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Schizophrenia is a complex neuropsychiatric syndrome with
a heterogeneous genetic, neurobiological, and phenotypic
profile. Currently, no objective biological measures—that is,
biomarkers—are available to inform diagnostic or treatment
decisions. Neuroimaging is well positioned for biomarker
development in schizophrenia, as it may capture phenotypic
variations inmolecular andcellular disease targets, or in brain
circuits. These mechanistically based biomarkers may rep-
resent a direct measure of the pathophysiological under-
pinnings of the disease process and thus could serve as true
intermediate or surrogate endpoints. Effective biomarkers
could validate new treatment targets or pathways, predict
response, aid in selection of patients for therapy, determine

treatment regimens, and provide a rationale for personalized
treatments. In this review, the authors discuss a range of
mechanistically plausible neuroimaging biomarker candi-
dates, including dopamine hyperactivity, N-methyl-D-
aspartate receptor hypofunction, hippocampal hyperactivity,
immune dysregulation, dysconnectivity, and cortical gray
matter volume loss. They then focus on the putative neuro-
imaging biomarkers for disease risk, diagnosis, target en-
gagement, and treatment response in schizophrenia. Finally,
they highlight areas of unmet need and discuss strategies to
advance biomarker development.
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Schizophrenia is a complex neuropsychiatric syndrome with
a heterogeneous genetic, neurobiological, and phenotypic
profile. Currently, no objective biological measures—that is,
biomarkers—are available that inform diagnostic or treatment
decisions. A biomarker, as outlined by the U.S. Food and Drug
Administration and National Institutes of Health Biomarker
Working Group, is “a characteristic that is measured as an
indicatorofnormalbiologicalprocesses,pathogenicprocesses,
or responses to an exposure or intervention, including ther-
apeutic interventions” (1). Neuroimaging is a strong candidate
for biomarker development in schizophrenia. Imaging can
capture phenotypic variations in molecular and cellular dis-
ease targets or in brain circuits that are a unique represen-
tation of gene-environment interactions and are associated
with behavioral alterations (2). It offers versatility in terms
of measuring multiple pathophysiological mechanisms, in-
cluding brain structural integrity deficits, functional dyscon-
nectivity, and altered neurotransmitter systems (Figure 1) (3).
For a biomarker to be practically useful, itmust be a proxy of a
clinically relevantmeasure. Itneeds tohaveanacceptable level
of sensitivity, specificity, andpredictivevalue (4). Ideally, itwill
also be easily quantifiable and cost-effective.

In a 2012 consensus report, the APA Work Group on
Neuroimaging Markers of Psychiatric Disorders suggested a
number of criteria that should bemet in order to establish the
validity of a neuroimaging biomarker. A diagnostic biomarker
should have a sensitivity .80% in detecting a particular

psychiatric disorder, a specificity.80% indistinguishing this
disorder from other psychiatric disorders, and a positive
predictive value that approaches 90%. Furthermore, the data
used to establish a biomarker should require confirmation by
at least two independent sets of qualified investigators, with
results published in peer-reviewed journals (5). To date, no
neuroimaging biomarker hasmet these criteria. Nonetheless,
a number of studies have made progress toward the goal of
biomarker development in schizophrenia.

MECHANISTICALLY PLAUSIBLE TARGETS FOR
BIOMARKER DEVELOPMENT IN SCHIZOPHRENIA

Mechanistically basedbiomarkers representadirectmeasure
of the pathophysiological underpinnings of the disease
process (6) and thus can serve as true intermediate or sur-
rogate endpoints (Figure 2). These biomarkers can validate
new treatment targets or pathways, predict treatment re-
sponse, aid in selection of patients for therapy, determine
therapeutic regimens, and provide a rationale for personal-
ized treatments (7). Ideally, biomarker development targets
would reflect fundamental neurobiological alterations, have
analogues in preclinical models, correlate with measures of
clinical symptom severity, and be consistent with models of
disease pathology (8). Here, we selectively review mecha-
nistically plausible biomarker development targets that meet
these criteria (Table 1).

REVIEWS AND OVERVIEWS
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Dopamine hyperactivity has a long history as a prominent
pathophysiologic hypothesis of schizophrenia (9, 10), as
medications that treat psychosis are dopamine D2 receptor
antagonists (11) and dopamine-enhancing agents such as
stimulants are psychotomimetic (12). In rodent models,
amphetamine administration induces locomotor sensitiza-
tion that is accompanied by an increase in dopamine efflux
from the nucleus accumbens and dorsal striatum (13). In
schizophrenia patients, a link between dopamine dysregu-
lation and psychosis severity (14) and a relationship between
baseline dopamine D2 receptor occupancy and antipsychotic
treatment response have been reported (15–17).

N-Methyl-D-aspartate receptor (NMDAR) hypofunction
is widely hypothesized to be a central neurobiological al-
teration in schizophrenia (18, 19). Experimental evidence
supports NMDAR hypofunction as a high-priority target for
biomarker development. NMDAR hypofunction on the
g-aminobutyric acid (GABAergic) interneuron causes dis-
inhibition of the glutamatergic pyramidal cell (20–22). The
presence of a hyperglutamatergic state in different brain
areas in patients with schizophrenia has been empirically

confirmed and replicated in a number of magnetic resonance
spectroscopy (MRS) studies (23–29). Preclinical data further
support this target by demonstrating that experimentally
induced NMDAR hypofunction results in increased firing of
glutamatergic neurons in animal models (30) and produces
psychosis-like behavioral phenotypes (31–33) and gluta-
matergic excess in healthy human subjects (34–36). Un-
fortunately, no validated positron emission tomography
(PET) ligand visualizingNMDAR function in vivo is available
to date (37).

Another biomarker development target is hippocampal
hyperactivity. Here, the model suggests that a hyper-
glutamatergic state causes hippocampal hyperactivity, which
then may result in downstream dopamine circuit dysregula-
tion and psychotic symptoms (38, 39). Several studies
reported hippocampal hyperactivity in patients with
schizophrenia (40–43) and found a relationship between
hippocampal regional cerebral blood flow and psychosis
symptom severity (44) as well as antipsychotic treatment
response (45). Linking cellular-level mechanisms and neu-
roimaging findings, Schobel and colleagues (46) reported a

FIGURE 1. An introduction to relevant terms in neuroimaginga
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Glossary of Relevant Imaging Terms

ALFF: Amplitude of low frequency fluctua-
tions, a measure of spontaneous fluctuation 
in amplitude of the blood-oxygen-level-
dependent (BOLD) signal in a given region at 
rest. It is a surrogate marker of spontaneous 
neural activity.

BOLD response: In functional MRI, the 
change in the BOLD signal in response to 
a stimulus like a task or a pharmacological 
challenge. This is typically interpreted as a 
reflection of change in neuronal activity.

Connectome: A comprehensive map of neu-
ral connections in the brain. The functional 
connectome is a map of correlated brain re-
gions measured by BOLD signals, which can 
be done while a task is performed or during 
a resting state. The structural connectome 
is a map of the structural architecture of the 

human cortex. Structural connectomes often 
comprise white matter or gray matter maps.

Dysconnectivity: This term refers to the 
aberrant integration of brain networks, 
which can be investigated with a variety of 
techniques. One of the most widely adopted 
techniques to interrogate brain networks 
is functional MRI (fMRI), which assesses 
functional connectivity either during task 
performance or at rest.

Gyrification index: A gray matter measure 
that assesses cortical folding. It serves as a 
surrogate marker of neurodevelopmental 
trajectories.

Machine learning: This term refers to a 
group of multivariate statistical techniques 
geared to detect complex patterns across 
the entire brain, resulting in greater statistical 
power than traditional approaches that 
assess each data point separately.

MRS: Magnetic resonance spectroscopy al-
lows the in vivo measurement of the chemi-
cal composition of tissues, energy metabo-
lism, and neurotransmitter levels. It detects 
magnetic resonance signals produced by 
atomic nuclei in the tissue.

rCBF: Regional cerebral blood flow is 
measured as the amount of blood flow to 
a specific brain region in a given time. It 
is considered a surrogate maker of local 
neuronal activity.

PET: Positron emission tomography uses 
radioactive substances to visualize and mea-
sure metabolic processes.

Resting-state fMRI: This technique allows 
examination of intrinsic characteristics of the 
brain while no explicit task is performed.

TSPO: A PET imaging technique that uses 
translocator protein (TSPO) binding, which is 
expressed during the inflammatory response.

a SPECT=Single-photon emission computed tomography.
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series of experiments in a preclinical model of psychosis
showing that ketamine administration causes an increase in
extracellular glutamate and hippocampal hyperactivity. Ex-
periments in a methylazoxymethanol acetate model, which
recapitulates a developmental disruption leading to neu-
rophysiological and behavioral deficits that resemble
components of schizophrenia, further demonstrate that
hippocampal hyperactivity results in increased dopaminergic
signaling, which can be reversed by inactivating the ventral
hippocampus (47), suggesting possible translational utility of
this marker.

Neuroinflammation or immune dysregulation as plausible
biomarkers for schizophrenia are rooted in the observationof
a link between autoimmune processes and development of
psychosis (48). In this model, microglia are primed during
early development into a hyperresponsivemode, then shift to
a proinflammatory state in response to stress during critical
developmental periods. This in turn can result in aberrant
neurotransmission, synaptic pruning, and structural injury of
neurons and glia (49).Maternal immune activationmodels in
rodents show a postpubertal symptom onset and have
structural, neurochemical, and behavioral abnormalities
recapitulating the human clinical picture (50). Evidence of
immune dysregulation has also been reported in postmortem
studies (51) and in studies examining cytokines in cerebro-
spinal fluid of patients (52). A meta-analysis of PET studies
using translocator proteinbinding,which is expressedduring
the inflammatory response, found significantly elevated
tracer binding in patients with schizophrenia comparedwith
control subjects,with a small tomoderate effect size (Hedges’
g=0.31), but no difference in volume of distribution was

detected (53), although another study (54) did not report
evidence of neuroinflammation in the dorsolateral prefrontal
cortex or hippocampus in unmedicated patients after con-
trolling for relevant genetic polymorphisms. Two studies
have reported evidence of neuroinflammation in psychosis
spectrum patients with recent onset and patients with acute
illness (55, 56). Interestingly, these alterations are not found
inmedicatedpatientswith chronic illness (57, 58), suggesting
a dynamic imbalance. This is further supported by a number
of diffusion imaging studies reporting increased extracellular
free water, a proxy of inflammation, which appears more
prominent in the early illness compared with chronic stages
(59–62). Taken together, biomarkers related to immune
dysregulation may be dynamic, in that they capture patho-
logical processes that are present only during illness onset or
psychosis exacerbations.

Human connectome studies have provided data concor-
dantwith the hypothesis that brain networkdysconnection is
fundamental to psychosis (63–65). The dysconnectivity
model proposes that NMDAR-mediated disturbances in the
excitation/inhibition balance lead to altered functional net-
work architecture, which in turn results in the symptoms of
schizophrenia (66, 67). A number of studies have demon-
strateda relationshipbetweenbrainnetworkdysconnectivity
and the development of psychotic symptoms (62), symptom
severity (68), and response to antipsychotic pharmacother-
apy (69–71). Lending additional support to this model are
studies that report disruption in functional brain networks
following experimentally induced NMDAR hypofunction in
healthy human subjects (35, 72, 73). While dysconnectivity
classically is explained by changes in neurotransmitter

FIGURE 2. Mechanistically plausible neuroimaging biomarker development targetsa
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systems and aberrant modulation of synaptic efficiency (66),
contemporary theories also consider the underlying ana-
tomical connections.Prominentneurodevelopmentalmodels
postulate that genetic and environmental factors may affect
early white matter developmental trajectories followed by
the onset of psychosis, which then results in further re-
ductions in white matter integrity (74–77). Those pertur-
bations result in white matter development disruptions and
altered behavioral phenotypes, supporting this neuro-
developmental model (78). For example, mice lacking the
chemokine receptor fractalkine exhibit a transient reduction
ofmicroglia and adeficit in synaptic pruning,which results in
decreased connectivity between the frontal cortex and hip-
pocampus and deficits in social interactions (79). Impor-
tantly, diffusion imaging studies report associations between
white matter abnormalities and disease severity across
symptom dimensions (80–84), poor response to antipsy-
chotic treatment (85), and worse overall outcomes (86, 87).

Similarly, cortical gray matter volume loss, which may be
most prominent in fronto-temporal regions, is consistently

found as a hallmark feature that is already present at illness
onset andmay become progressively worse with longer illness
duration (88,89).Abnormalities inbrainmaturationalprocesses
mediatedbyenvironmental factorsarehypothesizedtounderlie
gray matter alterations (90). Subchronic NMDAR antagonism
(91, 92) and maternal immune activation models (93) have
resulted in gray matter reductions in preclinical studies. Gray
matter loss has been linked to disease severity across symptom
dimensions (94–96) and overall poor clinical outcomes (97),
suggesting that it may be a viable candidate for diagnostic and
prognostic biomarker development.

We have discussed a number of mechanistically plausible
biomarker development targets, but it needs to be ac-
knowledged that this is not an exhaustive list. Other targets
are also plausible, such as oxidative stress or GABA dys-
function, where a disruption in the fast-spiking GABAergic
interneurons has strong evidentiary support in the post-
mortem schizophrenia literature, and parvalbumin-positive
interneuron dysfunction has been identified as a common
factor behind several of the relevant animal models (98, 99).

TABLE 1. Mechanistically plausible targets for biomarker development in schizophreniaa

Putative Biomarker Target Model of Disease Pathology Preclinical Model
Association With Clinical

Variables

Dopamine hyperactivity Dopaminergic hyperactivity in
subcortical and limbic brain
regions results in positive
symptoms

Amphetamine model Associations are reported
between dopamine
dysregulation and psychosis
severity; D2 receptor
occupancy predicts
antipsychotic treatment
response

NMDA receptor hypofunction NMDA receptor hypofunction
on GABAergic interneurons
causes disinhibition of the
glutamatergicpyramidal cell

NMDA receptor antagonist
(ketamine, PCP, MK-801)
models

Associations are reported
between glutamate levels
and subsequent treatment
response

Hippocampal hyperactivity A hyperglutamatergic state
causes hippocampal
hyperactivity, which then
results in downstream
dopamine circuit
dysregulation

Methylazoxymethanol
acetate model

Associations are reported
between hippocampal
regional cerebral blood flow
and psychosis symptom
severity as well as treatment
response

Neuroinflammation/immune
dysregulation

Microglia are primed to
act in a hyperresponsive
manner and shift to a
proinflammatory state in
response to stress,
resulting in aberrant
neurotransmission and
structural injury

Maternal immune activation
models

Inflammation appears more
prominent in early illness
stages and in patients with
acute psychosis symptom
exacerbations

Dysconnectivity Disturbances in the excitation/
inhibition balance result in
altered functional network
architecture

NMDA receptor antagonist
models, fractalkine
knockout model

Associations are reported
between dysconnectivity
and psychosis symptom
severity as well as treatment
response

Cortical gray matter loss Abnormalities in brain
maturational processes
mediated by environmental
factors results in graymatter
loss

Subchronic PCP antagonism,
maternal immune activation
models

Associations are reported
between gray matter loss
and disease severity and are
linked to overall poor
outcomes

a GABA=g-aminobutyric acid; NMDA=N-methyl-D-aspartate; PCP=phencyclidine.
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Aswenext discuss, the specific utility of any of thesemarkers
may depend on the phase of illness and the specific clinical
question to be answered.

BIOMARKERS FOR RISK PREDICTION

Correct identification of individuals at risk for psychosis in the
prodromal phase provides a major opportunity for early in-
tervention and disease prevention. However, when solely
relying on clinically high-risk criteria, correct disease pre-
diction is estimated to be 15%230% (100). In a two-center
study examining structural MRI for predicting transition risk
in patients at high risk for developing schizophrenia, Kout-
souleris and colleagues (101) demonstrated a statistically sig-
nificant improvement in prognostic certainty over clinical
assessments alone. The anatomical features associated with a
later transition to schizophrenia included gray matter re-
ductions in the prefrontal, cingulate, striatal, and cerebellar
cortices. However, the study’s pooled sample was unusual in
the fact that approximately 45% of the enrolled subjects
transitionedtoapsychotic illness,which issubstantiallyhigher
than in a typical sample for this type of study (101); replication
in independent samples will therefore be important.

In a small study, Schobel and colleagues (102) found that
cerebral bloodvolume in theCA1subfieldof thehippocampus
predicted clinical progressionwith apositivepredictive value
of 71%andanegativepredictivevalueof 82%.The samegroup
later reported that left anterior CA1 cerebral blood volume
also predicted time to psychosis onset in high-risk patients,
and demonstrated this to be a more sensitive marker of
clinical outcomes compared with subthreshold psychotic
symptoms (46).

Thalamic glutamate measurements with MRS in a rela-
tively small sample of ultra-high-risk individuals predicted
the clinical coursewith an odds ratio of 0.52, such that higher
baseline glutamate levels were associated with subsequent
remission of prodromal symptoms (103). In contrast, high-
risk subjects who later developed a frank psychotic episode
showed higher glutamate levels in the dorsal caudate com-
paredwith thenontransitiongroupandcontrol subjects.That
study reported a surprisingly large effect size (Cohen’s d) of
1.39 (104). Another small study showed that clinical high-risk
individuals who later became psychotic had higher hippo-
campal glutamate levels compared with those who did not
transition; the effect size (Hedges’ g) was 0.57 (105), sug-
gesting that brain regions are an important consideration
when developing spectroscopy-based biomarkers.

DIAGNOSTIC BIOMARKERS

The goal in developing diagnostic biomarkers is to detect the
presence of a disease state and to establish objective disease
signatures.Ameta-analysis ofmultivariatepattern recognition
studies of neuroimaging-based diagnostic biomarkers found
that thesemarkersseparatepatients fromcontrol subjectswith
an overall sensitivity and specificity of approximately 80%.

Interestingly, the study authors reported that sensitivity was
higher in patients with chronic illness compared with first-
episode patients, and they found potential effects of symptom
severity and antipsychotic dosage on specificity, suggesting
that these biomarkers may be better in correctly classifying
patientswithahigheroverall diseaseburden (106). Leveraging
the Functional Biomedical Informatics Research Network
Data Repository (fBIRN), Calhoun and colleagues (107)
demonstrated that a multimodal classifier, which combined
structural MRI and resting-state functional MRI, improved
classification accuracy when compared with each modality
used separately. This suggests that an aggregate approach to
biomarker development may be fruitful.

TARGET ENGAGEMENT BIOMARKERS

Target engagement biomarkers aremeant to confirm desired
therapeutic properties or to determine individualized dosing
for a specific treatment. To qualify as a target engagement
biomarker, it must measure a direct interaction between the
treatment and the intended molecular or functional target in
the central nervous system,which formedications is typically
accomplished with PET. However, any neuroimaging out-
comemeasure is theoretically an engageable target, as long as
it has the potential to change measurably with a targeted
intervention.

PET studies of the dopaminergic system provided the
classic demonstration of target engagement for antipsychotic
medications through several lines of converging evidence.
These included establishment of abnormal dopaminergic
function in patientswith schizophrenia (17, 108), discovery of
a link between dopamine dysregulation and psychosis se-
verity (14), and demonstration of a reduction in dopamine
stimulation of D2 receptors with antipsychotic medication
treatment (109).

In the absence of a specific PET ligand targeting the
glutamatergic system, a number of MRI markers are being
used as a proxy for glutamate. The Fast-Fail Trials in Psy-
chotic Spectrum Disorders biomarker project, based on the
hypothesis of glutamatergic neurotransmitter system dis-
turbances as acorepathological feature in schizophrenia (18),
approached validation of target engagement in twophases. In
the first stage, three candidate biomarkers that are putatively
sensitive to glutamatergic alterationswereevaluated for their
power to detect changes resulting from experimentally in-
duced NMDAR hypofunction using a ketamine challenge
(110). The effect size was most robust and consistent across
sites for a resting-state blood-oxygen-level-dependent (BOLD)
signal response in the dorsal anterior cingulate cortex, sug-
gesting possible utility of this measure as a biomarker for
glutamatergic change. Importantly, a mean signal change of
0.5% fully separated subjects receiving ketamine from those
receiving placebo. In the second stage, this marker was used
to enrich the sample by eliminating subjects who did not
demonstrate a ketamine-induced BOLD signal change
before randomizing healthy volunteers to receive either
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pomaglumetad, a partial mGluR-2/3 agonist, or placebo.
Here, the goal was to test the hypothesis that the drug would
blunt the ketamine-induced BOLD response, indicating its
glutamate target engagement, and to determine dosing of the
medication. This stage of the study has now completed data
collection; pending results will inform the decision for
pomaglumetad to be advanced into further trials.

BIOMARKERS TO PREDICT RESPONSE TO
TREATMENT OR TO AID IN THERAPEUTIC
MONITORING

This type of biomarker is intended to characterize patients in
the context of a given treatment before it is started, and itmay
be used for patient stratification into biomarker positive and
negative groups. In addition, these biomarkers may also be
used to monitor the effectiveness of treatment or to predict
deleterious side effect occurrence and probability of relapse
(111).

Antipsychoticmedicationsprincipallyact ondopamineD2
receptors, which informed the dopamine hyperactivity hy-
pothesis of schizophrenia. A number of studies reported a
relationship between dopamine D2 receptor occupancy at
baseline and subsequent clinical response to antipsychotic
medications (15, 17), and a relationship between D2 receptor
occupancy with antipsychotic medication treatment and the
extentof clinical improvement (15, 16). Interestingly, the level
of haloperidol-induced D2 receptor blockage has also been
found to be associated with the degree of extrapyramidal
symptom severity and prolactin elevation (15). Taken to-
gether, the data suggest that dopamine D2 receptor occu-
pancy is both a mediator and a moderator of antipsychotic
treatment response.

The schizophrenia literature links greater reductions in
gray matter volume to worse long-term clinical outcomes. In
first-episode psychosis patients, amachine learning classifier
based on gray matter morphometry found baseline gray
matter volumes in the left and right parahippocampal gyri to
be most important for predicting remission status after
6months of antipsychotic treatment,with an accuracy of 79%
(112). Similarly, amultivariatemorphometry study found that
lower graymatter volume in the left and right inferior frontal
gyrus and anterior insula predicted a lack of improvement in
symptoms over 1 year (113). The gyrification index, a gray
matter morphometric feature acting as a surrogate of neu-
rodevelopmental trajectories, was found to be altered in
schizophrenia (114) and possibly sensitive to antipsychotic
exposure (115). In first-episode psychosis, reduced gyr-
ification in frontal, insular, and temporal cortices has been
associated with subsequent poor response to antipsychotic
treatment (116), suggesting that itmay be a useful predictor of
treatment response.

A growing body of evidence suggests the potential to
predict treatment response using glutamatergic neuro-
metabolites measured with MRS. OPTiMiSE, a European
multicenter study, found thathigherbaselineglutamate levels

in the anterior cingulate cortex in first-episode psychosis
patients were associated with greater symptom severity and
lower likelihood of remission after 4 weeks of antipsychotic
treatment (117). This is consistent with a previous report by
the same group finding 11% higher glutamate levels in the
same region in a small group of patients with medication-
resistant illness compared with a group with medication-
responsive illness (Cohen’s d=0.76), although accurate
classification of response status was not possible with this
measure (118). In a 2017 review of longitudinal spectroscopy
studies, Egerton and colleagues (119) reported an overall
mean reduction in brain Glx (glutamate + glutamine) of 6.5%
after antipsychotic treatment and suggested that antipsy-
chotic treatment response may be associated with lower
glutamate levels before treatment and greater reductions in
glutamate with treatment. However, it is possible that effects
are region specific, as others have reported that in the hip-
pocampus, higher as opposed to lower baseline Glx may be
associated with favorable treatment response (25).

Apromising resting-state-fMRI-basedputativebiomarker
was recently described in a series of experiments examining
functional connectivity of the striatum, a principal site of
antipsychotic drug action. First, Sarpal and colleagues (120)
demonstrated an increase in striatal connectivity after
16 weeks of antipsychotic treatment, and this change was
correlatedwith thedegree of clinical symptom improvement.
After this, theauthors createdabaseline “striatal connectivity
index” that predicted subsequent treatment response infirst-
episode psychosis patients. This index was then tested for its
utility in separating good from poor treatment responders in
an independent cohort of hospitalized patients with chronic
schizophrenia. Notably, this index showed a significant
separation between good and poor responders, with a posi-
tive predictive value of 76% and a negative predictive value of
79% (71). Extending this work, others later reported lower
striatal connectivity in schizophrenia patients with anti-
psychotic treatment-resistant illness comparedwith patients
with nonrefractory illness (121).

A number of resting-state fMRI studies have suggested
that the connectivity and topology of several other known
brain networks (69, 70, 122–125) may also have utility in
predicting response to antipsychotic treatment, although the
performance of the majority of these putative markers re-
mains to be established at the single-subject level. The only
study to date investigating the accuracy of resting-state
cortical connectivity at the single-subject level reported
that baseline functional connectivity between the superior
temporal cortex and other cortical regions predicted clinical
response after 10 weeks of antipsychotic treatment, with a
balanced accuracy of 82% (126). Another group used a non-
connectivity-based resting-state index, amplitude of low-
frequency fluctuations (ALFF), to build a machine learning
classifier predicting treatment response in patients with
recent-onset schizophrenia. The authors reported that ALFF
in the left postcentral gyrus/inferior parietal lobule predicted
responsestatuswithanaccuracyof 72.7%.Amajor strengthof

NEUROIMAGING BIOMARKERS IN SCHIZOPHRENIA

514 ajp.psychiatryonline.org Am J Psychiatry 178:6, June 2021



the study was the independent replication sample (using a
different scanner) that showed a similar accuracy of 75% in
predicting remission status (127).

CHALLENGES IN BIOMARKER DEVELOPMENT

Three challenges have limited the development of neuro-
imaging biomarkers in schizophrenia: internal heterogeneity,
analytic approaches, and clinical utility.

First, one of the principal challenges of diagnostic bio-
marker research is that the standard nosology in schizo-
phrenia is based on symptoms alone. There is an inherent
tension between the effort to develop biomarkers for classic
DSM-based diagnoses and the growing sense that it may be
more fruitful to develop biomarkers that identify more bi-
ologically homogeneous subgroups of patients (128). In an
effort to overcome these inherent limitations, the Research
Domain Criteria paradigm was introduced as an alternative
framework for the investigation of psychiatric disorders
(129), in which disorders are considered in terms of dis-
ruptions of normal-range operation systems. Alternatively,
the Bipolar-Schizophrenia Network on Intermediate Phe-
notypes initiative has incorporated a dimensional approach
in an effort to analyze biomarker outcomes for disease def-
inition and neuropathology in psychosis spectrum disorders
(130). Findings support the idea that neuroimaging-based
biomarkersdonotobey theboundaries setby symptom-based
nosology, underscoring the limitations of diagnostic bio-
marker development studies conductedwithin the context of
traditional diagnostic boundaries.

Closely related is the complexity of the underlying
pathophysiology. Because of the high degree of intricate
associations between neurotransmitter systems, immune
systems, functional brain network architecture, and brain
structure, a biomarker may reflect the result of multiple
modulatory inputs rather than the primary etiological factor
(131). Unfortunately, multivariate approaches capitalizing on
thevast amountofmultimodalneuroimagingdata available to
detect representative pathway biomarkers assessing key
pathological features such as NMDAR hypofunction, in-
flammation, orneuronal plasticityhave yet to bedeveloped. It
also remains unclear whether putative biomarkers assessed
in a clinically stable state or in amore actively psychotic state
will be most informative. Furthermore, the cross-sectional
assessment of the candidate marker may not be the most
relevant because the change of a givenmarker over time in an
individual may be most predictive. Additionally, it is possible
that certain relevant biological signatures, such as alterations
in spine density or synaptic integrity (132, 133), are simply
below the resolution that can be captured by existing imaging
methods.

The second challenge lies in defining standard best
practices for analytics, both in preprocessing of the original
data and in the development of prediction rules. To the first
point, the majority of conventional imaging indices are af-
fected by scanner-specific measurement errors, which can

have a significant impact on cross-site reliability. Further-
more, there is a lack of consensus in the field on how to
harmonize imaging sequences or mitigate measurement er-
ror in the postprocessing stage across sites, which greatly
reduces biomarker accuracy and reliability in multisite
studies. To the second point, many biomarker studies do not
report their results in themost rigorous fashion. Theultimate
goal of every biomarker is to predict an unseen future:
conversion to first-episode psychosis, response to a specific
medication, long-term prognosis, and so on. The most rig-
orous approach to assessing that prediction performance is
replication of a biomarker on a new data set, collected by
researchers independent of the original team. Since that type
of replication generally takes years, a close alternative is
cross-validation: reporting a predictionmodel’s performance
on new data it has never seen before (as opposed to the data
originally used to build the model) (134, 135). Without cross-
validation, biomarker studies are susceptible to the problem
of “overfitting”—building models that work very well on one
specific sample but do not generalize to the larger clinical
population. Unfortunately, cross-validation remains rare in
schizophrenia biomarker studies, as it does in psychiatric
biomarker research more generally.

The third challenge lies in determining the clinical utility
of a biomarker. The decision to use a biomarker in clinical
practice should be based on an expectation that it will have a
positive health impact; therefore, measuring biomarker
performance in generic terms is not sufficient for confir-
mation of clinical utility (136). Demonstration of clinical
utility is typically a two-step process thatfirst determines the
accuracy of a biomarker and then shows that using the
biomarker information in managing patients, given the
benefits and risks associated with the assessment, improves
outcomes in a clinically meaningful way (137). Prospective,
confirmatory multicenter studies or decision-modeling ap-
proaches could be used to demonstrate clinical utility (136,
137), but these types of studies are clearly amissing element in
the evaluation of neuroimaging biomarkers in the field.

Of course, these challenges are not just specific to neu-
roimaging biomarker development in schizophrenia; they
largely apply to neuroimaging biomarker research in general.
Similarly, the following section, where we discuss next-
generation biomarker development studies and reflect on
best practices, is also applicable to the broader field.

NEXT-GENERATION BIOMARKER DEVELOPMENT
STUDIES

Several lines of research are well positioned to contribute to
the advancement of neuroimaging biomarker discovery
(Figure 3).

Many of the routinely assessed imaging markers are dif-
ficult to link directly to relevant pathological processes. For
example, glutamate levels measured with spectroscopy do
not equal the amount of glutamatergic neurotransmission,
but rather reflect the amount of neuronal, glial, and synaptic
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glutamatepresent in avoxel.BOLDimagingdoesnotmeasure
neural activitydirectly. It is a signal that stems fromacomplex
interaction between blood flow, blood volume, and oxygen
consumption related to neural activity. The field has dem-
onstrated a commitment to the long-term goal of creating the
nextgenerationof imaging tools that allowus tomap thebrain
and relevant pathological signatures on a much more gran-
ular level (138), which will likely accelerate biomarker dis-
covery. Continuing development of innovative technologies
that arebiologically validatedandcapture relevant featuresof
complex neural circuits will provide unique opportunities.
Here, radiotracer development holds distinct promise, as
novel pharmacotherapeutics will likely target modulation of
neurotransmitter systems. Development of specific ligands
that capture principal pathophysiological processes such as
NMDAR hypofunction or immune dysregulation could re-
sult in significant advancement of diagnostic and target-
engagement biomarker research. Another strategy that
may have greater short-term feasibility is to capitalize on
already existing imaging techniques and leverage advances in
computational modeling to increase the specificity of mea-
sures. For this strategy to be successful, vital components
include testing the biological accuracy by rigorous histo-
logical validation and confirming disease relevance in pre-
clinical models.

It will be critical to design studies that follow sound
methodology tominimize bias andmaximize precision (139).
Unfortunately, this is not a trivial undertaking with neuro-
imaging data, as factors such as magnetic field strength, se-
quence acquisition parameters, scanner variability, and data
analysis methods affect measurements. Additionally, head
movementhasanegative impactondataquality invirtuallyall
neuroimaging modalities (140). A number of these problems
can be mitigated by implementation of standardized image
acquisition protocols, use of imaging phantoms as external
reference if feasible, rigorous data quality control protocols,
retrospective sequence harmonization (141), and standard-
ized data processing pipelines and data analytics.

Future studies would benefit from including efforts to
cross-validate biomarkers in independent samplesnot only in
patients with comparable clinical characteristics but also
with various clinical presentations (acutely psychotic, clin-
ically stable), at early and late disease stages, and with dif-
ferential antipsychotic medication exposure. This type of
data would be invaluable in delineating the temporal evo-
lution and scope of a candidate biomarker.

Because an aggregate approach, either as a combination
of multiple imaging modalities or the addition of informa-
tion from serological or genetic markers, could improve
biomarker performance, an important next step beyond
independent replication will be to embed a number of bio-
markers in a predictive model and to test overall perfor-
mance, discrimination, calibration, and clinical utility of the
model (142). An excellent example of the important con-
siderations of predictive models, in this case clinical risk
prediction models for conversion to psychosis (142), could
also serve as a road map for building analogous models for
disease risk or therapeutic response that are neuroimaging
biomarker based.

Conventional statistical approaches for three-dimensional
neuroimaging data rely on mass-univariate analyses (143).
Machine learning, a field in artificial intelligence, is
designed to detect patterns in data with multivariate sta-
tistics aimed at making predictions at the single-subject
level. To date, the majority of machine learning studies
have focused on correctly classifying the presence of
a disease state. However, the practical value here is limited,
as those patients are already “correctly classified” through
clinical assessments. Studies geared toward building models
that can accurately predict the risk for disease development,
clinical course, or a patient’s likelihood of responding to a
given treatment may be more clinically useful but have been
less common (144). There are also a number of technical
limitations that constrain interpretability of machine learn-
ing studies in schizophrenia. Because overfitting of data is a
major source of bias, it is important that sample sizes are

FIGURE 3. Next generation of neuroimaging biomarker studies in schizophrenia
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adequatewhendeveloping amodel and that themodel is then
cross-validated as noted above (145). Another limitation of
machine learning approaches is that many studies use a
“black box” approach, reporting sensitivity, specificity, and
accuracy of an imaging classifier without providing spatial
maps outlining relevant features of classifiers. Even though
these types of complementary analyses are computationally
expensive, they would make models more interpretable and
add face validity to them. This idea of adding “explainability”
to artificial intelligence techniques is a major priority for
federal funders whose investments often shape a field (146).
Computer science holds immense promise in providing so-
lutions for these technical limitations in the next generation
of biomarker discovery studies. Opportunities are in the
optimization of informatics infrastructures or design of user-
friendly software interfaces geared toward neuroscientists
with limited training in command-line based coding, and in
interdisciplinary collaborations guiding appropriate imple-
mentation of multivariate statistics.

The literature on best practices in how to objectively and
effectively evaluate the clinical utility of a neuroimaging
biomarker in schizophrenia is sparse. Defining biomarker
performance standards based on established decision theory
concepts has shown potential to inform clinically relevant
levels of sensitivity and specificity in cancer research. We
would argue against arbitrary targets in favor of calculating
target levels for a given intended use of a biomarker, for
example, screening versus confirmatory testing. These cal-
culations consider variables such asprevalenceof thedisease,
which affects the truepositive andnegative predictive values,
and the cost-benefit ratio of such tests (147). Additionally,
performance of a biomarker in one context may not be rel-
evant to the setting of interest (148). Development of
calculators for estimation of individualized minimally ac-
ceptable biomarker performance indicators and necessary
sample sizebasedon theseconsiderations couldbe invaluable
in the design of future biomarker studies.

Lastly, to accelerate biomarker development, it is im-
portant to address transparency and reproducibility of re-
searchfindings.On apolicy level,many funding agencies now
mandate sharing of generated data with the scientific com-
munity. Unfortunately, the sharing process is quite laborious
at this time. Refining electronic data capture systems to allow
highly automated sharing and integration of data sharing and
analysis tools will improve reproducibility of imaging find-
ings (149). It will also be important to develop reporting
standards containing the minimum recommendations for
biomarker development studies, similar to those for ran-
domized clinical trials (150) and systematic reviews (151),
which are widely recognized in the scientific community.
These guidelines help improve the quality of reporting in
scientific journals by outlining essential items necessary for
a clear and transparent account of research methods and
results. Another interesting idea that could address re-
producibility issues for future studies is the creation of a
preregistration database for neuroimaging biomarker studies

with the original hypothesis and its justification, similar to
what is done in clinical trials (152).

Moving forward, nationwide or multinational initia-
tives supporting large-scale studies that are developing
targeted biomarkers have real potential to individualize
clinical care in this complex neuropsychiatric syndrome.
In the field of Alzheimer’s disease, the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI), a private-public
partnership, was designed to develop biomarkers for
the early detection and tracking of the disease. The in-
vestment of $218 million to date has enabled ADNI to
discover biomarkers for use in clinical trial subject se-
lection and as surrogate outcome measures, to develop
standardized protocols for use across multiple centers, to
create platforms allowing open data access, and to make
advances in the understanding of the relationship be-
tween biomarkers and disease progression (153). This
initiative could serve as a road map for the design of
biomarker development studies for schizophrenia spec-
trum disorders.
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