67.1).  Thus, we 
retained the more parsimonious full double update model.  
 

FIGURE S1.  Full double update vs. partial double update reinforcement 
learning models: best fit across subjects 

 

 
Lower Bayesian information criterion values indicate better fit.  Allowing for a partial double update to the 
unselected stimulus did not improve model fits.  Overall, both models fit equally well, and mean Bayesian 
information criterion was higher for the partial double update model (68.7) than for the full double update 
model (67.1). 
 
 
 
Fits for the simplified 3-parameter full double update model were also similar to those for the 
4-parameter full double update model, with a slight advantage for the 3-parameter model when 
considering the number or parameters (mean BIC: 63.9 vs. 67.1).  
 
However, the four parameters of the full double update model with the memory parameter 
captured the two extreme behaviors on the task (excessive switching and perseveration) better 
than the three parameters of the simpler model.  As we show below, this was due to the fact 
that in the 4-parameter model excessive switching was captured by the memory parameter and 
perseveration, by the learning rate from punishments, while in the 3-parameter model both 
behaviors were captured by a single parameter, the learning rate from punishments. 
Indeed, the 4-parameter model showed correlations of memory with switches (r=-.58, p<.001) 
and probabilistic switches (r=-0.70, p<.001) and of learning rate from punishments with 
perseverative errors (r=-38, p=.002; Fig. 3b, c, e).  Meanwhile, in the 3-parameter model, the 
learning rate from punishments was still correlated with perseverative errors (r=-.34, p=.008) but 
only weakly correlated with switches (r=.13, NS) and probabilistic switches (r=.26, p=.045).  
Thus, in the 3-parameter model, the learning rate from punishments captured excessive 
switching only to a limited extent. 
 
Finally, and perhaps most importantly, the three parameters of the simplified model did not 
represent the temporal dimension of the task independently from the valence dimension.  Thus, 



Dombrovski et al. / Data Supplement / p. 5 

such a model would not be suited for testing our main hypothesis.  These considerations lead 
us to retain the 4-parameter model with a memory parameter for subsequent group contrasts. 
 
Probabilistic reversal learning: learning rate from rewards and exploration 
While group differences were seen in memory and learning rate from punishments (Results, 
Computational Model Analyses, Fig. 3), learning rate from rewards (mean(SD), non-
depressed controls (C): 0.42(0.37), depressed non-suicidal (D): 0.44(0.39), suicide ideators(SI): 
0.33(0.36), suicide attempters (SA): 0.41(0.38); F(3,61)=0.21, p=0.89) and exploration (C: 
3.4(3.0), D: 3.3(3.5), SI: 2.7(2.7), SA: 4.3(3.3); F(3,61)=0.59, p=0.62) did not vary across 
groups. 
 
Forward planning and spatial working memory 
The Stockings of Cambridge (SoC) test requires participants to rearrange colored balls in 
vertical columns to match a desired final arrangement in a specified minimum number of moves. 
Participants are told to plan their sequence of moves before starting to move the balls shown on 
the monitor. The time to plan the sequence of moves and the total number of moves made to 
solve the problem are recorded.  Groups did not differ in the number of problems solved in 
minimum moves (‘perfect solutions’; F[3,61]=1.0, p=0.39, partial η2=0.05).  Figure S2 illustrates 
SoC performance in the four groups: participants used more moves to solve problems of greater 
difficulty (F[1,59]=821, p<0.001), however there was no effect of group (F[3,59]=0.33, p=0.80) 
and no group by difficulty interaction (F[9,59]=1.70, p=0.13).  Similarly, the groups did not differ 
in initial and subsequent deliberation times, stratified by problem difficulty (F[3,59]<1.6, p>0.19). 
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FIGURE S2.  Forward planning and spatial working memory: Stockings 
of Cambridge test. 
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On the Stockings of Cambridge test, participants used more moves to solve problems of greater difficulty 
(F[1,59]=821, p<0.001), however groups did not differ in the number of moves needed to solve the 
problem (F[3,59]=0.33, p=0.80). 
 
 
 
Additional sensitivity analyses: effects of current substance use, age at first suicide 
attempt, gender, severity of depression, and medication exposure 

Since 6/15 suicide attempters and none of the participants in other groups had current 
substance use disorders, we performed a sensitivity analysis excluding these 6 participants: 
suicide attempters were still least likely to pass the reversal stage (χ2=10.2, p=0.017, N=52, 
N=59; suicide attempters vs. non-suicidal depressed: χ2=5.0, p=0.026, N=33).  Likewise, we 
performed an additional sensitivity analysis, limiting the group of attempters to only 9/15 who 
first attempted suicide after age 60.  The differences in passing the reversal stage among 
groups (χ2=10.2, p=0.017, N=52) and between suicide attempters and non-suicidal depressed 
elders (χ2=5.0, p=0.026, N=33) persisted.  Of note, 5/6 early-onset attempters vs. only 1/9 late-
onset attempters had current substance use disorders (χ2=7.8, p=0.005, N=15), hence the 
identical statistics in the two analyses above.  Males and females were equally likely to pass the 
reversal stage (χ2=1.85, p=0.17).  Severity of depression measured by the 16-item Hamilton 
Depression Rating scale was not related to performance in the reversal stage among the three 
depressed groups (binary logistic regression: Wald[1]=0.033, p=0.86).  Similarly, performance in 
the reversal stage was not related to the cumulative strength of antidepressant treatment (r=–
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0.095, p=0.564) or to sedative (χ2=1.34, p=0.25), anticholinergic (χ2=0.42, p=0.84), or opioid 
(χ2=0.11, p=0.74) exposure. 
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