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Adversity early in life is common and is a major risk factor
for the onset of psychopathology. Delineating the neuro-
developmental pathways by which early adversity affects
mental health is critical for early risk identification and tar-
geted treatment approaches. A rapidly growing cross-
species literature has facilitated advances in identifying the
mechanisms linking adversity with psychopathology, spe-
cific dimensions of adversity and timing-related factors
that differentially relate to outcomes, and protective factors
that buffer against the effects of adversity. Yet, vast com-
plexity and heterogeneity in early environments and neuro-
developmental trajectories contribute to the challenges of

understanding risk and resilience in the context of early
adversity. In this overview, the author highlights progress in
four major areas—mechanisms, heterogeneity, develop-
mental timing, and protective factors; synthesizes key chal-
lenges; and provides recommendations for future research
that can facilitate progress in the field. Translation across
species and ongoing refinement of conceptual models
have strong potential to inform prevention and intervention
strategies that can reduce the immense burden of psycho-
pathology associated with early adversity.
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Adversities that occur early in life, such as maltreatment,
exposure to violence, and poverty, are common and can
have profound and lasting influences on mental health.
Between one-half and two-thirds of youths experience at
least one form of adversity or traumatic event prior to
adulthood (1–4), and childhood adversity is estimated to
play a role in one in three psychiatric disorders in adult-
hood (4). Youths exposed to adversity are at increased
risk for a broad range of internalizing and externalizing
problems, including anxiety, depression, posttraumatic
stress disorder (PTSD), disruptive behavior disorders,
and substance use disorders (2, 4–7). Moreover, early
adversity is experienced at higher rates by minoritized
communities (8), contributing to mental health dispar-
ities (9). Delineating the neurobiological pathways by
which early adversity leads to psychopathology is critical
for targeted treatment approaches and early risk identifi-
cation. While research to date in both animals and
humans has provided major scientific advances in delin-
eating these pathways, the current state of the science
lacks the specificity and mechanistic insight that is
essential for reducing the immense burden of psychopa-
thology. In this overview, I review progress and gaps

in four promising areas of research, highlight key chal-
lenges, and provide recommendations for future direc-
tions to advance the field.

MECHANISMS: IDENTIFYING PATHWAYS LINKING
EARLY ADVERSITY WITH MENTAL HEALTH

A growing body of research has examined behavioral, cogni-
tive, and neurobiological processes that may explain the
robust association between early adversity and risk for psy-
chiatric disorders. Cross-species evidence has demonstrated
that early adversity has particularly strong effects on stress
physiology (10–12) and corticolimbic neural circuity (13–15)
involved in learning about salient aspects of the environ-
ment and regulating emotion (16). Indeed, youths exposed
to early adversity show alterations in hypothalamic-pitui-
tary-adrenal (HPA) axis function (10, 11, 17, 18) and in both
the structure and function of the medial prefrontal cortex
(mPFC), amygdala, and hippocampus and their connections
(13, 19–23). Connections between these regions may be espe-
cially affected by adversity because of their dense expression
of glucocorticoid receptors (14, 24–27) and the developmen-
tal timing of circuit maturation (14, 15, 28). Whereas
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prefrontal regions and their connections with limbic struc-
tures undergo protracted development, the amygdala
matures relatively earlier and may be particularly sensitive
to the early social environment (29, 30). Environmental
influences on corticolimbic circuitry in early life may play
an active role in shaping longer-term neural and behavioral
phenotypes, including future responding to adversity. In
addition to increasing risk for psychopathology during
development, early adversity increases risk of psychopathol-
ogy following subsequent adversity exposure (31, 32).
Emerging evidence suggests that alterations in hippocam-
pal-fronto-amygdala circuitry also underlie effects of stress
sensitization (33, 34). Collectively, these studies highlight a
central role of corticolimbic circuitry in mediating the
effects of early adversity on risk for psychopathology.

Early adversity is also associated with alterations in large-
scale brain networks that support cognitive and affective
functions (19, 20, 35), such as the salience network involved in
detection of behaviorally relevant stimuli (36–40), the fronto-
parietal network involved in cognitive control (41–46), and
the frontostriatal network involved in reward processing
(47–53). Paralleling these neural differences, youths exposed
to adversity show alterations across a range of domains,
including emotion regulation, reward processing, social infor-
mation processing, and associative learning (20, 54, 55).
Despite the potential for resilience and change during devel-
opment, the effects of adversity can persist long after the
adversity ends, and some of the same behavioral and neural
alterations have been observed in adults who report exposure
to early adversity (21, 56, 57). Given the transdiagnostic nature
of disruptions in cognitive control and affective functions,
these alterations provide plausible pathways from early adver-
sity to a range of internalizing and externalizing disorders.

Stress Acceleration
While a wealth of studies have demonstrated the effects of
early adversity on the brain and stress response systems, a
growing literature suggests that early adversity affects the
timing or pace of neurobiological development itself (58–61).
Life history theory posits that early experiences shape
developmental trajectories to meet the environmental
demands that individuals are likely to encounter—in the
context of a harsh early environment, accelerated pubertal
development could be adaptive to prioritize opportunities
for reproduction (62, 63). Building on work on life history
strategies, predictive adaptive response models suggest that
early adversity accelerates biological aging across multiple
domains (64, 65). Supporting these ideas, there is cross-
species evidence of acceleration in pubertal tempo (66–71),
which may be triggered by alterations in endocrine function
(17, 66, 72), and cellular aging (73–77) following adversity.

In terms of neurodevelopment, the stress acceleration
hypothesis suggests that early adversity leads to precocious
maturation of corticolimbic circuitry and behaviors gov-
erned by this circuitry, fostering greater capacity for inde-
pendent regulation of stress and emotion in the absence of a

stable, nurturing environment (58). Early adversity has been
associated with accelerated maturation of corticolimbic cir-
cuitry in both rodents (78–80) and humans (81–86). How-
ever, other studies have found evidence of delay or a lack of
differences in developmental timing following adversity
(59). Recent evidence suggests that some acceleration effects
may be specific to corticolimbic circuitry and not to other
brain networks (83) and may vary as a function of adversity-
related factors. Indeed, a study from Keding and colleagues
in this issue of the Journal (87) found that exposure to
abuse was associated with delayed structural maturation
that was specific to emotion-related neural circuitry,
whereas neglect was associated with a more distributed pat-
tern of accelerated structural maturation in female youths.

Although much remains unknown about the function and
long-term correlates of shifts in developmental timing, earlier
maturation may represent an ontogenetic adaptation (58, 62,
82, 88). Recent work demonstrating acceleration of ventro-
medial prefrontal cortex (vmPFC)–amygdala connectivity
following early adversity found that the more mature pattern
of connectivity was associated with slower telomere shorten-
ing and slower pubertal tempo (84), suggesting protective
neural system effects in the context of accelerated cellular
aging following early adversity. Paralleling these findings,
children exposed to caregiver deprivation who showed a
more mature pattern of vmPFC-amygdala connectivity dis-
played lower separation anxiety (82), consistent with evi-
dence that stronger inverse amygdala-mPFC functional
connectivity is associated with lower internalizing symptoms
among youths exposed to early adversity (89). At the same
time, there are likely to be long-term consequences of preco-
cious maturation. Future research that examines longer-term
effects of accelerated development, tests whether neural find-
ings of acceleration are specific to corticolimbic circuitry, and
further examines how developmental timing may converge
or diverge across different biological domains will help to
provide a more comprehensive understanding of the influen-
ces of early adversity on the timing of maturation.

HETEROGENEITY: DIMENSIONAL MODELS OF
EARLY ADVERSITY

Despite vast heterogeneity in the nature of early adversity
and in developmental outcomes, existing studies have often
taken one of several approaches that may obscure meaning-
ful variability. A common study design compares an
adversity-exposed group to a non-adversity-exposed group,
with the adversity-exposed group comprising individuals
exposed to a broad range of adverse experiences (90), or
comprising individuals exposed to a single type of adversity
(91, 92) without comparison to other types of adversity (13).
Another dominant approach has conceptualized adversity in
terms of cumulative risk, modeling a continuous measure of
adversity exposure as the number of categories of adversity
to which an individual has been exposed (93). While such
research has contributed foundational knowledge to the
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field, approaches that focus on specific elements of adversity
exposure have the potential to identify key factors that mod-
erate the effects of adversity and to more precisely parse
variability in outcomes (13, 88, 94–98). Parsing such variabil-
ity may be essential for identifying mechanisms and facilitat-
ing targeted intervention approaches.

Unpredictability
A robust cross-species literature demonstrates that un-
predictability is one important dimension of adversity
(88, 99–101), particularly in the context of caregivers’
behaviors. Early caregiving cues, such as the contingency of
caregiver responsivity to infants, form the basis of child-
ren’s expectations of the environment and are foundational
to cognitive and affective development (102, 103) and the
development of secure attachment relationships (104). In
studies of rodents that manipulate the degree of predictabil-
ity in maternal care via fragmented care models, rodent
pups exposed to unpredictable care show disruption in cog-
nitive and affective processes (99, 101, 105). Alterations in
corticolimbic circuitry may underlie these disruptions, as
rodents exposed to unpredictable maternal signals exhibit
altered amygdala-mPFC connectivity (106), greater amyg-
dala activity (56), and altered corticolimbic interactions that
have been associated with anhedonia (107–110).

In humans, unpredictability in parental cues—such as
during play with 12-month-old infants (111)—and synchrony
in infant-caregiver behavior (112) have similarly been associ-
ated with children’s development. Greater unpredictability
in broader environmental contexts, such as variability in
housing, parental jobs, and parental involvement in care, is
associated with risk-taking behavior in adolescence (100).
One potential pathway by which broader environmental
unpredictability (e.g., variable access to food resources)
affects developmental outcomes is through alterations in
caregiving behavior (100, 113, 114). Although neural corre-
lates of unpredictability are harder to isolate and have been
less explored in humans, recent evidence from a longitudi-
nal study of parent-child dyads demonstrated that higher
unpredictability of parental sensory signals at 6 and 12
months of age was associated with greater structural integ-
rity of the uncinate fasciculus at ages 9–11 years, which was
associated with episodic memory (115). Future research will
be important to better understand the neurobiological corre-
lates of unpredictability in humans and to continue to refine
conceptual definitions and facilitate more precise measure-
ment of environmental unpredictability (116).

Threat and Deprivation
Another influential approach draws a distinction between
threat (i.e., adversity that involves significant potential for
harm, such as abuse or violence) and deprivation (i.e., adver-
sity characterized by the absence of an expected environ-
mental input, such as cognitive or social stimulation, as in
neglect or caregiver deprivation) (117, 118). Exposure to
threat is associated with alterations in corticolimbic circuitry

that include heightened amygdala activation to threat and
lower amygdala, mPFC, and hippocampal volumes, with cor-
responding alterations in aversive learning and emotion
processing (35, 119–125). By contrast, some evidence suggests
that deprivation is more consistently associated with lower
gray matter volumes and altered function in frontoparietal
regions (41, 126), and with difficulties in executive function-
ing and language (127–131). However, deprivation in the
form of previous institutionalization has also been associated
with alterations in corticolimbic circuitry, including altered
amygdala volume, amygdala-mPFC connectivity, and amyg-
dala reactivity (82, 91, 132, 133), as well as alterations in
aversive learning and emotion processing (86, 134, 135). In
light of some inconsistent findings and challenges in model-
ing threat and deprivation (136, 137), ongoing research will
be helpful to continue to inform how these elements may
differentially influence development, including research that
examines threat or deprivation while controlling for the
other in the same study (130, 138–141). Taken together, vari-
ous empirical and theoretical contributions to the field (13,
88, 94–97, 100, 137) highlight the value of delineating spe-
cific elements of early adversity to further advance knowl-
edge of mechanisms and developmental trajectories.

TIMING: SENSITIVE PERIODS AND
DEVELOPMENTAL EFFECTS

Given changes in neuroplasticity, and given that the neural
circuitry sensitive to adversity undergoes dynamic changes
from the prenatal period through young adulthood, the
effects of adversity are likely to vary as a function of the
developmental stage at which adversity occurs (13–15, 28,
142). Across species, evidence demonstrates that adversity
that occurs early in life has particularly strong effects on
neurobiological and psychiatric outcomes relative to adver-
sity that occurs in adulthood (14, 143). Even during develop-
ment, effects are likely to differ as a function of the specific
timing of adversity exposure (e.g., infancy, early versus late
childhood, early versus late adolescence, etc.). Animal work
that allows for manipulating the timing of exposure shows
that the effects of adversity differ as a function of develop-
mental timing (14, 144). Manipulating adversity exposure is
challenging in humans; however, naturalistic human studies
of adversity provide converging evidence that outcomes
depend on the timing of adversity (11, 21, 28, 94, 145–148).

Sensitive Periods
One important way in which the timing of adversity relates
to developmental trajectories is through sensitive periods of
heightened neuroplasticity, when a specific species-expected
environmental input has a particularly strong influence on a
specific brain circuit (149, 150). While sensitive-period phe-
nomena are challenging to study in humans, the unique
study design of the Bucharest Early Intervention Project
(151) has provided insight into a potential sensitive period
related to caregiving and socioemotional development
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during the first 2 years of life. Findings suggest that youths
exposed to caregiver deprivation via institutionalized care
show more secure attachment, more normative stress
responses, and more normative neurodevelopmental trajec-
tories following placement into a foster care intervention
prior to 24 months of age, relative to peers who were placed
after 24 months of age (11, 152, 153). However, it remains
unclear whether earlier placement into foster care is associ-
ated with more favorable outcomes because of a shorter
duration of stress or because the stress may interact with
plasticity, or both.

Consistent evidence has shown that the absence of sta-
ble, nurturing caregiving in the postnatal and infancy
period disrupts corticolimbic development. Across species,
early caregiver deprivation is associated with altered con-
nectivity between the amygdala and mPFC in mice (154),
rats (155), nonhuman primates (156), and humans (82).
These findings may reflect a sensitive period driven by
experience-expectant mechanisms. Consistent with criteria
for a sensitive period (150, 157), it is likely that this period
is marked by heightened neuroplasticity, and infancy is a
time of rapid and substantial change in corticolimbic cir-
cuitry (158). There is also some specificity to the nature of
the experience and the timing of the window during which
caregiver deprivation seems to have particularly strong
effects (14), although ongoing research will be important to
test all relevant criteria (157, 159, 160). Future work will
also provide critical insight into precisely what becomes
biologically embedded during this period and how missed
opportunities during this window may have cascading
effects later in development (161).

Timing-Related Effects of Adversity
Although considerable evidence indicates that adversity
has the strongest effects when experienced earlier in life
(10, 11, 14), risk could instead be highest when adversity
occurs during specific windows of heightened plasticity
that occur later in development. For example, corticolim-
bic circuitry undergoes substantial changes across child-
hood and adolescence (60, 162, 163). Particularly in the
context of maltreatment, some studies have suggested pro-
nounced effects of adversity on corticolimbic structure or
function during childhood or adolescence (148, 164–166).
These findings also highlight the complexity of interac-
tions between developmental timing and the type of adver-
sity exposure, sex, and regional specificity in the brain. For
example, exposure to maltreatment at ages 10–11 was
related to amygdala volume in adulthood, relative to expo-
sure at other ages during development (148), whereas sex-
ual abuse at ages 3–5 and 11–13 was associated with
hippocampal volume in adulthood (164). In the functional
domain, physical maltreatment during childhood (ages
3–6) was associated with blunted amygdala reactivity in
adulthood, whereas peer emotional abuse during adoles-
cence (ages 13 and 15) was linked with increased amygdala
response in adulthood (166). While these studies in

adulthood provide insight into nonlinear peaks in risk
throughout development, future studies conducted during
childhood and adolescence will be important for under-
standing more proximal changes in corticolimbic circuitry
and psychopathology that may unfold during development.

PROTECTIVE FACTORS: CAREGIVER SUPPORT AND
OPPORTUNITIES FOR RECALIBRATION

Despite the strong association between early adversity and
mental health, not all youths exposed to adversity go on to
develop psychiatric disorders. Delineating factors that pro-
mote resilience in the face of adversity and interactions
between these resilience factors (167) is critical for identify-
ing mechanistic targets for intervention, as well as for iden-
tifying youths at elevated risk. Stable, supportive caregiving
is one of the strongest protective factors against psychopa-
thology in the context of early adversity (168). Youths
exposed to adversity who experience higher levels of care-
giver support develop lower levels of symptomatology
(169–171), and parenting behaviors are associated with child-
ren’s symptoms of PTSD (172, 173).

A growing literature has provided increasing insight into
the behavioral and neurobiological processes by which care-
givers promote healthy development and resilience (174).
For example, during childhood, caregiver sensitivity (i.e., the
extent to which a caregiver is attuned and responsive to
their child) is associated with amygdala volume and micro-
structure of the amygdala and hippocampus (175), and nega-
tive caregiving behavior is associated with amygdala
activation and functional connectivity (176). In addition,
caregiver control experienced during childhood is associated
with amygdala activation and structural integrity of the
uncinate fasciculus during young adulthood (177). In the
context of adversity exposure, several studies have shown
that caregiving support can buffer the effect of adversity on
HPA axis function and corticolimbic networks involved in
emotion regulation and executive control (178–180). Impor-
tantly, supportive caregiving is a modifiable target that can
be strengthened through intervention. A randomized con-
trolled trial of a supportive parenting intervention for fami-
lies living in poverty showed that a longer duration of living
in poverty during adolescence was associated with reduced
amygdala and hippocampal volumes among young adults in
the control condition (informational brochures), but not
among young adults whose families participated in the
Strong African American Families Program (181). Taken
together, these findings indicate that supportive caregiving
may buffer the risk of psychopathology following adversity
by modulating corticolimbic circuitry, which can be targeted
effectively through psychosocial intervention.

Caregiver Buffering
Caregivers play a central role in helping to regulate child-
ren’s emotions and stress reactivity in the context of adver-
sity (182–185). Recent research provides insight into the
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neurobiological mechanisms that may underlie these effects.
Paralleling evidence in rodents and macaques (186, 187),
caregiver presence can buffer children’s responses to stress
by dampening cortisol reactivity (188) and amygdala reactiv-
ity (189). These findings suggest that caregivers may serve
an external regulatory function while corticolimbic circuitry
is still developing. Early biological embedding of safe and
predictable caregiver-related cues during infancy may set
the stage for caregivers, and eventually other attachment fig-
ures, to support regulation later in development (161, 190).
Consistent with the idea that early experiences with care-
givers may shape subsequent experiences of social buffering,
early caregiving adversity is associated with weaker effects
of caregiver buffering later in development across species
(191–194). Although caregiver buffering of amygdala reactiv-
ity is weaker on average among youths previously exposed
to caregiver deprivation, there is substantial variability in
caregiver buffering following adversity. Among youths who
experienced caregiving adversity, 40% show reduced amyg-
dala reactivity to parental cues, and these youths exhibit
lower anxiety up to 3 years later (191). These findings sug-
gest that caregiver buffering of amygdala reactivity may pro-
mote resilience among youths at elevated risk of
psychopathology following adversity.

Opportunities for Recalibration
Just as periods of heightened plasticity can be associated
with vulnerability, they also present opportunities for resil-
ience. Recent evidence highlights the potential for adoles-
cence to confer unique opportunities for recalibration of
the HPA axis among youths exposed to early adversity
who are later living in more favorable conditions. Children
who were previously exposed to early caregiver depriva-
tion via institutionalized care and later adopted into stable,
supportive family environments show blunted cortisol
reactivity to psychosocial stressors, and this effect can per-
sist even years after adoption (10). However, they show
increasing cortisol reactivity with pubertal development,
such that their stress response did not differ from that of
never-institutionalized youths following puberty (195, 196).
These findings suggest that puberty may confer greater
plasticity in the HPA axis, which facilitates recalibration to
the current environment and the potential for heightened
influences of supportive caregiving environments during
this time. Future research that further examines the nature
of an adolescent environment that facilitates recalibration,
as well as the potential neural and behavioral consequen-
ces of pubertal recalibration (197), will be critical to inform
translation to promote resilience.

CHALLENGES AND FUTURE DIRECTIONS IN THE
STUDY OF EARLY ADVERSITY

Key Challenges
Research on early adversity has made considerable pro-
gress in delineating neurodevelopmental mechanisms

underlying risk for psychiatric disorders, key timing and
experiential factors that contribute to heterogeneity in
exposure and outcomes, and protective factors that pro-
mote resilience. However, the field must confront several
major barriers to continue advancing empirical knowledge
and theory of early adversity.

One fascinating but challenging reality is the vast intri-
cacy of the environment, the developing brain, and human
behavior; there is much complexity and heterogeneity in
adversity exposure itself and in neurodevelopmental and
behavioral trajectories among youths exposed to adversity.
Conceptual models have struggled to integrate burgeoning
findings on the effects of early adversity on brain develop-
ment and mental health. At the same time, in practice,
empirically testing key predictions from complex conceptual
models presents significant challenges. Because it would be
unethical and infeasible to experimentally manipulate the
nature or timing of adversity exposure in humans, the obser-
vational design of most studies in humans limits mechanistic
insights and causal interpretations. Moreover, there is sub-
stantial chronicity and co-occurrence of adversities, and
dimensions of adversity, in youths (2, 4, 198, 199), and such
adversities occur in the context of an ever-shifting broader
ecosystem (96, 200–202). Many studies have lacked the sta-
tistical power to examine complex higher-order interactions
(e.g., of the timing and type of adversity) or to model risk
factors that may be highly collinear (93, 137).

Measurement issues further hinder advances in the study
of early adversity. Studies of early adversity often rely on
retrospective self-report (203) of early experiences that are
linked with measures of brain and behavioral functioning
that are collected in adulthood (165). While recent evidence
highlights the predictive validity and utility of self-reported
measures of adversity, even when retrospective (204), this
study design still precludes a developmental understanding
of risk and resilience. In addition, most studies lack precise
information about the developmental timing of adversity
exposure or the depth of phenotyping that would be needed
to test predictions from dominant conceptual models. Lastly,
given that development and key processes relevant to adver-
sity and mental health can unfold on the order of years, but
also on a moment-to-moment basis, the optimal time frame
for sampling to accurately model development may be prac-
tically impossible in humans.

Here, I highlight key themes for future research that will
be essential to overcoming these challenges and fostering
mechanistic insights and more precise prediction of mental
health outcomes in the field.

Cross-Species Translation
Consistent with the foundational contributions of cross-
species research to our current knowledge of early adver-
sity (14, 56, 78, 205, 206), translational insights from
research in animals will continue to be essential to mecha-
nistic understanding of the links between early adversity
and mental health. The ability to manipulate the type and
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timing of risk and protective factors in animal models pro-
vides opportunities to test key predictions about develop-
ment and the environment (207, 208). In particular,
research in rodents and nonhuman primates can inform
questions about sensitive periods of neuroplasticity and the
neurobiological mechanisms that link adversity with devel-
opmental outcomes. Robust evidence across species has
shown that neural and behavioral phenotypes following
adversity result from a complex interplay between environ-
mental, genetic, and epigenetic factors (209–212). Genetic
predisposition plays an important role in developmental
outcomes, with evidence that the effects of adversity
depend in part on one’s genotype. However, given the
co-occurrence of early adversity with numerous genetic
and environmental factors that affect children, caregivers,
and family functioning, dissociating the contributions of
heritable factors that co-occur with early adversity, relative
to early adversity itself, presents a significant challenge
(123). As one example, there is shared genetic vulnerability
between children and parents, and the same heritable fac-
tors that contribute to a child’s susceptibility to stress may
contribute to their caregiver’s behavior.While animal stud-
ies employing experimental designs have shown that
adversity per se does play a causal role in developmental
outcomes (123, 156, 213), much remains unknown about
how a combination of adversity, genetic risk, and gene-
environment interplay contributes to risk and resilience.
Cross-species research has also increasingly demonstrated
the role of epigenetic effects, such as regulation of gene
expression, in linking early experiences with alterations in
corticolimbic circuitry and behavior and will be central to
mechanistic insights in this realm (214–218).

Cross-species translation in research on early adversity
benefits from a relatively high degree of conservation of cor-
ticolimbic circuitry that is sensitive to adversity across spe-
cies (219–221) and ongoing refinement of translational
models of the early environment (56, 111, 222, 223). Progress
will be greatly facilitated by meaningful cross-talk between
researchers studying early adversity in humans and in ani-
mals (213, 224), including dialogues that inform translation
both from animals to humans and from humans to animals,
as well as direct collaborations (56, 111, 225–227).

Longitudinal Developmental Investigations
Some of the field’s most pressing questions—including
about the effects of adversity on the pace of brain develop-
ment (e.g., stress acceleration) and about sensitive periods
that may confer vulnerability but also offer opportunities
for resilience (e.g., for pubertal recalibration)—involve
developmental timing and trajectories. While cross-
sectional designs require fewer resources and time, longitu-
dinal designs that facilitate examination of within-person
change over time (228) among youths exposed to adversity
are necessary to more rigorously address these questions.
Moreover, for many areas of inquiry, such longitudinal data
need to be collected prior to adulthood and during specific

windows of development in order to facilitate knowledge
about how development unfolds. It would be impractical to
draw inferences about the timing of a developmental pro-
cess from neural and behavioral data collected in adult-
hood. As one example of the need for longitudinal
developmental studies, much of the research providing evi-
dence of acceleration of corticolimbic circuitry following
adversity has been conducted cross-sectionally (81–83, 85,
86, 229). Longitudinal examinations will be important to
reconcile inconsistent findings in this area (59), examine
convergence or divergence in effects across different biolog-
ical levels (e.g., corticolimbic circuitry, epigenetic aging,
pubertal timing), and evaluate the extent to which accelera-
tion may facilitate adaptation in the short term but be asso-
ciated with consequences in the longer term.

“Big Data” and Collaboration
The inherent complexity of shifting environments and
co-occurrence of different types of adversity (e.g., adversity
characterized by varying degrees of threat, deprivation, or
unpredictability) necessitate large sample sizes to ensure
sufficient statistical power for complex modeling of higher-
order interactions and change over time. Depending on the
nature of adversity being studied, large sample sizes can
also be required for adequately sampling youths with spe-
cific exposures. A growing number of large, collaborative
cross-sectional or longitudinal big data studies exist that
employ neuroimaging and assessments of the early environ-
ment and mental health among youths (230–242). These
data sets can be orders of magnitude larger than traditional
studies in human neuroscience (243) and increase the likeli-
hood of identifying robust and reproducible findings related
to the effects of early adversity, particularly with regard to
phenotypic associations with brain development (244). At
the same time, big data studies will not be able to address
all important questions in this realm. The prevalence of
some adversities will be too low in studies that did not
ascertain youths based on exposure to adversity, and large-
scale efforts are unlikely to have the capacity to collect
in-depth assessments of adversity exposure at the level of
precise developmental timing and dimensionality that can
be prioritized in smaller-scale studies focused specifically on
adversity. Thus, more general big data studies and studies
that sample from specific populations (e.g., children who
experienced maltreatment) or employ deeper phenotyping
will provide complementary insights. In order to enhance
statistical power for investigations with deeper phenotyping
of early adversity, meta-analytic efforts focused on early
adversity (e.g., via the Enhancing Neuro-Imaging Genetics
Through Meta-Analysis consortium [245]) and multisite col-
laborations among researchers who have collected overlap-
ping or harmonized measures of early adversity (19) will be
essential to advancing knowledge. Leveraging large longitu-
dinal studies to test and expand on existing hypotheses and
age-related findings derived from smaller cross-sectional
studies and, in turn, applying insights gained from big data
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to more intensively investigate a specific phenomenon in
smaller, investigator-led studies represent promising strate-
gies for maximizing the value of complementary efforts in
the field of early adversity and development.

Advanced Computational Approaches
Ongoing methodological advances will facilitate discovery
about the mechanisms underlying the links between early
adversity and mental health and the prediction of outcomes
following adversity. Various conceptual approaches to early
adversity have converged on the importance of parsing het-
erogeneity in the nature, timing, and experiential elements
of adversity exposure and developmental outcomes to accel-
erate progress in identifying risk and mechanistic targets
(13, 15, 21, 28, 88, 94, 95, 100, 117, 136). In addition to more
traditional approaches that have been used to test predic-
tions about a priori dimensions or timing of adversity, data-
driven computational approaches may be particularly useful
for identifying specific developmental windows associated
with heightened risk or resilience (165, 166, 246) or for
examining variability in exposure or outcomes to empirically
derive key features of adversity exposure (247–249). As one
example, a recent study applied similarity network fusion to
large-scale environmental and brain imaging data from the
Adolescent Brain Cognitive Development Study with the
aim of decomposing heterogeneous associations between
brain structure and specific aspects of the childhood envi-
ronment (248). The findings identified subgroups of youths
who displayed more homogeneous brain-environment asso-
ciations, and this subtyping approach enhanced prediction
of mental health symptoms (which was not possible without
the subtyping). These findings suggest that it is possible to
meaningfully parse heterogeneity in associations between
the early environment and brain structure during develop-
ment, and that doing so may enhance risk identification and
facilitate mechanistic insights.

Advanced computational approaches will also provide
novel insight into questions around developmental timing
and plasticity. Recent years have witnessed transformative
discoveries of the molecular triggers (e.g., excitatory-
inhibitory balance) and brakes (e.g., perineuronal nets, mye-
lin) that control the onset and closure of sensitive periods,
as well as the insight that sensitive-period processes are
themselves malleable (150). However, studying these pro-
cesses in humans has been infeasible. A recent study (250)
used a GABAergic benzodiazepine challenge to empirically
generate a model of excitatory-inhibitory ratio based on
multivariate patterns of functional connectivity in humans.
The researchers then applied that model to a developmental
sample of youths ages 8–22 and showed that the model
predicted reductions in excitatory-inhibitory ratio during
adolescence, which were specific to the association cortex
and were related to psychopathology. The gradual reduction
in the ratio of excitatory to inhibitory patterns with age that
was observed in this study aligns with previous animal
work on neurobiological mechanisms of sensitive periods

(157, 251–253). These findings are consistent with the idea
that adolescence is a sensitive period for the association
cortex and represent a significant advance in the capacity
to interrogate plasticity-related processes during human
development.

Another significant analytic advance is the use of
machine learning models of brain development to examine
deviations from typical maturation. In this issue of the Jour-
nal, Keding and colleagues (87) leveraged a large multisite
data set to examine maturational timing of gray matter vol-
ume related to adversity exposure and psychopathology
among adolescent girls. They trained stacked generalizer
machine learning models with gray matter volume estimates
from whole-brain, emotion-related, and language-related cir-
cuit parcellations to predict chronological age in typically
developing girls. These models generated brain age gap esti-
mates (BrainAGEs) from gray matter volume of girls
exposed to abuse or neglect and with internalizing disor-
ders. Subsequent feature influence analyses interrogated
which neural features contributed to adversity- and
psychopathology-related differences in BrainAGE. Collec-
tively, these studies highlight significant advances that have
great promise in facilitating novel insights into the mecha-
nisms underlying risk for adversity-related psychopathology
in humans.

Refining Conceptual Models
Progress in understanding the effects of early adversity and
mechanisms associated with risk and resilience, with the
eventual goal of clinical translation, will rely on continual
refinement of conceptual models. Theoretical approaches
must grapple with the immense complexity of the develop-
ing brain, the environment, and behavior (254). A useful
model of early adversity and neurodevelopment must
account for the vast heterogeneity in outcomes and key con-
cepts of equifinality (i.e., distinct early experiences leading to
similar outcomes) and multifinality (i.e., similar early experi-
ences leading to distinct outcomes) from developmental psy-
chopathology (255, 256). In addition, while adversity is often
conceptualized as influencing the brain and behavior
(i.e., a unidirectional pathway), nuanced conceptualizations
that facilitate empirical advances must account for the trans-
actional nature of development. Developing youths are
embedded within broader social contexts (96, 201, 202), and
neural and behavioral alterations that follow adversity are not
simply outcomes but also factors that reciprocally shape these
contexts (212) and can alter the course of development (257).

While refinements and innovation in conceptual models
could take many directions, several areas may be particu-
larly fruitful for ongoing interplay between empirical
research and conceptual refinement given the current state
of the literature. First, dimensional models of adversity can
flexibly allow for the incorporation of additional dimensions
(13, 97) and will benefit from increased emphasis on the
child’s own perception and experience of any given event
(136, 204, 258, 259). As one example, in addition to threat,
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deprivation, and unpredictability (88, 98, 99), Cohodes and
colleagues (13) have proposed a framework in which the
effects of adversity on corticolimbic circuitry and mental
health vary depending on the extent to which adversity is
characterized by perceived controllability and caregiver
involvement. Critically, building on a robust literature on the
developmental timing of adversity (14, 15, 21, 28, 94), this
framework emphasizes the importance of interactions
between key experiential elements of adversity and the
developmental timing of adversity exposure. Delineating
when specific experiential elements of adversity differen-
tially impact outcomes, and how those effects differ by
developmental stage, could inform efforts to optimize risk
identification based on developmental stage or the nature of
adversity exposure (13, 260).

Second, despite converging evidence that the effects
of adversity can differ as a function of developmental
timing of exposure, evaluation of which developmental
differences fit the criteria for a sensitive period is rare
(159, 261). Elucidating the experience-related mecha-
nisms (262) underlying timing-related effects, as well as
precisely what is biologically embedded during a given
sensitive period, is essential to understanding the mecha-
nisms by which early experiences shape neurobehavioral
development (160, 161). Bridging insights from formal
modeling (261) and empirical studies across species
(263) may facilitate meaningful refinement of conceptual
models of early adversity.

Lastly, while adversity-related alterations in neurobiol-
ogy or behavior are often framed as detrimental, alterna-
tive perspectives highlight the adaptive nature of some
phenotypes following adversity (58, 82, 264–267). That is,
such ontogenetic adaptations may bolster the ability to
cope with or survive in a harsh and unpredictable environ-
ment (62, 262, 266, 268). A more nuanced understanding
of the neurobiological and behavioral effects of adversity
during development is critical to a more comprehensive
conceptualization of early adversity, as well as to promot-
ing resilience and adaptive behavior in the face of future
adversity. Reevaluating “deficit models” and carefully
considering frameworks that emphasize adaptation and
even areas of increased strength following adversity
(e.g., “hidden talents”) (269, 270) could both stimulate
important scientific discoveries and shift the often domi-
nant narrative of deficits that can contribute to stigma of
youths exposed to adversity (29, 271).

Translation to Intervention
Building on progress in identifying mechanisms linking early
adversity with mental health, translating such knowledge to
inform intervention and prevention strategies for youths
exposed to adversity is a critical goal for the field. Although
existing evidence-based treatments can be highly effective
for youths who develop psychopathology following adversity
(272–276), a substantial proportion of youths do not suffi-
ciently benefit from existing treatments (277). Moreover,

there is great need to enhance prevention strategies that can
be employed following adversity and prior to the develop-
ment of psychopathology. Even with similar clinical presen-
tations, some evidence suggests that individuals exposed to
early adversity differ in important ways from individuals not
exposed to early adversity (278–280), further highlighting
the importance of efforts to optimize treatments for youths
exposed to adversity.

Continual advances in research on early adversity can
inform prevention and intervention strategies in several
key ways. First, cross-species research can specifically
delineate the timing of sensitive periods, which may render
the developing brain more vulnerable to the effects of
adversity but also provide enhanced opportunities for posi-
tive change through intervention (28). Corticolimbic cir-
cuitry and related functions such as fear learning and
emotion regulation, which are altered following adversity,
undergo dynamic changes across development (281–285).
Thus, youths with adversity-related psychopathology may
benefit from interventions that are specifically optimized
based on the biological state of the developing brain
(260, 286, 287). Second, building on conceptual models
that emphasize key experiential elements of adversity
exposure, as well as their interaction with developmental
timing, may represent a powerful approach to optimizing
interventions for a given individual based on factors such
as the individual’s developmental stage or a profile of
adversity exposure (13). Third, knowledge of the mecha-
nisms underlying risk for psychopathology following early
adversity will be important for identifying modifiable pro-
cesses that can be targeted in treatment. As one example,
consistent evidence has linked early adversity with altera-
tions in threat-related social information processing biases,
heightened emotional reactivity and difficulties with emo-
tion regulation, and disruptions in reward processing, all of
which are associated with specific targets for intervention
(288). By contrast, less is known about adversity-related
alterations in emotional learning (86, 121, 122, 289). Given
that emotional learning undergoes marked changes during
development (60, 290–292) and is the target of many well-
established interventions (293, 294), ongoing research on
learning-related processes following adversity may be par-
ticularly useful for fostering progress in clinical translation
(288). Lastly, enhancing caregiver support, a well-
established protective factor in the context of adversity,
provides another important target for intervention and
is already a central component of many interventions
(295, 296). Future investigations of the specific mecha-
nisms by which interventions can facilitate the recovery of
caregiver capacities for regulation following missed oppor-
tunities for predictable, safe caregiver cues during an early
sensitive period may be particularly helpful for informing
intervention strategies for youths exposed to early adver-
sity (161). Taken together, these areas for future research
highlight the need to enhance the efficacy of interventions
for youths exposed to adversity and the potential for
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precision medicine approaches that tailor interventions
based on the developmental timing or specific features of
adversity exposure.

CONCLUSIONS

Exposure to early adversity is a potent risk factor for psy-
chopathology. Cross-species investigations have facilitated
substantial progress in delineating neurodevelopmental
mechanisms associated with risk and resilience following
early adversity. However, the vast complexity and heteroge-
neity in early environments and in developmental trajecto-
ries following adversity present challenges to achieving
mechanistic insight and effective clinical translation. An
overview of the current state of the field points to the
importance of longitudinal investigation in large develop-
mental samples, coupled with deeper phenotyping of the
early environment in youths exposed to adversity, and
the potential for advanced computational approaches to
parse heterogeneity and provide novel insight into sensitive
periods. Ongoing refinement of conceptual models that
incorporates insights from cross-species research and devel-
opmental psychopathology will be essential to future pro-
gress and translation to enhance risk identification and
optimize interventions for youths exposed to adversity.
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