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Anhedonia—the loss of pleasure or lack of reactivity to
pleasurable stimuli—remains a formidable treatment chal-
lenge across neuropsychiatric disorders. In major depressive
disorder, anhedonia has been linked to poor disease course,
worse response to psychological, pharmacological, and
neurostimulation treatments, and increased suicide risk.
Moreover, although some neural abnormalities linked to
anhedonia normalize after successful treatment, several
persist—for example, blunted activation of the ventral stria-
tum to reward-related cues and reduced functional con-
nectivity involving the ventral striatum. Critically, some of
these abnormalities have also been identified in unaffected,
never-depressed children of parents with major depressive
disorder and have been found to prospectively predict the
first onset of major depression. Thus, neural abnormalities
linked to anhedoniamay be promising targets for prevention.
Despite increased appreciation of the clinical importance of

anhedonia and its underlying neural mechanisms, important
gaps remain. In this overview, the author first summarizes the
extant knowledge about the pathophysiology of anhedonia,
which may provide a road map toward novel treatment and
prevention strategies, and then highlights several priorities to
facilitate clinically meaningful breakthroughs. These include
a need for 1) appropriately controlled clinical trials, especially
those embracing an experimental therapeutics approach to
probe target engagement; 2) novel preclinical models rele-
vant to anhedonia, with stronger translational value; and 3)
clinical scales that incorporate neuroscientific advances in
our understanding of anhedonia. The author concludes by
highlighting important future directions, emphasizing the
need for an integrated, collaborative, cross-species, and
multilevel approach to tackling anhedonic phenotypes.
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Victoria, a middle-aged professional and a dedicated long-
distance runner since young adulthood, has totally lost in-
terest in running. When asked by her partner about this
change, she explains that what used to be her favorite hobby
does not provide any joy and, in fact, has become a burden.
Concerned by her mounting sleep difficulties (mostly early
awakening) and weight loss, Victoria reconnects with the
psychiatrist who successfully treated her first major de-
pressive episode a decade ago. At the intake session, Victoria
discloses multiple ongoing stressors, including her mother’s
progressing dementia, difficulties at work, and growing fi-
nancial debt. Unfortunately, the selective serotonin reuptake
inhibitor (SSRI) that had previously led to remission does not
work this time, and augmentation strategies bring little
benefit. After 9 months of unabating symptoms, Victoria’s
mental stateworsens, and she is hospitalized after attempting
suicide.

With the lifting of COVID-related restrictions, Antonne’s
parents had hoped that he would reconnect with his friends
and be eager to return to in-person classes. Throughout the
pandemic, Antonne, a timid 14-year-old boy, has been

isolatinghimself fromhis friends and falling behind in school.
A reserved child from early age who often needed encour-
agement to socialize, Antonne has spent an increasing
amount of time playing video games in his room. Alarmed by
his apathicdemeanor and failing grades, his parents reachout
to their pediatrician, who is unsure how best to help. When
prompted about these developments, Antonne describes no
motivation in initiating social activities. He acknowledges
that he still enjoys spending time with one soccer teammate
who is also a gamer, but most of the time he does not feel like
doing anything.

Victoria andAntonne arefictional, but they illustrate a key
point. Specifically, although they both exhibit anhedonic
behaviors, those behaviors are different and are likely asso-
ciated with distinct pathophysiologies (1–3), which may re-
spond to different treatment strategies. Victoria exhibits
anhedonia as it is classically understood: she shows loss of
pleasure, which may have been triggered by chronic, un-
controllable stressors. Antonne, on the other hand, can ex-
perience pleasure but has difficulty initiating behavior in
pursuit of some pleasurable experiences. Such difficulty
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emerged early in development, apparently without any ob-
jective external trigger.

As exemplified by these fictional cases, anhedonia is
complex and its treatment remains a critical, unmet need.
One of the two cardinal symptoms of major depressive dis-
order (MDD), anhedonia is reported by 37%–72% of in-
dividuals with MDD (4–6). In MDD, anhedonia has been
linked to chronic disease course (7), worse outcome (8), poor
response to pharmacological (9), psychological (10), and
neurostimulation treatments (11), and increased risk of
completed suicide (12). Critically, and highlighting the
clinical relevance of anhedonia, individuals with MDD
conceptualize remission as the restoration of positive affect,
rather than the alleviation of depressive symptoms (13, 14).
Why has the treatment of anhedonia remained such an
unmet need, despite decades of preclinical and clinical
research?

In this overview, I attempt to answer this question by
identifying three areas that require attention. These areas
pertain to the need for 1) appropriately controlled clinical
trials, especially those embracing an experimental thera-
peutics approach to probe target engagement; 2) novel pre-
clinicalmodels relevant to anhedoniawith stronger translational
value; and 3) clinical scales that incorporate neuroscientific
advances in our understanding of anhedonia. Before addressing
these points, I summarize the extant knowledge about the
pathophysiology of anhedonia, which may provide a road map
toward filling these knowledge gaps.

THE NEUROBIOLOGY OF ANHEDONIA

Decades of neuroscientific research in experimental animals
and humans has emphasized the role of the meso-
corticolimbic circuit in different subdomains of reward
processing, including reward responsiveness (e.g., reward
anticipation, reward consumption), reward learning (e.g.,
positive reward prediction errors, which encode that an
outcome is better than expected and is critically implicated in
reward learning), and rewardvaluation (e.g., deciding toexert
effort to pursue a possible reward) (15–17). These findings
have contributed to an understanding of anhedonia as being

composed of discrete subcomponents (2, 3, 18, 19) (Figure 1),
which has also been captured by the Research Domain
Criteria(RDoC) initiative fromtheNational InstituteofMental
Health (NIMH) (https://www.nimh.nih.gov/research/research-
funded-by-nimh/rdoc/constructs/positive-valence-systems).

Originating from the ventral tegmental area (VTA), the
dopaminergic (DA) mesocorticolimbic pathway projects to
the ventral (nucleus accumbens [NAc]) and dorsal (caudate,
putamen) striatum, and then runs to the orbitofrontal cortex
(OFC), more dorsal aspects of the prefrontal cortex (PFC),
andvarious subregions of the anterior cingulate cortex (ACC)
(3, 20, 21). The main regions of the reward system (e.g., VTA
→ nucleus accumbens) are anatomically connected by the
medial forebrain bundle (20, 22)—a white matter tract that
has been strongly implicated in the experience of pleasure
and motivated behavior (23, 24). Although a detailed sum-
mary of neurobiological mechanisms implicated in anhe-
donic behaviors is beyond the scope of this overview,
abundant preclinical data highlight that anhedonic pheno-
types in experimental animals, which are often induced by
exposure to chronic, uncontrollable, and inescapable
stressors, are linked tobluntedDAtransmission in theventral
striatum, with potentiated DA transmission in the VTA and
medial PFC (or functionally homologous regions in rodents)
(3). In particular, rodent models relevant to depression have
linked anhedonia and reduced goal-directed behaviors to
increased phasic bursting and excitability of VTA DA neu-
rons, which characterized only vulnerable animals and could
be reversed by chronic antidepressant treatment (21, 25–27).
Similarly, optogenetic activation of VTA DA neurons during
chronic social defeat stress exacerbated depressive pheno-
types (28, 29), whereas optogenetic inhibition of VTA-NAc
DA neurons reversed anhedonia elicited by chronic social
defeat (30). Collectively, these data demonstrate that nor-
mative hedonic behaviors are supported by an adaptive and
flexible DA-mediated interplay among the VTA, the striatum
(especially the ventral striatum), and the PFC.

The Neural Correlates of Anhedonia
The past decade has seen substantial progresswith respect to
neural mechanisms that underlie anhedonia and reward

FIGURE 1. Subprocesses and subdomains implicated in reward processinga
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a Specific anhedonic behaviors may be chiefly associated with disruption in one or several of these subdomains. (Modified after references 18, 19.)
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processing dysfunction in MDD. Several recent reviews fo-
cusing on functional neuroimaging have highlighted fron-
tostriatal abnormalities in MDD during different reward
processes, including incentive motivation (reward anticipa-
tion), valuation (reward consumption), and reward learning
(31–34). Specifically, in depression, reduced dorsal (e.g.,
caudate, putamen) and ventral (NAc) activation and reduced
perigenual anterior cingulate cortex (pgACC) activation have
emerged in tasks probing reward consumption (35, 36), re-
ward anticipation (3, 35, 37, 38), and reward learning (39–42).
Reduced ventral striatal activation to reward receipt was
associated with anhedonic symptoms (38), whereas larger
reward prediction error signals (which captured the differ-
ence between expected and actual reward outcome) in the
ventral striatumpredicted reduced anhedonia 6months later
(43). In addition, during reward consumption or anticipation,
MDD has been linked to reduced activation in the dorsal
anterior cingulate cortex (dACC) (36) as well as the central
and medial OFC (44), with blunted reward-related central
OFC (areas 11 and 13) activation correlating with more an-
hedonic symptoms in adolescents with MDD (44). In tasks
harnessing computational modeling to estimate expected
value and reward prediction errors during Pavlovian, in-
strumental, or reversal learning tasks, MDD has been linked
to reduced reward prediction error in the ventral and dorsal
striatum (39–41; but see also 45, 46), pgACC (47), dACC (42),
and medial OFC (46). Similarly, in the decision phase of an
instrumental reinforcement learning task, MDD was char-
acterized by reduced reward value encoding in the pgACC
but higher subgenual anterior cingulate cortex (sgACC) ac-
tivation (48). Notably, reward-related blunting in these re-
gions has been accompanied byhyperactivation in themedial
prefrontal cortex (mPFC), ventromedial prefrontal cortex
(vmPFC; including the sgACC), and dorsolateral prefrontal
cortex (dlPFC) (33, 38, 49). Findings highlighting disruption
in key hubs of the brain reward system have been com-
plemented by reports that functional connectivity between
the caudal vmPFC and various reward regions (NAc, VTA,
OFC) while listening to pleasant music was negatively cor-
related with anhedonia (50).

Several recent findings deserve special emphasis. First,
frontostriatal abnormalities in MDD emerge early in the
disease course, as demonstrated by reduced striatal and
pgACC activation—but potentiated PFC (specifically mPFC,
dlPFC) activation—during reward consumption in children
and adolescents with MDD (33, 51, 52), with blunted pgACC
activation during reward consumption correlating with
higher anhedonia (51). Across studies, mPFC and dlPFC
overrecruitment during reward processing was interpreted
as pointing to possible overcompensation for reduced striatal
responses to rewards (33, 52, 53). Critically, in a large sample
of youths (N51,576; mean age, ;14 years), reduced ventral
striatal activation during reward anticipation was associated
with anhedonia and predicted transition to depression
2 years later among previously healthy youths (54; see also
55). Along similar lines, blunted striatal activation during

rewardanticipationpredictedgreater increases in adolescent
depressive symptoms over 2 years (55).

Second, while some abnormalities, such as blunted
reward-related striatal activation (56) and reduced reward
prediction error signals in the ventral striatum (57), nor-
malize after remission, others persist and point to possible
trait-like abnormalities. Abnormalities that do not normalize
include blunted OFC activation to rewards (58), reduced ability
to sustain ventral striatal activation to positive cues (56), and
greater reward prediction error in theVTA (42). Along similar
lines, never-depressed children of parents withMDD showed
blunted striatal activation during reward anticipation (59) and
consumption (60) as well as reduced NAc activation in re-
sponse to happy faces (61). Altogether, these studies suggest
that reward-related dysfunction can precede the initial onset
of MDD and thus represents a vulnerability risk.

Third, some of these abnormalities show acute treatment-
related changes. For example, a single ketamine infusionwas
associated with normalization of sgACC hyperactivation to
positive incentives (which was associated with more anhe-
donia) as well as dACC hypometabolism (62, 63). Similarly,
administration of a single low dose of amisulpride—
hypothesized to increase DA transmission via autoreceptor
blockade—normalized frontostriatal abnormalities in un-
medicated individuals with MDD. Specifically, relative to
placebo, 50 mg of amisulpride increased ventral and dorsal
striatal hypoactivation to reward-related cues and decreased
lateral OFC and vmPFC hyperactivation in MDD (64, 65).

Fourth, evidence of frontostriatal abnormalities has
emerged not only in reward tasks but also during resting (i.e.,
task-free) states. In the Adolescent Brain Cognitive Devel-
opment (ABCD) study, among children ages 9–10 years from
unreferred community samples (N52,455), decreased
resting-state functional connectivity (rsFC) between the
ventral striatum and the cingulo-opercular network was
observed in children with anhedonia but not those with low
mood (66), which highlights specificity in relation to anhe-
donia. In a notable study involving a large community-based
sample of 9-year-old children (N5637), rsFC between the
ventral striatum and other key reward hubs (vmPFC, dACC,
VTA) predicted new onset of depressive disorders 3 years
later, but not attention deficit hyperactivity disorder, anxiety
disorders, or substance use disorders (53). Thus, disrupted
frontostriatal coupling not only characterizes current MDD
butalso represents avulnerabilitymarker forMDD.Thesame
research group recently extended these findings (67, in this
issue) by analyzing data from the IMAGEN Consortium
(N5305, ages 13–15 years at baseline) andexamining intrinsic
FC between the ventral striatum and the rest of the brain
reward network. Several interesting findings emerged. First,
in logistic regression models, right ventral striatal intrinsic
FC at baseline (age 14) was positively associated with de-
pressive disorders (but not anxiety disorders) at age 14.
Similarly, left ventral striatal intrinsic FC at baseline corre-
lated positively with anhedonia (but not lowmood) at age 14.
Second, structural equationmodeling showed that left ventral
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striatum FC predicted anhedonia 2 years later, whereas right
ventral striatum FC predicted anhedonia 4 years later. Based
on these findings, the authors speculate that excessive FC
between the ventral striatum and the rest of the reward
networkmay reflect a lack offlexibility to respond to reward-
related cues in the environment. Future studies incorpo-
rating ecological momentary assessments probing flexible
responding to potential rewards in daily activities would be
well positioned to evaluate this interesting interpretation.

Finally, evidence of disrupted mesocorticolimbic path-
ways in anhedonia has also emerged from structural studies.
For example, studies probing the integrity of the medial fore-
brain bundle have found that anhedonia in MDD is associated
with decreases in tract volume and the number of tracts in
the left superolateral branch of the medial forebrain bundle
(68, 69), which projects through the anterior limb of the
internal capsule and connects the VTA to the PFC. Notably,
severity of anhedonia was also associated with increased
structural connectivity between the VTA and the medial PFC
(69), afinding interpreted as reflecting a possible compensatory
mechanism in severe anhedonia. These structural connectivity
findingshavebeen complementedby reports of reduced striatal
(in particular, dorsal) and OFC volume correlating with anhe-
donia (35, 70) or polygenic risk for anhedonia (71).

Interim Summary
Across tasks probing different subdomains of reward pro-
cessing but also during task-free (resting) states, MDD has
been linked to abnormal activation within and functional
connectivity across nodes of the brain reward pathways
(Figure 2). Although some inconsistencies exist, MDD is
generally characterized by reduced activation to reward-
related cues within ventral and dorsal striatal regions, per-
igenual and dorsal ACC regions, and central andmedial OFC.
These hypoactivations contrast with overrecruitment of
medial frontal pole (BA10), vmPFC (including sgACC), and
dlPFC regions in response to reward-related cues, which has
been interpreted as reflecting a compensatory mechanism
owing to reduced reward-related striatal activation. High-
lighting the clinical importance of these findings, some of
these markers were cross-sectionally and prospectively re-
lated to anhedonia and predicted first onset of MDD. Com-
plementing these findings, certain abnormalities—specifically,
reduced reward-related striatal activation and frontostriatal
resting-state functional connectivity—were also observed in
unaffected, never-depressed children of parents with MDD,
indicating that they may represent vulnerability markers.
A key question for future research is whether such vulner-
ability markers might be targeted for prevention.

THE NEED FOR PLACEBO-CONTROLLED CLINICAL
TRIALS WITH AN EXPERIMENTAL THERAPEUTICS
APPROACH

As mentioned above, the treatment of anhedonia in MDD
remains a formidable challenge. These challenges arepresent

in both first-line psychological (e.g., cognitive-behavior
therapy) and pharmacological treatments. In light of these
unmet needs, several targeted psychological interventions
have been developed in recent years, including behavioral
activation treatment (e.g., 72) and positive affect treatment
(73). Positive affect treatment, in particular, was specifically
designed to target deficits in reward sensitivity, and it in-
cludes modules involving planning for pleasurable activities
(reward approach-motivation), reinforcing connections be-
tweenbehaviors andmood effects (reward learning), and “in-
the-moment” savoring (reward consumption). Initial results
are promising (73), and future studies should evaluate
whether this intervention normalizes neural abnormalities
associated with anhedonia. (For promising evidence that

FIGURE 2. Summary of abnormalities emerging from functional
MRI in individuals with major depressive disorder (MDD) or at risk
for MDD using tasks probing reward-related processes or
evaluating resting-state functional connectivity within the brain
reward systema
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modulation of reward-related neural circuitry may underlie
reduction in anhedonia with behavioral activation, see ref-
erence 74.)

With respect to pharmacological treatments, anhedonia
has received surprisingly modest attention vis-à-vis rigorous
placebo-controlled trials. For example, in a recent qualitative
review, Cao and colleagues (75) summarized results from
17 studies that evaluated the efficacy of different pharma-
cotherapies for anhedonia. These strategies included mela-
tonergic antidepressants (agomelatine; eight studies), SSRIs
(escitalopram, sertraline,fluoxetine; four studies), serotonin-
noradrenaline reuptake inhibitors (extended-release ven-
lafaxine, extended-release levomilnacipran; two studies),
norepinephrine-dopamine reuptake inhibitors (bupropion;
one study), serotonin-norepinephrine-dopamine reuptake
inhibitors (amitifadine; one study), reversible inhibitors of
monoamine oxidase A (moclobemide; one study), tricyclic
antidepressants (clomipramine; one study), glutamatergic
agents (ketamine and riluzole; one study), stimulants (meth-
ylphenidate; one study), and psychedelics (psilocybin; one
study). Of note, nine of these 17 studies were open-label, and
10 included 30 or fewer patients in each treatment arm.
Agomelatine showed some promise in alleviating anhedonia,
but none of the eight studies published included a placebo-
control arm.Althoughthe lownumberofstudiesandhigh level
of heterogeneity prevented a quantitative meta-analysis, Cao
and colleagues concluded that melatonergic antidepressants
(agomelatine),monoaminergic antidepressants, glutamatergic
agents, psychedelics, and stimulants have shown initial promise
in addressing anhedonia.

Recently, three relatively novel mechanisms have attrac-
ted substantial interest as promising antianhedonic treatments:
kappa opioid receptor (KOR) antagonism, potassium channel
(KCNQ) modulation, and NMDA receptor antagonism.

Kappa Opioid Receptor Antagonists
KOR antagonism has been proposed as a possible treatment
for anhedonia based on robust preclinical data implicating
these receptors in modulating reward processing and stress
regulation (76, 77). Specifically, preclinical studies had pre-
viously shown that stressors trigger release of dynorphin,
which binds to KOR receptors and inhibits DA release in the
NAc via ventral tegmental area neurons (77–81). KOR an-
tagonists have been hypothesized to exert antianhedonic
effects by blocking CREB-mediated upregulation of dynor-
phin function, which in turn normalizes the mesolimbic DA
system (81). Consistent with this hypothesis, in rodents KOR
antagonists have shown antidepressant effects (e.g., 82–84);
moreover,whendelivered in theNAc, KORantagonists led to
a 175% increase in DA release in this region (85). In a
transdiagnostic sample of 89 individuals with MDD, bipolar
disorder, or anxiety disorderswith some level of anhedonia, a
KOR antagonist (aticaprant, formerly JNJ-67953964) was
associated with greater pre- to posttreatment changes in
self-reported, behavioral (performance on the probabilistic
reward task [PRT]), andneural (i.e., ventral striatal activation

during reward anticipation) measures of anhedonia (86, 87)
relative to placebo. Moreover, on the PRT, which uses an
asymmetric reinforcement schedule to objectively assess
participants’ ability to learn from rewards, trial-level
computational modeling indicated that the KOR antagonist
affected learning rate (the ability to learn from rewards)
while leaving reward sensitivity (the hedonic response)
unaffected.

KCNQ Channel Modulators
A different strategy to restore DA signaling consists of af-
fecting membrane excitability by means of modulation of
membrane-bound ion channels (88). Interestingly, in mice
exposed to chronic social defeat, resilient animals were
characterized by upregulation of KCNQ2/3 channels in the
VTA, which was associated with normative phasic firing of
the VTA and protection against anhedonic behaviors. Of note,
administration of ezogabine (a selective KCNQ2/3 channel
opener) restored VTA homeostasis and reversed anhedonic
and pro-depressive behaviors among defeated animals (89).
Inspired by these preclinical findings, Tan and colleagues
evaluated the effects of 10weeks of treatmentwith ezogabine
(900 mg/day) on self-reported, behavioral (performance on
the PRT), and neural measures of anhedonia, using an open-
label single-arm design (90). Participants included 18 indi-
viduals with MDD and clinically significant symptoms of
anhedonia. From baseline to the 10-week endpoint, ezoga-
bine increased reward learning on the PRT and reduced
depression severity and anhedonia. Two additional, notable
findings emerged. First, the decrease in anhedonic symptoms
remained after controlling for depression severity. Second,
improvements in self-reported anhedonia correlated with
reduced rsFC between the ventral caudate and the mid-
cingulate cortex, a region that has been implicated in
responding to salient stimuli (91). These findings were re-
cently confirmed and extended by the same group (92), who
randomized 45 individuals with MDD and elevated anhe-
donia to 5-week treatment with ezogabine (900 mg/day;
N521) orplacebo (N524).Relative toplacebo, ezogabinewas
associated with a larger reduction in depressive and anhe-
donic symptoms and an increase, short of significance, in
ventral striatal activation during reward anticipation.

NMDA Antagonists (e.g., Ketamine)
Ketamine, an NMDA receptor antagonist, is a glutamatergic
modulator that has attracted substantial interest due to its
rapid antidepressant effects (e.g., 93). NMDA-receptor-
mediated inhibition of inhibitory GABAergic interneurons
in the PFC has been implicated in ketamine’s antidepressant
mechanismof action (94).Preclinical studieshave shownthat
increased synaptic glutamate release leads to potentiated
AMPA receptor activation and, ultimately, synaptic plasticity
via the mTOR pathway (95). This, in turn, has been hy-
pothesized to increase DA tone in mesocorticolimbic path-
ways (96) and thereby exert antianhedonic effects. In line
with these hypotheses, retrospective analyses combining
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data from multiple studies (N5203 individuals with MDD)
showed that treatment with four intravenous infusions
of racemic ketamine (0.50–0.75 mg/kg) over the course of
1–2 weeks was associated with significant reductions in
self-reported anhedonia (97). Interestingly, reductions in
anhedonia partially mediated reductions in symptoms of
depression, anxiety, and suicidal ideation (for a recent review
of ketamine’s antianhedonic effects, see reference 9). These
findings have been complemented by reports that reduced
anhedonia after ketamine infusion correlated with 1) in-
creased glucose metabolism in the dACC (63, 98), putamen
(98), and OFC (63); 2) increased rsFC within a frontostriatal
network involving the PFC, OFC, and pgACC (99); and 3)
normalization (i.e., reduction) of sgACC hyperactivation to
positive feedback. This latter finding was particularly in-
teresting in light of recent findings in marmosets implicating
sgACC hyperactivation in anhedonic behaviors (100).

Interim Summary
Findings fromthese studies areexcitingnotonlybecause they
point to potentially novelmechanisms for tackling anhedonia
but alsobecause theyshowthat reducedanhedoniacorrelates
with changes in the brain reward system (9, 86, 90). Thus, by
taking an experimental therapeutics approach, these studies
provided important corroboration that the “target” (in this
case, ventral striatal activation to reward cues) was engaged.
Although an in-depth discussion of this point is beyond the
scope of this overview (for elaboration, see references
101–103), the importance of an experimental therapeutics
approach in order to avoid false positive findings and
meaningfully interpret failed clinical trials cannot be over-
emphasized. Harnessing this approach early in drug dis-
covery will be critically important to accelerate the
development of better treatment for anhedonia and to avoid
investing resources and time in therapeutics that do not show
target engagement. I believe that this approach, coupledwith
the use of preclinical models with more direct translational
value (see thenext section), offers the strongest path forward.

THE NEED FOR STRONGER CROSS-SPECIES
TRANSLATIONAL MODELS OF ANHEDONIC
BEHAVIORS

As highlighted by several recent reviews (e.g., 15, 18, 104), one
important limitation and potential translational “leak” is the
use of vastly different approaches to assess anhedonia across
species. Whereas human studies overwhelmingly rely on
clinical scales, rodent (and sometimes nonhuman primate)
studies rely on the sucrose preference test or other tasks
involving palatable food, and in the case of rodents, intra-
cranial self-stimulation (e.g., within the medial forebrain
bundle). Despite the evolutionary conservation of brain re-
ward pathways, and acknowledging that these approaches
have contributed to important discoveries, the translational
value of thiswork remains unclear. As a result, in recent years
there has been growing interest in developing and optimizing

experimental procedures that are functionally analogous—
and, in some cases, identical—across species, with the hope
that these platforms might accelerate translation. A com-
prehensive review is beyond the scope of this overview, but
the interested reader is referred to several recent reviews on
this topic (105–107). Here, I briefly highlight our experience
using the PRT, which assesses reward learning or the ability
to modulate behavior as a function of rewards. Originally
developed for humans (108), the PRT has been back-
translated to nonhuman primates (109), rats (110), and
mice (unpublished), most recently using touchscreen tech-
nology (Figure 3A). Using tasks with identical reinforcement
contingencies (e.g., 3-to-1 reward ratio for correct identifi-
cation of one stimulus vs. another), identical sensory mo-
dalities (e.g., visual stimuli), and similar psychometric
properties (e.g., overall accuracy between 70%and 90%), and
using identical signal-detection equations to derivemeasures
of response bias (i.e., the preference for the more frequently
rewardedstimulus), our labandothershavedescribedsimilar
findings in humans and rodents given interventions hy-
pothesized to increase or decrease DA signaling (e.g., pra-
mipexole, stimulants, nicotine withdrawal) or exposed to
stressors (111–116). Critically, anhedonic symptoms among
depressed individuals (Figure 3B), as well as anhedonic be-
havior induced by early-life stress in rats (Figure 3C), were
associatedwith similarly blunted reward learningon thePRT
(117, 118). Finally, in humans, individual differences in the
ability to acquire a response bias have been linked to func-
tional, electrophysiological, and molecular markers of the
mesocorticolimbic system (119, 120) (Figure 3D). Interest-
ingly, a recent study in rats (116) showed that blunted reward
learning after exposure to chronic mild stress could be re-
versed by systemic injection of a low dose of the D2/D3 an-
tagonist amisulpride (hypothesized to increase DA signaling
in the striatum via autoreceptor blockade) (116). Thus,
transient increase of DA signaling in the striatum rescued
stress-induced anhedonic behavior in rats, which parallels
prior findings in MDD showing that a single low dose of
amisulpride (50 mg) normalized blunted reward-related
activation in the dorsal and ventral striatum (64, 65). Fi-
nally, and highlighting potential clinical utility, two recent
studies in independent samples showed that more normative
PRT reward learning before treatment predicted better an-
tidepressant and antianhedonic response to bupropion (121)
and pramipexole (122). Critically, in the study by Ang and
colleagues (121), better reward learning predicted better
response to bupropion after failing to respond to 8 weeks of
treatment with the SSRI sertraline. If replicated, these
findings suggest that objectively assessed anhedonic phe-
notypes may be more homogeneous than the syndrome of
“MDD,”whichmay facilitate treatment selection for at least a
subgroupofdepressed individuals. Future studies should also
evaluate whether subgrouping patients based on objective
measures of anhedonia might outperform self-reported as-
sessments of anhedonia (for initial evidence, see references
123, 124), particularly when using “first-generation” clinical
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anhedonia scales, which, as discussed next, do not differ-
entiate among different subdomains of reward processing.

THE NEED FOR NEUROSCIENTIFICALLY INFORMED,
PSYCHOMETRICALLY SOUND CLINICAL SCALES OF
ANHEDONIA

Informed by historical conceptualizations of anhedonia,
early scales focused exclusively on the assessment of pleasure
(consummatory anhedonia) (for a recent review, see refer-
ence 125). For example, the Snaith-Hamilton Pleasure Scale
(SHAPS) (126), which is arguably the most widely used self-
report scale of anhedonia, assesses the ability to experience
pleasure in the context of five type of rewards (food/drinks,
sensory experiences, social interaction, pastimes, and
achievements). Similarly, the Chapman Anhedonia Scale
focuses exclusively on consummatory pleasure (125). Fea-
sibly, individuals such as Antonne—who, as described at the
start of this article, can experience pleasure but has difficulty

mounting motivated behavior in pursuit of potentially
pleasurable experiences—may not generate high scores on
such measures, despite clearly displaying anhedonic phe-
notypes. Consistent with this speculation, a recent meta-
analysis comparing SHAPS scores across neuropsychiatric
disorders concluded that use of the SHAPS may underesti-
mate the number of depressed individuals with anhedonia
(127). To address these limitations, and informed by more
modern (neuroscientific) conceptualizations of anhedonia,
second-generation scales, such as the Dimensional Anhe-
donia Rating Scale (128) and the Temporal Experience of
Pleasure Scale (129), have been developed to probe different
subdomains, including anticipatory versus consummatory
anhedonia. Finally, a recently published scale, the Positive
Valence Systems Scale (130), explicitly uses domains and
subdomains from the NIMHRDoC initiative (131) to provide
a more fine-grained assessment of anhedonic behaviors,
by parsing seven subdomains (reward valuation, reward
expectancy, effort valuation, reward anticipation, action

FIGURE 3. Cross-species reward learning assaya
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selection, initial responsiveness, and reward satiation). Fu-
ture studies should use these more modern anhedonia scales
to identify what are expected to be more biologically ho-
mogeneous subgroups of patients. In addition, studies are
needed to confirm the hypothesis that patients featuring
dysfunction in specific reward processing subdomains are
indeed characterized by different neural alterations. Collec-
tively, these studies might suggest how best to conceptualize
treatment approaches for the individuals in such subgroups.

CONCLUSIONS AND FUTURE DIRECTIONS

Treating anhedonia associated with MDD as well as with
other neuropsychiatric disorders (for a full overview, see
reference 132) remains a daunting clinical challenge. Loss of
pleasure, as well as bluntedmotivation to pursue pleasurable
activities and learn from them, negatively impacts our ability
to see purpose in life, to function across domains (e.g., family,
work, society), and to be resilient when challenged by life
stress. Restoring motivation and the ability to feel pleasure is
seen by individuals as pivotal to remission. Thanks to sub-
stantial progress in our understanding of reward processing
across species, but also to novel conceptualizations of psy-
chopathology (e.g., the RDoC initiative), the past 10 years
have seen remarkable innovation and promise in addressing
anhedonia. Such progress has been fueled by several devel-
opments, including 1) an appreciation that different reward
processing subdomains are governed by partially nonover-
lappingbrainnetworks; 2) thedevelopment andoptimization
of objective tasks to probe reward processing subdomains
that are functionally identical across species; and 3) the
identification of novel (nonmonoaminergic) targets for an-
hedonia treatment. Moreover, this knowledge has spurred
significant innovation, including the development of psy-
chological treatments that specifically target anhedonia (such
as positive affect treatment [73]) and the harnessing of vir-
tual reality to address anhedonic symptoms (133); the eval-
uation of the medial forebrain bundle as a novel target for
deep brain stimulation (23, 134); and the development of
second-generation, circuity-targeted neurostimulation strat-
egies targeting anhedonia (11).

Despite this progress and promise, there are important
remaining gaps and future directions the field will need to
pursue. First, there is insufficient understanding of how
specific anhedonic phenotypes should be treated: should
Victoria and Antonne, as described at the beginning of this
review, be treated similarly or differently? Treatment studies
with large samples that afford the use of machine learning or
clustering approaches are needed to identify reward-related
biotypes and their response to treatments (135). For instance,
it is unclear why individuals with a more normative brain
reward system at baseline (as evidenced by a better ability to
learn from rewards and by stronger functional coupling
between the NAc and the pgACC) fail to benefit from an
8-week treatment course with an SSRI (sertraline) but go on
to respond to an atypical antidepressant (bupropion) (121; see

also 122). Do these findings challenge the traditional phar-
macology deficiency model (e.g., SSRI ↔ monoaminergic
hypothesis of MDD), and do they suggest that anhedonia
might follow a capitalization model, which assumes that a
treatment should be provided to match relative strengths
rather than deficits? (For a discussion of the capitalization vs.
compensation approaches in the context of psychotherapy for
depression, see reference 136.) If specific neural markers (e.g.,
blunted striatal recruitment while anticipating or receiving re-
wards, and/or disrupted rsFC between the ventral striatum and
other key reward hubs) are present in young, unaffected, never-
depressed children of depressed parents, should we implement
preventive strategies to thwart the emergence of MDD and
anhedonia? If so,which strategies shouldweuse?Ultimately, for
people likeVictoria andAntonne, the best chances for remission
will stem from a rigorous, integrated, cross-species, multilevel
investigation of anhedonia, which promises to lead to much-
needed therapeutic and preventive breakthroughs.
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