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“Mr. A,” a 24-year-old man, presents for evaluation of
worsening depression. He describes a history of de-
pression since adolescence, although he notes that he
suffered a troubled childhood, including emotional ne-
glect. He believes a recent breakup and having been
denied a promotion precipitated this episode. “I’m
sleeping all the time, and my body feels heavy,” he
adds. He also reports increased appetite, weight gain,
and “urges to cut, which I have not done in years.”
However, he remains social and actively involved in

several hobbies. He discontinued bupropion and esci-
talopram in the past because of “terrible headaches
and irritability.” Initially, you consider starting
lamotrigine. However, your office recently imple-
mented a clinical decision support system that rec-
ommends a trial of phenelzine. The patient’s
symptoms remit entirely on the medication suggested
by the system. Curious as to how the system decided
on this treatment, you download several papers on its
development.

Health care is in the midst of a big data explosion (1). An esti-
mated zettabyte (one trillion gigabytes) of clinical data is pro-
duced annually, with the rate anticipated to double every 2
years (2). “Big data” consists of data sets of a size (volume),
rate of accumulation (velocity), and diversity of data types
(variety) that exceed the capacity of traditional storage and
processing. Sources of big data in health care include elec-
tronic health records, administrative claims, public health re-
cords, “omics” output (e.g., whole-genome sequencing),
laboratory results, imaging, and sensor recordings. Internet-
enabled devices, such as smartphones and wearables (collec-
tively known as the “Internet of things”), and social media
(e.g., Twitter, Facebook) generate real-time data streams
(3, 4).

Machine learning and natural language processing, sub-
fields of artificial intelligence, offer promising solutions for
harnessing big data toward meaningful insights and applica-
tions (5). Safe and successful integration of machine learning
or natural language processing-based applications or results
into clinical practice will require physicians to comprehend
new and sometimes complex methods. Because machine
learning and natural language processing are not (yet) rou-
tinely incorporated into medical school postgraduate train-
ing curricula, this change in the practice environment will
require development of new forms of data and statistical
literacy (6). This primer provides an introduction to the

fundamentals of these methods to empower readers in criti-
cally evaluating the emerging literature. Interested readers
should consult the online supplement for further introduc-
tory reading recommendations.

MACHINE LEARNING

Artificial intelligence aims to develop machines or computer
programs to perform tasks associated with human intelli-
gence, including perception, learning, and reasoning (7).
A convergent discipline, artificial intelligence draws from
statistics, mathematics, computer science, data science, and
engineering, among other fields. Artificial intelligence is
broadly subdivided into symbolic and nonsymbolic ap-
proaches based on how knowledge is ingested, represented,
and manipulated toward solving a problem (8).

In the symbolic approach, a program is supplied with
knowledge in declarative form, that is, using human-readable
symbols that represent facts and rules (e.g., if-then rules,
or propositional logic) for how the symbols interrelate to
solve complex problems. When queried, the program will
use search and logic to reach a conclusion. Because the
knowledge must be manually entered, symbolic programs
are labor-intensive to develop and intolerant of conflicting
data, but their reasoning can be clearly understood. Sym-
bolic programs are best suited to narrowly circumscribed,

See related feature: CME course (online and p. 729)

Am J Psychiatry 178:8, August 2021 ajp.psychiatryonline.org 715

http://ajp.psychiatryonline.org


static problems, such as playing chess, as famously exem-
plified by IBM’s Deep Blue. In the nonsymbolic approach,
a program is supplied with copious amounts of data and
a general problem-solving strategy, or algorithm. The pro-
gram searches for the underlying patterns in the data
(“learns”) and devises its own mathematical representation
of the knowledge model. Nonsymbolic programs adapt to
new conditions and conflicting data but are data hungry,
and their decision making is not always easily understood.
Machine learning, artificial neural networks, and deep
learning are implementations of the nonsymbolic approach.
These techniques are by no means new, but the exploding
availability of big data has driven a rapid expansion of their
use across domains and industries.

Both machine learning and the traditional statistical
approaches commonly used in biomedicine (e.g., regres-
sion models) can be used to predict an unknown outcome
from known data, although each differs in its capabilities
(9). The focus of statistical modeling lies primarily in in-
ference or understanding the nature and significance of
the relationships between the outcome and model varia-
bles. Traditional models typically require a domain expert
to select the variables of interest in advance. A small
number of variables will be measured across a large sam-
ple, facilitating interpretability. By contrast, machine learn-
ing prioritizes predictive accuracy. In “shallow” data sets
with many more predictive variables than observations,
machine learning produces models capable of generalizing
to unseen data even with relatively small sample sizes. To
achieve this, machine learning sacrifices variable degrees
of interpretability.

There are three general categories of machine learning:

� Supervised learning is task driven (Figure 1A). The ma-
chine learning algorithm is provided with labeled train-
ing data containing input variables (or predictors) and
output variables (or outcomes) for each observation. The
algorithm fits a model that estimates the function (or re-
lationship) between the predictors and outcomes (i.e.,
learns by example), enabling prediction of outcome for
new, unseen observations. If the outcome is binary (e.g.,
0 or 1, no or yes) or categorical (e.g., multiple labels), the
task is known as classification; if the outcome is a real
number (e.g., a score between 0 and 27), the task is
known as regression. By definition, a supervised algo-
rithm can only be as accurate as the labels provided for
training,which raises concerns in psychiatry,where diag-
noses and outcomes are highly subjective. Chung et al.
(10) used supervised learning to predict brain age from
MRI scans; discrepancy between brain age and chrono-
logical age was associated with a higher risk for develop-
ing psychosis.

� Unsupervised learning is data driven (Figure 1B). No la-
beled training data are provided. The algorithm instead
searches for the underlying patterns among input varia-
bles or observations. A common unsupervised learning

task is clustering, in which observations are divided
into subgroups according to similarity in features (11).
Drysdale et al. (12) employed 33,154 functional MRI
features to cluster depressed patients into groups with
four distinct subtypes of dysfunctional brain connectiv-
ity, at least one of which was associated with differen-
tial response to treatment with transcranial magnetic
stimulation.

� Reinforcement learning is reactive to the environment
(Figure 1C). The algorithm (or agent) learns through ex-
perience (“trial and error”) to make choices to maximize
a notion of “reward” while completing a task (13). In a
classic reinforcement-learning loop, the initial state, or
combination of inputs, is set by the environment (e.g.,
initial position of chess pieces).The agent will take an ac-
tion, and the environment will provide feedback on the
reward associated with the state change. The agent up-
dates its strategy (or policy) based on this reward and
acts again.The loop repeats until the designated termina-
tion point is reached (e.g., win or lose). Reinforcement
learning most closely mimics human decision making,
making it an appealing framework for studying dysfunc-
tional thought processes. Schizophrenia patients, for ex-
ample, are less likely to explore alternative paths in
decision making, even ones associated with better out-
comes (14). Reinforcement learning is also promising in
clinical decision-making support and the real-time tailor-
ing of interventions. Shortreed et al. (15) employed
reinforcement learning for ad hoc analysis of data from
the Clinical Antipsychotic Trials of Intervention Effec-
tiveness Study to determine the optimal sequence of anti-
psychotic medications to reduce psychosis using a low
Positive and Negative Syndrome Scale score as “reward.”
For all subjects, the optimal sequence started with olanza-
pine (15).

“Deep learning” describes a collection of methods that
use artificial neural networks for supervised, unsupervised,
or reinforcement learning tasks (Figure 1D). An artificial
neural network contains a network of nodes (neurons) with
numerous interconnections for the processing of informa-
tion. The artificial neurons are organized in layers with
“visible” input and output layers with additional “hidden”
layers of processing (16). Neurons receive information along
their connections (or “edges”). Signal strength is determined
by weights associated with each edge. Each neuron takes
the weighted sum of its inputs, then passes this value
through a mathematical function to produce the output sig-
nal to send to neighboring neurons. Different layers may
perform different types of data transformations. Learning
proceeds from the input to the output layer, potentially
propagating through the hidden layers multiple times. A
“shallow” neural network contains one hidden layer, and a
“deep” neural network contains multiple hidden layers. Dur-
ing learning, edge weights are adjusted to reduce error in the
assigned task. Deep learning is suited to solving complex,
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nonlinear patterns, such as facial recognition. Lin et al. (17)
developed a deep-learning model combining single-nucleotide
polymorphisms (SNPs) and baseline clinical features to pre-
dict antidepressant response in major depressive disorder.
In the original genome-wide association study, none of the
4,241,701 SNPs had been found to be significantly associated
with treatment response.

DEVELOPING A PREDICTIVE MACHINE
LEARNING MODEL
Understanding the steps in the development and valida-
tion of a machine learning prediction model provides a
framework for understanding where errors or bias may
be introduced that influence the accuracy of predictions
and generalization to new data. For simplicity, the steps

FIGURE 1. Types of machine learning modelsa
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a Panel A shows supervised machine learning. The algorithm is supplied with labeled training data that include predictors and the outcomes of
interest. The algorithm fits a model to describe the relationship between the features and the outcomes. The trained model can then be applied
to new data to make predictions on new, unseen observations. Panel B shows unsupervised machine learning. The algorithm is provided a set of
unlabeled data and searches for patterns among features or observations. A common task is clustering, in which observations are subgrouped
by similarity among features. Panel C shows reinforcement learning. The algorithm (or agent) learns through “trial and error” by taking actions
toward completion of a task while maximizing “reward.” Each action alters the environment, resulting in feedback regarding the changed state of
the environment and the reward associated with that action. The loop repeats until the designated termination point is reached. Panel D shows
deep learning. Artificial neural networks contain nodes (or neurons) arranged in layers with learning proceeding from the input layer to the
output layer through a variable number of hidden layers. Learning may be by supervised, unsupervised, or reinforcement means. Shallow
networks contain a single hidden layer, while deep networks contain more than one layer. Each node (or neuron) receives inputs (or signals)
from other nodes in the network, processes the summed inputs through a mathematical scaling function, and transmits the output to the other
neurons. During learning, the strength of the input signal is adjusted (weighted) at each connection to minimize error in the desired task.
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below review development of a supervised classifier,
but the pipeline and sources of error for other learning
types are similar.

Data Collection and Cleaning
Structured data are collected using a predefined input sche-
ma and organizational framework (e.g., billing claims) (18).
Structured data are typically organized in a tabular format
where rows represent the unique observations (e.g., hospital
encounters), and columns represent the features, or the
measurable attributes of each observation (e.g., date of ad-
mission, primary diagnosis, length of stay). Unstructured
data, by comparison, is everything else—text, images, video,
or audio—stored in native formats with variable internal or-
ganization. An estimated 80% of all health care data are un-
structured (2). Electronic health records are semistructured,
containing unstructured (narrative text) as well as struc-
tured (fixed input) elements. Prior to modeling, raw data
must be inspected and corrected for errors, such as incon-
sistencies in data labeling and removal of duplicate
observations.

Algorithm Selection
Algorithm selection depends on the desired task, amount of
data, and feature types. Trade-offs exist between machine
learning algorithms, in sensitivity to outliers and missing
data, speed, accuracy, and interpretability of results. Com-
mon supervised classification algorithms and their strengths
and weaknesses are summarized in Table 1 (19).

Data-Set Splitting
The first, but most critical, step in model construction in-
volves splitting the cleaned data set into “training” and
“test” subsets (Figure 2A). The training set is used to devel-
op the model, while the test set is withheld to evaluate the
model’s performance on unseen data. A model will have fit-
ted parameters determined by the training data (e.g., regres-
sion coefficients), as well as adjustable hyperparameters
(e.g., branch points in a decision tree). Using the same test
set to optimize parameters and evaluate a model will result
in overfitting, where the model describes the noise in the
data set better than it does the underlying pattern between
features. Errors in this step are the most common source of
bias and error in the clinical machine learning literature.
Failure to keep the test-set data completely independent of
all subsequent steps leads to data leakage (discussed below),
which may invalidate the results.

A key challenge is that splitting reduces the amount of
training data. The performance of many machine learning
algorithms is directly related to the amount of training data
available. This challenge is most commonly addressed
through an approach called cross-validation (20). In k-fold
cross-validation, the data set is divided into equal k subsets,
or folds; k21 of the folds are combined to train the model,
and the remaining fold is used for testing. The procedure is
repeated k times, such that every fold serves once as a

validation fold, and the results are averaged. If the data set
is appropriately selected (i.e., the training and test folds are
truly independent of one another), cross-validation provides
a good estimate of how the model will perform on
completely new data.

A closely related challenge is that many machine learning
algorithms have “hyperparameters,” a small set of parameters
that tune the algorithm’s trade-off between different sources
of error. For example, a hyperparameter can control whether
an algorithm seeks to predict outcomes by assigning a small
amount of importance to many predictors or by heavily
weighting a small number of very important predictors. Hy-
perparameters often need to be fine-tuned for a given data
set, while also maintaining independence between training
and test-set splits. Cross-validation is commonly used to ad-
dress this challenge too, specifically a variant known as
nested k-fold cross-validation. The data set is split into k outer
folds. From each outer fold, k inner folds are created for fea-
ture selection, model training, and hyperparameter tuning.
The outer loop of cross-validation then evaluates the perfor-
mance of the best model selected from the inner loop. The
cycle repeats for all outer folds and the performance metrics
are averaged (Figure 2B and 2C).

Preprocessing
The dimensionality of a data set refers to the number of fea-
tures (p) multiplied by the number of observations (n). Data
sets may be wide or shallow (big p, small n), such as geno-
mics data sets with thousands of genes measured per sub-
ject, or tall (small p, big n), such as a clinical trial. For
certain machine learning algorithms, when an increasing
number of features are included, computation time increases
exponentially, but predictive power paradoxically decreases
(known as the curse of dimensionality). On the other hand,
for some algorithms, high dimensionality can be leveraged
toward better performance and faster computation time
(blessing of dimensionality) (21). For example, support vector
machine algorithms employ a hyperparameter known as the
kernel, which can transform the data from a low-dimensional
to a high-dimensional space (kernel trick) to help with the
linear separation of the data (decision boundary) necessary
for classification (22).

For algorithms that are less tolerant of high dimensionali-
ty, the number of features needs to be reduced before model
fitting, ideally without losing much of the critical informa-
tion contained within the full feature set. This challenge is
often overcome by feature extraction (or feature engineer-
ing)—the creation of a smaller number of new features from
a larger number of initial raw features. For example, individ-
ual brain voxels in MRI scans can be averaged together to
describe the signal in a smaller set of brain regions of inter-
est (23). Dimensionality reduction is another group of tech-
niques by which high-dimensional space is mapped to low-
dimensional space without losing critical information or the
variability of the original data set (24). Principal components
analysis, for example, creates a small set of composite
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TABLE 1. Common supervised learning algorithms for classification

Classifier Description Strengths Weaknesses

Regression
(logistic)

Estimates the probability of a binary
outcome (yes/no or class 1/class 0)
for each observation, by a linear
combination of the predictors using
the logistic (or sigmoid) function. If
the decision boundary is set to 0.5,
probabilities .0.5 will be labeled as
class 1, while if ,0.05, they will be
labeled as class 0.

Easy to implement. Input features do
not need to be scaled (no
assumptions as to feature
distribution). Feature selection can be
regularized (to allow fitting with
limited training data). Model
coefficients are informative as to the
relevance of a feature and direction
of association (some inference).

Sensitive to outliers and multicollinearity
(poor capture of complex
relationships between features). Prone
to overfitting with a large number of
features. Requires a large amount of
data.

Support vector
machine

Maps each observation in n-
dimensional feature space. The
decision boundary (or hyperplane)
separates the outcome classes (0 or
1) while maximizing the marginal
distance between the hyperplane and
support vectors (observations that
rest closest to the hyperplane and
therefore are the most difficult to
classify).

Less prone to overfitting than logistic
regression. Able to detect nonlinear
relationships between features.
Performs well on semistructured and
unstructured data. Regularized
feature selection allows good
performance on limited training data.
Stable to changes in training data.

Sensitive to noise (overlapping outcome
classes). Computationally expensive
for large data sets. Requires
transformation of categorical features
to binary dummies (increases
dimensionality of data set) and feature
scaling. May require selection of a
kernel function; poor choices can
greatly alter results.

Decision tree Constructs a decision algorithm based
on a series of greater-than/lesser-
than comparisons. Starting at the
root, the data are sequentially split
based on which feature gives the
highest information gain (most
change in probabilities for a “greater”
versus “lesser” answer). The splitting
process continues until it reaches a
leaf, which contains only one class of
outcome labels (class 0 or 1).

Model is easily interpreted. Input does
not need to be transformed (e.g.,
scaling, normalization). Tolerant of
missing data (no imputation needed).
Automatic feature selection (top
branches5highest informative
features).

Prone to overfitting, especially with a
large number of features.
Computationally expensive (increased
training time and memory). Instability
with even small changes in training
data; may not generalize well to new
data.

Random forest Multiple decision trees are created, and
the outcome class (0 or 1) is
determined by a majority vote of the
generated decision trees. Each tree is
built from a random subset of the
data, reducing the influence of any
one feature or data point on the
outcome.

Less prone to overfitting than decision
trees. Random subsets (ensemble
training) make the resulting classifier
more generalizable.

Computationally more expensive than
decision trees. Often very difficult to
interpret because features appear at
different levels in individual trees.

k-nearest
neighbor

Prediction of outcome class (0 or 1) is
based on whether the majority of
points that are “near” the new
example (in a derived feature space)
are from class 0 or 1. k is the number
of neighbors considered in the
majority vote.

Not sensitive to noise or missing data.
No underlying assumption about data
distribution.

Computationally expensive with
increasing number of features. All
features given equal importance.
Sensitive to outliers. May require
feature transformations that distort
data. Selection of k can greatly
influence results. May generalize
poorly to new data.

Gaussian naive
Bayes

Assumes all predictors are independent
and equally important to prediction
of the outcome class (0 or 1).
Outcome class is determined by the
highest posterior probability, a
function of the prior probability of a
class (class distribution, Gaussian)
and the likelihood, or the probability,
of a feature given a class.

Scales well to large data sets. Requires
less training data. Robust to outliers.
Ignores missing values.

Dependency between attributes
negatively affects performance.
Assumes all features are Gaussian
(normally) distributed, which is often
not true for clinical variables.

Artificial neural
network

Each node (or neuron) receives inputs
(or signals) from other nodes in the
network, processes the summed
inputs through a mathematical
scaling function, and transmits the
output to the other neurons. During
the training process, the strength of
the input signal is adjusted
(weighted) at each connection to
minimize error in predicting the
outcome class (0 or 1).

Tolerates nonlinear relationships
between features and can use these
relationships to improve
performance. Can employ multiple
learning algorithms. Can represent
history-sensitive situations where a
predictor’s importance depends on
what came just before.

Computationally expensive to train,
although can be made efficient to
apply. Can be very sensitive to how
features are preprocessed and
extracted; computational expense
makes it difficult to explore many
options. Largely a “black box,” very
difficult to understand what
influences predictions. Can be very
vulnerable to small, even apparently
meaningless changes in input data.
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features (principal components) through linear combination
of the original features. Feature reduction additionally
reduces the computational expense, or the time and com-
puting memory/processing consumption needed to build
the model.

In cases where the best features are not known in ad-
vance, feature-selection algorithms can automatically choose
an informative set of features for inclusion in a model (25).
Filter methods use univariate statistics (e.g., chi-square test,
correlation coefficients) to determine whether individual
features are associated with the outcome prior to combina-
tion in a multifeature model. Wrapper methods remove or
add features based on model performance (e.g., recursive
feature elimination, sequential feature selection). Embedded
methods incorporate feature selection into the learning algo-
rithm. A common example is regularization, in which the al-
gorithm penalizes its internal performance metrics as the
number of included features grows. In lasso regression, the
coefficients of less informative features are forced to zero,
resulting in feature removal. In ridge regression, the coeffi-
cients of less informative features shrink toward zero, but
all features remain in the model. Elastic net regression com-
bines the lasso and ridge approaches—some features are
eliminated, while others remain but are penalized.

Feature transformation involves manipulating feature at-
tributes for optimal modeling, such as altering the range or
distribution of features. This is especially important when

using machine learning algorithms that employ distance-
based metrics (e.g., support vector machines, k-nearest
neighbor). A feature scaled from 0 to 100 may receive high-
er weight compared with one that ranges from 0 to 1. If
an algorithm assumes a normal distribution (e.g., linear
regression), but the features are not normally distributed,
they must be transformed to meet the assumptions. Nonnu-
merical values (e.g., category labels) must be converted to
representative integers (e.g., 05low, 15medium, 25high)
and potentially further broken down into individual binary
dummy representations, depending on the algorithm used.
Managing missing data is another critical feature transfor-
mation task. Reasons for missing data must be carefully ana-
lyzed to determine whether a systematic relationship exists
between the feature and its tendency toward missingness
(e.g., data from patients with higher illness severity are
more likely to be missing). Deletion of observations missing
one or more feature values (complete case analysis) is rarely
advised, because it is likely to introduce bias. Estimation of
the missing values from other information in the data set,
known as imputation, is preferred (26).

Model Selection
Model selection is both iterative and heuristic. A model
must balance bias (differences between predicted and cor-
rect values) and variance (variability of prediction for a giv-
en value), which contribute to the total error of a model. A

FIGURE 2. Development of a machine learning classification model using nested cross-validationa
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a Part A shows data set splitting. The data set is split into k outer folds (here, k55). Each fold is divided into a training and a test subset. Part B
shows the inner-loop cross-validation (CV). Each outer-fold training data subset is then subdivided further into k inner folds (here, k55). The
inner folds are used for model training, feature selection, and hyperparameter optimization. The best model from the inner loop of cross-
validation is applied to the held-out test of the outer fold to determine model performance. Part C shows the outer-loop cross-validation. The
inner loop of cross-validation is repeated for each outer loop, and results are averaged to determine performance. Part D shows external
validation. Ideally, the trained model is applied to an unrelated data set (external validation) to further assess performance on unseen data.
IF5inner fold; OF5outer fold.

EVALUATING MACHINE LEARNING LITERATURE

720 ajp.psychiatryonline.org Am J Psychiatry 178:8, August 2021

http://ajp.psychiatryonline.org


high-bias model will tend toward underfitting, while a high-
variance model will tend toward overfitting (Figure 3). Fea-
ture selection, cross-validation, and hyperparameter tuning
assist in addressing the bias-variance trade-off to produce
an optimal model. The numerous methods available for tun-
ing hyperparameters are beyond the scope of this primer
but were previously reviewed by Hutter et al. (27). The
most common methods include grid search, where all values
in a predefined set are tested for each hyperparameter, and
random search, where a range of values for each hyperpara-
meter are randomly sampled and tested to provide “good
enough” coverage. A key point is that for successful cross-
validation, both the hyperparameters and the preprocessing
method must be developed independently on the training
set and then applied to the test set without change (and
without any prior testing on the same test set).

Performance Evaluation
There are numerous metrics for scoring models during the
selection (inner cross-validation) and testing (outer cross-
validation) phases. Accuracy is the proportion of correct
classifications out of all classifications (28). A classifier is
evaluated by computing the true positive, true negative, false

positive, and false negative rates, which are commonly pre-
sented as a 23 2 table known as the confusion matrix
(Figure 3A). From this information, the sensitivity and spe-
cificity of the classifier can be calculated. Confusion matrix
data may also be visualized as an area under the receiver
operating characteristic curve (AUC) plot, which demon-
strates the power of a classifier in discriminating one class
from another (Figure 3B). An AUC of 1 indicates perfect
precision, while 0.5 is equivalent to chance. The confusion
matrix will also highlight issues with class imbalance, a situ-
ation where most of the data set does not contain the out-
come of interest. Imbalance is a common problem in
psychiatry, as we are often interested in predicting a rare
event (e.g., suicide completion), resulting in poor model per-
formance (29). In general, all of these metrics should be re-
ported as part of a machine learning analysis, as each
conveys different information about a classifier’s perfor-
mance and bias-variance trade-offs (Figure 3C).

External Validation
In external validation (Figure 2D), the final model is applied
to a data set entirely unrelated to the data set used in model
construction, perhaps gathered from a different clinical site

FIGURE 3. Evaluation of a machine learning classification modela
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a Model performance can be visualized by a confusion matrix or area under the receiver operating characteristic curve (AUC) plot. Panel A
shows the AUC plot, which demonstrates the ability of a model to discriminate between labels and ranges from 0.5 (chance) to 1 (perfect).
Panel B shows the confusion matrix, which summarizes the number of true positive (TP), false negative (FN), false positive (FP), and true
negative (TN) predictions. Accuracy is defined as the number of correctly predicted labels to all classifications. Specificity is the true negative
rate, and sensitivity is the true positive rate. Panel C illustrates model fit. The optimal fit for a model balances model complexity and prediction
error, or the trade-off between bias and variance. Bias errors are errors made on the part of the learning algorithm. If the bias is too high, the
model will be prone to underfitting, or unable to find a meaningful relationship between the predictors and the outcome of interest. Variance
error reflects those errors made as a result of variability in the training set. If the variance is too high, the model will be prone to overfitting, or
capturing the noise in the data set rather than the true relationship between predictors and outcome. All models contain some degree of
noise (or irreducible error).
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or period in time. If the model’s accuracy declines signifi-
cantly, overfitting or underfitting is the most likely culprit.
Another cause may be related to a phenomenon known as
distributional shift, where the underlying process generating
the data changes over time or between data sets. For exam-
ple, if new therapies become available, clinicians may be-
come more likely to make the diagnoses for which those
therapies are indicated. This creates a change in the diag-
nostic mix between the original training data and new
incoming clinical data, leading to inaccurate model predic-
tions. Data-set shift can also result from differences in
instrumentation, differing patient cohorts, and changing
illness prevalence over time (30).

Natural Language Processing
Natural language processing rests at the intersection of
artificial intelligence, machine learning, and linguistics, ex-
ploring how computers deconstruct, understand, and manip-
ulate natural language toward a variety of problems (31).
While this article does not aim to offer a scoping review of
this expanding field, understanding its foundation is critical
to an overview of the machine learning mental health land-
scape. Speech recognition and foreign language translation
are common applications of natural language processing.
The ambiguity and complexity of language make natural
language processing among the more difficult tasks for com-
puters to master. In health care, natural language processing
has permitted increased use of narrative electronic health
record data, historically underutilized because of the labor
intensity of manual curation, and enabled insights from
novel text-based data sources, such as social media posts
(32, 33).

Natural language processing relies heavily on machine
learning and deep learning, although it can also be com-
bined with symbolic approaches (34). Natural language
processing tasks are generally subdivided into syntactic and
semantic analyses (35). In syntactic analysis, a corpus (col-
lection of texts) is systematically parsed and analyzed using
formal grammar rules, analogous to the grade-school exer-
cise of constructing sentence diagrams that label the parts
of speech (e.g., noun, verb, adjective, article). Semantic anal-
ysis explores the relationships between syntactic structures
to extract units of meaning, such as whether a corpus con-
tains more negative versus positive emotional expression.
Semantic analysis may be applied at any level, from senten-
ces to phrases to whole documents. In a study of suicide
risk among veterans, Westgate et al. (36) applied syntactic
analysis and found a higher degree of distancing language,
such as the use of third-person pronouns and terms (e.g.,
he, she, vet), in the mental health notes of veterans who
would attempt suicide in the following year compared with
their nonsuicidal peers.

Development of natural language processing follows a
workflow similar to that of the machine learning predictive
models covered previously (Figure 4). A raw corpus (or col-
lection of texts) must be cleaned to enable efficient and

accurate feature extraction. Cleaning of raw text can include
removal of templated text (e.g., standard headers or logos),
correction of spelling errors, and removing formatting (e.g.,
capitalization, punctuation). As part of preprocessing, the
cleaned text will be digested into tokens (e.g., words or short
phrases). Common words that rarely convey meaning, also
known as stop words (e.g., a, the), will often be removed. To-
kens may be further transformed, such as by the removal of
word endings or stemming (e.g., walk from walking, walked,
or walks).

Feature engineering in natural language processing in-
volves the transformation of texts and tokens into numerical
representations or word embeddings. As with other machine
learning approaches, many methods are available, but a few
are particularly popular. The term frequency-inverse docu-
ment frequency (TF-IDF) method, for example, converts the
corpus into a matrix where the relative importance of each
token is calculated as a metric that normalizes for its fre-
quency within and between documents. Rare words will
have higher TD-IDF values (37). TF-IDF vectorization cap-
tures no additional contextual information for words, which
can lead to misinterpretations (e.g., if two different clinicians
use different words to describe the same symptom).Word2-
vec, by comparison, uses a shallow neural network to gener-
ate multidimensional vectors for each token that can
preserve context with similar tokens sharing vector space
(38). Engineered features may then be used in combination
with machine learning algorithms for outcome prediction
and clustering of related documents, among other tasks (39,
Table 2).

PITFALLS

Machine learning is not a panacea for every challenge in
psychiatry (40). Decisions in model development and valida-
tion can significantly affect generalizability to new data. For
example, machine learning-based prediction of antide-
pressant response using quantitative EEG (QEEG) data is
widely reported and commercially marketed. However, a
meta-analysis of 81 QEEG biomarkers derived from 76
studies found that none of these classifiers had been ex-
ternally validated, that most were created using small
samples, and that the literature as a whole suffered publi-
cation bias (41). The authors concluded that these meth-
odological issues made QEEG markers unsuitable for
routine clinical use until larger validation studies are
performed. Table 2 offers a framework for evaluating
the machine learning/natural language processing litera-
ture with several examples that highlight common
potential pitfalls to bear in mind, which include the
following:

1. Data quality (“garbage in, garbage out”). Model accuracy
and validity are highly dependent on the availability of
large amounts of high-quality training data, which can
be expensive and time-consuming to generate. Small

EVALUATING MACHINE LEARNING LITERATURE

722 ajp.psychiatryonline.org Am J Psychiatry 178:8, August 2021

http://ajp.psychiatryonline.org


training data sets may yield highly inaccurate predic-
tions when applied to new data. Neuroimaging studies,
which often use convenience cases from a single aca-
demic medical center, are often critiqued in this regard
(42). Disparities in demographic coverage, geographic
location, clinical setting, and collection methodology
(e.g., proprietary algorithms, different instruments or soft-
ware) can also negatively influence the generalizability of
the training data to the general population and affect real-
world model performance (30). Significant care must be

taken to determine the quantitative and qualitative equiva-
lence of shared features across time, location, and instru-
mentation when integrating data sets from different sites
or collection protocols (43). Electronic health record and
claims data,while both wide and tall,were not collected for
research purposes and frequently contain inconsistencies
andmissing data (44). Clinical practice involves the stratifi-
cation of patients for referral, treatment, and/or documen-
tation. As such, electronic health record cohorts of a
particular diagnosis are unlikely to be true randomly

FIGURE 4. Development of machine learning models using natural language processinga
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a Part A is the preprocessing stage. A collection of texts is known as a corpus, which requires preprocessing and digestion into component
subunits (words or short phrases), known as tokens for natural language-processing tasks. Part B is feature engineering. Including all words
from a corpus as features in a machine learning model would be computationally expensive, and therefore texts and tokens must be
converted into numerical representations or word embeddings. In the term frequency-inverse document frequency (TF-IDF) method, a
statistic is calculated for each token to reflect its importance across the corpus. Higher values are associated with rarity of the token. These
values are arranged in a sparse matrix in which each row is an individual document and each column the score for an individual token within
that document. Another method is word2vec, or the use of shallow neural networks to map each token within each document to a
multidimensional vector. Part C is model creation. Engineered features may be used with any variety of supervised or unsupervised
classification algorithms for prediction or clustering.
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TABLE 2. Considerations in evaluating a machine learning study and examples of studiesa

Model features Considerations Chekroud et al. (66) Kessler et al. (67) Rumshisky et al. (68)

Prediction Does the prediction have clinical
utility? How can the results be
used in practice?

Remission of depressive
symptoms in response to
12 weeks of citalopram
treatment (final Quick
Inventory of Depressive
Symptomatology score �5)

Suicide death in 12 months
following outpatient mental
health visit

30-day psychiatric
readmission

Data set Single or multisite recruitment?
Any data collection
considerations (e.g.,
equipment, differing
measures)?

Sequenced Treatment
Alternatives to Relieve
Depression Study, across
six primary care sites and
nine psychiatric care sites

Historical administrative data
system of the Army Study to
Assess Risk and Resilience in
Servicemembers, 2004–2009

Partners HealthCare
electronic health records,
including academic and
community hospital and
clinics in New England,
1994–2012

Subjects Is this a representative patient
population? Are there
adequate data for the
proposed analysis? Inclusion/
exclusion criteria of subjects?

N51,949; 18- to 75-year-old
outpatients with
nonpsychotic major
depressive disorder and
score �14 on the Hamilton
Depression Rating Scale,
2001–2004

N5975,057; male, nondeployed
regular U.S. Army soldiers

4,687 patients with inpatient
discharge summaries; �18
years old, with a diagnosis
of major depressive
disorder; no additional
exclusion criteria

Class balance Is class imbalance present? How
is this handled in the analysis?

No class imbalance reported;
51.3% of subjects were
nonresponders

569 deaths by suicide with
.8,000 control visits per
suicide; probability sample of
control visits used

470 patients were readmitted
within 30 days; no class
imbalance correction

Input features Do feature extraction methods
appropriately capture the
desired signal? Are included
features easily obtained in
routine practice? Are the
features appropriate to the
prediction? Any sources of
data leakage?

164 features, including
sociodemographic features,
DSM-IV-based diagnostic
items, depressive severity
checklists, eating disorder
diagnoses, prior
antidepressant history, the
number and age at onset of
previous major depressive
episodes, and first 100
items of the Psychiatric
Diagnostic Symptom
Questionnaire

Nearly 1,000 features, including
outpatient visit clinical
factors, prior clinical factors,
Army career, prior crime, and
contextual factors

Baseline clinical features: age,
gender, use of public
insurance, and age-
adjusted Charlson
comorbidity index score;
75 topics extracted by
latent Dirichlet allocation
from full corpus; top 1,000
words extracted by term
frequency-inverse
document frequency for
each patient

Algorithm Was the use of a particular
algorithm (or algorithms) over
others justified? Were other
algorithms evaluated and
reported? Is the algorithm
appropriate for the data and/or
problem?

Gradient-boosting machine
(ensemble of decision
trees); no other algorithms
were reported

Naive Bayes, random forest,
support vector regression,
and elastic net penalized
regression were tested

Support vector machine; no
other algorithms were
reported

Data splitting and
resampling

Were cross-validation or other
resampling methods used?
Were these performed
appropriately? Any sources of
data leakage?

Ten-fold cross-validation Cross-validation (type not
reported); separate models
for suicides with and without
prior psychiatric
hospitalization

Data set randomly split into
training (70%) and testing
(30%) data sets; balanced
by clinical features;
separate models for
baseline clinical features,
baseline plus 1,000 words,
baseline plus 75 latent
Dirichlet allocation topics

Imputation How is missing data handled? Complete cases (patients with
missing data dropped)

Missing data corrected by
nearest neighbor or rational
imputation

NA

Feature selection How were features selected?
How many features survived?

Elastic net regularization to
select top 25 features prior
to model building

Univariate association of
predictor of suicide
compared with other death;
significant univariate
predictors plus 20
sociodemographic variables
and 27 Army-career variables
passed to machine learning
classifiers; penalized
regression for selection in
final models

None

continued
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selected samples (sampling bias) or reflective of the under-
lying general population (sampling error) (45). For the pur-
poses of comparing treatments, for example, electronic
health record cohorts are highly nonrandomized. A patient
receiving one medication versus another is determined by
multiple prior decisions (e.g., prior failed medication trials,
medical comorbidities).

2. Biased data. The ethical questions surrounding the in-
corporation of machine learning in health care are nu-
merous, particularly in regard to health equity (46).
Racial bias is found in existing health care algorithms,
often the result of confounding factors that have not
been accounted for. Obermeyer et al. (47) found that a
widely used risk algorithm underestimated service
needs in Black patients by more than half because it
used health care costs as a proxy for illness severity (47).
In psychiatry, Black men are disproportionally diagnosed
with schizophrenia, even though psychosis symptoms are
features in numerous other disorders, including depres-
sion (48). A diagnostic model that does not account for
flaws in its training data risks propagating bias and rein-
forcing disparate clinical care. Similar concerns apply to
artificial intelligence andmachine learning systems in vio-
lence risk assessment (49).

3. Algorithm selection (“no free lunch”). Not all machine
learning algorithms are created equal, although many
behave comparably depending on the data set. Jiao et al.
(50) tested four different algorithms to predict autism
spectrum disorder diagnosis, using regional cortical
thicknesses on structural MRI. The support vector

machine classifier required all 66 features, whereas
the tree-based classifier only required seven features
for similar accuracy. Algorithm selection is often arbi-
trary or biased toward preliminary performance results.
A potential solution is ensemble learning, a meta-algo-
rithmic technique that combines multiple machine
learning algorithms to generate a single optimized
model (51).

4. Data leakage. One of the most pervasive errors in clinical
machine learning occurs when information is inadver-
tently shared between the training and test data, or data
leakage (52). Because a portion of the data is “known,” the
trained model will perform exceedingly well in testing, like
a student who knows the test questions in advance. This
leads to “too good to be true” accuracy that drops precipi-
tously when applied to new data as a result of overfitting.
A common culprit is preprocessing of the entire data set
prior to splitting into training and testing sets. Information
about the test data (e.g., its statistical distribution proper-
ties) “leaks” into the training set via the preprocessing.
Care must also be taken in the cross-validation of time se-
ries data. If the time points are simply randomly shuffled,
then the model can use data from the future to predict the
past. Finally, certain features may also introduce leakage,
such as including information about prior prescriptions in
a model seeking to predict a patient’s new diagnosis. Natu-
ral language processing models that use narrative-free
electronic health record text can be prone to this type of
leakage (e.g., a history of present illness containing infor-
mation about prior treatments).

TABLE 2. continued

Model features Considerations Chekroud et al. (66) Kessler et al. (67) Rumshisky et al. (68)

Model selection What metric was used to
determine optimal
performance (accuracy, AUC,
custom metric)? Could this
metric bias model selection?

Maximization of AUC Maximized cross-validated
sensitivity in the 5% of visits
with the highest predicted
suicide risk

Maximization of AUC

Hyperparameter
optimization

Any hyperparameters? What
metric was used for their
evaluation? Was a separate
data subset used for
hyperparameter optimization?

Same criterion as for model
selection

Same criterion as for model
selection

Threefold cross-validation on
the training data

Performance Any evidence of overfitting (are
the results “too good to be
true”)? Are the results and
proposed model believable?
How portable is the model to
other contexts? Were any
attempts made at model
simplification?

AUC50.70 Elastic net classifier with 10–14
predictors optimized
sensitivity; AUC50.72 (prior
hospitalization), 0.61 (no
prior hospitalization), and
0.66 (combined) within 26
weeks after visit

Baseline clinical features
(AUC50.618), baseline
clinical features plus 1,000
words (AUC50.682), and
baseline clinical features
plus 75 latent
Dirichlet allocation topics
(AUC50.784)

External validation Was the model externally
validated? Did performance drop
significantly in application to
new data? If so, is the model
still clinically useful? Were
reasons for the change in
performance explained? Were
there any potential hidden
confounders or time effects
affecting model performance?

Yes; validated in escitalopram
treatment group (N5151) of
the Combining Medications
to Enhance Depression
Outcomes trial (accuracy,
59.6%)

Yes; validated by using
2004–2007 data to predict
2008–2009 deaths by
suicide; combined AUC
(those with and without prior
hospitalization) was
0.67–0.72 within 26–5
weeks after visit

No

a AUC5area under the receiver operating characteristic curve; NA5not applicable.

GRZENDA ET AL.

Am J Psychiatry 178:8, August 2021 ajp.psychiatryonline.org 725

http://ajp.psychiatryonline.org


5. Model interpretability. Machine learning models, espe-
cially deep-learning models, are often criticized for be-
ing opaque, “black box” solutions. The meaning of
model parameters and feature relationships can be diffi-
cult to determine, and in cases where a model errs, it is
difficult to determine why. Dramatic examples outside
of medicine include “single pixel attacks” in image proc-
essing, where the output of a high-stakes task (e.g., de-
termining where the road is for a self-driving car) can
be dramatically altered by a visually undetectable
change to the input image. Interpretability is an active
area of investigation. For example, local interpretable
model-agnostic explanation (LIME) is an algorithm that
will introduce a small amount of noise into each model
feature and then determine how predictions were
changed by this perturbation. The predictions are then
used to generate a linear model, the coefficients of
which can be used for interpretation (53). The ability to
explain why a model makes a prediction affects trust in
implementation, although tolerance of a “black box” so-
lution may depend on the task. If the aim is to flag anom-
alies in neuroimaging, sensitivity may be reasonably
prioritized over interpretability, whereas in treatment
selection, understanding how the recommendation was
generated may affect the discussion of alternatives.

6. Model generalizability. External validation of trained
models is essential to estimating the reproducibility of
the model’s behavior in real-world conditions but is
rarely done (54). For example, when Dinga et al. (55) at-
tempted to replicate the functional MRI depression sub-
types found by Drysdale et al. (12) in an independent
sample using an identical analytical pipeline, they could
not replicate the key outcome (55). In contrast, several
recent schizophrenia investigations have demonstrated
the effectiveness of pooled data sets and site-based
cross-validation methods in improving the predictive
stability of models (56, 57). A related notion is model
“portability,” or how easily a model can be deployed in
other contexts, which is dependent on the number and
type of features needed for predictions. If a model
requires numerous, expensive, or time-consuming fea-
tures (e.g., whole-genome sequencing) for adequate per-
formance, clinical utility may be limited.

7. Methodological transparency.The degree to which stud-
ies share training data and disclose decisions made in
model development varies widely, significantly affecting
reproducibility. As open-source and validated machine
learning packages and pipelines become more readily
available, the lack of transparency in methodological re-
porting is no longer justifiable. Model transparency in-
cludes how the overall model operates, the effects of
individual parameters, and the algorithm’s learning
strategy. User-friendly “automated” machine learning
software is emerging, lowering the learning curve for
entry into the field but potentially raising risk for studies
with methodological flaws. Several multidisciplinary

panels have recently proposed guidelines for best practi-
ces in reporting machine learning studies (58, 59).

REVISITING THE CLINICAL SCENARIO

In a recent global survey of 791 psychiatrists, only 3.8% of re-
spondents indicated concern that an artificial intelligence sys-
tem could replace clinicians in the future, but roughly half
expressed certainty that artificial intelligence would transform
their work (60). Respondents predicted benefits, including re-
duced administrative burden, continuous monitoring through
wearable technologies, and improved accuracy in diagnosis.
In the case of Mr. A in the above clinical scenario, the clinical
decision support system employed a deep-learning algorithm
with information extracted from multiple sources within the
clinical record, including past prescription records and free
text notes. Trained on data from a wide variety of practice
types and geographical locations, the system underwent a
multicenter prospective trial that found, among other out-
comes, a lower rate of discontinuation of system-recom-
mended medications in cases of high diagnostic uncertainty.

There are numerous ethical, legal, and philosophical chal-
lenges to artificial intelligence implementation in health care
(61). Deployment in real-world practice will continually chal-
lenge artificial intelligence and machine learning systems
with unexpected and ambiguous cases.When presented with
an anomalous case, humans “err on the side of caution” and
attempt to minimize negative consequences. Machine learn-
ing systems, however, prioritize performance. Fail-safes, con-
ditions under which a system refuses to act, are necessary
(62). Automation complacency, in which clinicians fail to
question inconsistent results, must also be addressed (63).
Currently, the clinician is the primary responsible party for
negligence, even if a negative outcome is based on malfunc-
tioning software. As artificial intelligence becomes increasing-
ly embedded in devices and clinical workflows, legal
standards regarding the fiduciary relationship between pa-
tient and clinician and malpractice will require revision (64).
The U.S. Food and Drug Administration “software as medical
device” regulations were not designed for real-time adaptive
technologies, an issue acknowledged in a recent revision (65).

CONCLUSIONS

Psychiatry is undergoing a paradigm shift. The heavily bio-
logic approach of recent decades has produced a wealth of
specific knowledge but few actionable insights for patients.
Machine learning coupled with big data demonstrates prom-
ise for eventually generating applications and predictive
models of high clinical diagnostic and prognostic utility. The
trustworthiness and effectiveness of such applications in
real-world practice, however, will necessitate methodological
transparency and vigilant scrutiny of results and applica-
tions. Best practices for the design and evaluation of ma-
chine learning studies are still evolving. However, many of
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the pitfalls reviewed here appear disturbingly common in
current machine learning studies, most notably failure to
use cross-validation, data leakage, and lack of external vali-
dation. We feel that this may be indicative of developments
in the field outpacing editor or peer-reviewer knowledge.
For clinicians, interrogating the most critical elements of the
machine learning model development pipeline, as reviewed
here, provides a preliminary framework for navigating the
literature. Formal, systematic reviews that grade the quality
of evidence in the extant literature are currently lacking and
represent a critical gap for future investigation.
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mailto:Health care is in the midst of a big data explosion (1). An estimated zettabyte (one trillion gigabytes) of clinical data is produced annually, with the rate anticipated to double every 2 years (2). &hx201C;Big data&hx201D; consists of data sets of a size (volume), rate of accumulation (velocity), and diversity of data types (variety) that exceed the capacity of traditional storage and processing. Sources of big data in health care include electronic health records, administrative claims, public health records, &hx201C;omics&hx201D; output (e.g., whole-genome sequencing), laboratory results, imaging, and sensor recordings. Internet-enabled devices, such as smartphones and wearables (collectively known as the &hx201C;Internet of things&hx201D;), and social media (e.g., Twitter, Facebook) generate real-time data streams (3, 4).Machine learning and natural language processing, subfields of artificial intelligence, offer promising solutions for harnessing big data toward meaningful insights and applications (5). Safe and successful integration of machine learning or natural language processing-based applications or results into clinical practice will require physicians to comprehend new and sometimes complex methods. Because machine learning and natural language processing are not (yet) routinely incorporated into medical school postgraduate training curricula, this change in the practice environment will require development of new forms of data and statistical literacy (6). This primer provides an introduction to the fundamentals of these methods to empower readers in critically evaluating the emerging literature. Interested readers should consult the online supplement for further introductory reading recommendations.MACHINE LEARNINGArtificial intelligence aims to develop machines or computer programs to perform tasks associated with human intelligence, including perception, learning, and reasoning (7). A&hx00A0;convergent discipline, artificial intelligence draws from statistics, mathematics, computer science, data science, and engineering, among other fields. Artificial intelligence is broadly subdivided into symbolic and nonsymbolic approaches based on how knowledge is ingested, represented, and manipulated toward solving a problem (8).In the symbolic approach, a program is supplied with knowledge in declarative form, that is, using human-readable symbols that represent facts and rules (e.g., if-then rules, or propositional logic) for how the symbols interrelate to solve complex problems. When queried, the program will use search and logic to reach a conclusion. Because the knowledge must be manually entered, symbolic programs are labor-intensive to develop and intolerant of conflicting data, but their reasoning can be clearly understood. Symbolic programs are best suited to narrowly circumscribed, static problems, such as playing chess, as famously exemplified by IBM&hx2019;s Deep Blue. In the nonsymbolic approach, a program is supplied with copious amounts of data and ageneral problem-solving strategy, or algorithm. The program searches for the underlying patterns in the data (&hx201C;learns&hx201D;) and devises its own mathematical representation of the knowledge model. Nonsymbolic programs adapt to new conditions and conflicting data but are data hungry, and their decision making is not always easily understood. Machine learning, artificial neural networks, and deep learning are implementations of the nonsymbolic approach. These techniques are by no means new, but the exploding availability of big data has driven a rapid expansion of their use across domains and industries.Both machine learning and the traditional statistical approaches commonly used in biomedicine (e.g., regression models) can be used to predict an unknown outcome from known data, although each differs in its capabilities (9). The focus of statistical modeling lies primarily in inference or understanding the nature and significance of the relationships between the outcome and model variables. Traditional models typically require a domain expert to select the variables of interest in advance. A small number of variables will be measured across a large sample, facilitating interpretability. By contrast, machine learning prioritizes predictive accuracy. In &hx201C;shallow&hx201D; data sets with many more predictive variables than observations, machine learning produces models capable of generalizing to unseen data even with relatively small sample sizes. To achieve this, machine learning sacrifices variable degrees of interpretability.There are three general categories of machine learning:&hx2022;Supervised learning is task driven (Figure 1A). The machine learning algorithm is provided with labeled training data containing input variables (or predictors) and output variables (or outcomes) for each observation. The algorithm fits a model that estimates the function (or relationship) between the predictors and outcomes (i.e., learns by example), enabling prediction of outcome for new, unseen observations. If the outcome is binary (e.g., 0 or 1, no or yes) or categorical (e.g., multiple labels), the task is known as classification; if the outcome is a real number (e.g., a score between 0 and 27), the task is known as regression. By definition, a supervised algorithm can only be as accurate as the labels provided for training, which raises concerns in psychiatry, where diagnoses and outcomes are highly subjective. Chung et&hx00A0;al. (10) used supervised learning to predict brain age from MRI scans; discrepancy between brain age and chronological age was associated with a higher risk for developing psychosis.&hx2022;Unsupervised learning is data driven (Figure 1B). No labeled training data are provided. The algorithm instead searches for the underlying patterns among input variables or observations. A common unsupervised learning task is&hx00A0;clustering, in which observations are divided into subgroups according to similarity in features (11). Drysdale et&hx00A0;al. (12) employed 33,154 functional MRI features to cluster depressed patients into groups with four distinct subtypes of dysfunctional brain connectivity, at least one of which was associated with differential response to treatment with transcranial magnetic stimulation.&hx2022;Reinforcement learning is reactive to the environment (Figure 1C). The algorithm (or agent) learns through experience (&hx201C;trial and error&hx201D;) to make choices to maximize a notion of &hx201C;reward&hx201D; while completing a task (13). In a classic reinforcement-learning loop, the initial state, or combination of inputs, is set by the environment (e.g., initial position of chess pieces). The agent will take an action, and the environment will provide feedback on the reward associated with the state change. The agent updates its strategy (or policy) based on this reward and acts again. The loop repeats until the designated termination point is reached (e.g., win or lose). Reinforcement learning most closely mimics human decision making, making it an appealing framework for studying dysfunctional thought processes. Schizophrenia patients, for example, are less likely to explore alternative paths in decision making, even ones associated with better outcomes (14). Reinforcement learning is also promising in clinical decision-making support and the real-time tailoring of interventions. Shortreed et&hx00A0;al. (15) employed reinforcement learning for ad hoc analysis of data from the Clinical Antipsychotic Trials of Intervention Effectiveness Study to determine the optimal sequence of antipsychotic medications to reduce psychosis using a low Positive and Negative Syndrome Scale score as &hx201C;reward.&hx201D; For all subjects, the optimal sequence started with olanzapine (15).&hx201C;Deep learning&hx201D; describes a collection of methods that use artificial neural networks for supervised, unsupervised, or reinforcement learning tasks (Figure 1D). An artificial neural network contains a network of nodes (neurons) with numerous interconnections for the processing of information. The artificial neurons are organized in layers with &hx201C;visible&hx201D; input and output layers with additional &hx201C;hidden&hx201D; layers of processing (16). Neurons receive information along their connections (or &hx201C;edges&hx201D;). Signal strength is determined by weights associated with each edge. Each neuron takes the weighted sum of its inputs, then passes this value through a mathematical function to produce the output signal to send to neighboring neurons. Different layers may perform different types of data transformations. Learning proceeds from the input to the output layer, potentially propagating through the hidden layers multiple times. A &hx201C;shallow&hx201D; neural network contains one hidden layer, and a &hx201C;deep&hx201D; neural network contains multiple hidden layers. During learning, edge weights are adjusted to reduce error in the assigned task. Deep learning is suited to solving complex, nonlinear patterns, such as facial recognition. Lin et&hx00A0;al. (17) developed a deep-learning model combining single-nucleotide polymorphisms (SNPs) and baseline clinical features to predict antidepressant response in major depressive disorder. In the original genome-wide association study, none of the 4,241,701 SNPs had been found to be significantly associated with treatment response.DEVELOPING A PREDICTIVE MACHINE LEARNING MODELUnderstanding the steps in the development and validation of a machine learning prediction model provides a framework for understanding where errors or bias may be introduced that influence the accuracy of predictions and generalization to new data. For simplicity, the steps below review development of a supervised classifier, but the pipeline and sources of error for other learning types are similar.Data Collection and CleaningStructured data are collected using a predefined input schema and organizational framework (e.g., billing claims) (18). Structured data are typically organized in a tabular format where rows represent the unique observations (e.g., hospital encounters), and columns represent the features, or the measurable attributes of each observation (e.g., date of admission, primary diagnosis, length of stay). Unstructured data, by comparison, is everything else&hx2014;text, images, video, or audio&hx2014;stored in native formats with variable internal organization. An estimated 80&hx0025; of all health care data are unstructured (2). Electronic health records are semistructured, containing unstructured (narrative text) as well as structured (fixed input) elements. Prior to modeling, raw data must be inspected and corrected for errors, such as inconsistencies in data labeling and removal of duplicate observations.Algorithm SelectionAlgorithm selection depends on the desired task, amount of data, and feature types. Trade-offs exist between machine learning algorithms, in sensitivity to outliers and missing data, speed, accuracy, and interpretability of results. Common supervised classification algorithms and their strengths and weaknesses are summarized in Table 1 (19).Data-Set SplittingThe first, but most critical, step in model construction involves splitting the cleaned data set into &hx201C;training&hx201D; and &hx201C;test&hx201D; subsets (Figure 2A). The training set is used to develop the model, while the test set is withheld to evaluate the model&hx2019;s performance on unseen data. A model will have fitted parameters determined by the training data (e.g., regression coefficients), as well as adjustable hyperparameters (e.g., branch points in a decision tree). Using the same test set to optimize parameters and evaluate a model will result in overfitting, where the model describes the noise in the data set better than it does the underlying pattern between features. Errors in this step are the most common source of bias and error in the clinical machine learning literature. Failure to keep the test-set data completely independent of all subsequent steps leads to data leakage (discussed below), which may invalidate the results.A key challenge is that splitting reduces the amount of training data. The performance of many machine learning algorithms is directly related to the amount of training data available. This challenge is most commonly addressed through an approach called cross-validation (20). In k-fold cross-validation, the data set is divided into equal k subsets, or folds; k&hx2212;1 of the folds are combined to train the model, and the remaining fold is used for testing. The procedure is repeated k times, such that every fold serves once as a validation fold, and the results are averaged. If the data set is appropriately selected (i.e., the training and test folds are truly independent of one another), cross-validation provides a good estimate of how the model will perform on completely new data.A closely related challenge is that many machine learning algorithms have &hx201C;hyperparameters,&hx201D; a small set of parameters that tune the algorithm&hx2019;s trade-off between different sources of error. For example, a hyperparameter can control whether an algorithm seeks to predict outcomes by assigning a small amount of importance to many predictors or by heavily weighting a small number of very important predictors. Hyperparameters often need to be fine-tuned for a given data set, while also maintaining independence between training and test-set splits. Cross-validation is commonly used to address this challenge too, specifically a variant known as nested k-fold cross-validation. The data set is split into k outer folds. From each outer fold, k inner folds are created for feature selection, model training, and hyperparameter tuning. The outer loop of cross-validation then evaluates the performance of the best model selected from the inner loop. The cycle repeats for all outer folds and the performance metrics are averaged (Figure 2B and 2C).PreprocessingThe dimensionality of a data set refers to the number of features (p) multiplied by the number of observations (n). Data sets may be wide or shallow (big p, small n), such as genomics data sets with thousands of genes measured per subject, or tall (small p, big n), such as a clinical trial. For certain machine learning algorithms, when an increasing number of features are included, computation time increases exponentially, but predictive power paradoxically decreases (known as the curse of dimensionality). On the other hand, for some algorithms, high dimensionality can be leveraged toward better performance and faster computation time (blessing of dimensionality) (21). For example, support vector machine algorithms employ a hyperparameter known as the kernel, which can transform the data from a low-dimensional to a high-dimensional space (kernel trick) to help with the linear separation of the data (decision boundary) necessary for classification (22).For algorithms that are less tolerant of high dimensionality, the number of features needs to be reduced before model fitting, ideally without losing much of the critical information contained within the full feature set. This challenge is often overcome by feature extraction (or feature engineering)&hx2014;the creation of a smaller number of new features from a larger number of initial raw features. For example, individual brain voxels in MRI scans can be averaged together to describe the signal in a smaller set of brain regions of interest (23). Dimensionality reduction is another group of techniques by which high-dimensional space is mapped to low-dimensional space without losing critical information or the variability of the original data set (24). Principal components analysis, for example, creates a small set of composite features (principal components) through linear combination ofthe original features. Feature reduction additionally reduces the computational expense, or the time and computing memory/processing consumption needed to build the model.In cases where the best features are not known in advance, feature-selection algorithms can automatically choose an informative set of features for inclusion in a model (25). Filter methods use univariate statistics (e.g., chi-square test, correlation coefficients) to determine whether individual features are associated with the outcome prior to combination in a multifeature model. Wrapper methods remove or add features based on model performance (e.g., recursive feature elimination, sequential feature selection). Embedded methods incorporate feature selection into the learning algorithm. A common example is regularization, in which the algorithm penalizes its internal performance metrics as the number of included features grows. In lasso regression, the coefficients of less informative features are forced to zero, resulting in feature removal. In ridge regression, the coefficients of less informative features shrink toward zero, but all features remain in the model. Elastic net regression combines the lasso and ridge approaches&hx2014;some features are eliminated, while others remain but are penalized.Feature transformation involves manipulating feature attributes for optimal modeling, such as altering the range or distribution of features. This is especially important when using machine learning algorithms that employ distance-based metrics (e.g., support vector machines, k-nearest neighbor). A feature scaled from 0 to 100 may receive higher weight compared with one that ranges from 0 to 1. If analgorithm assumes a normal distribution (e.g., linear regression), but the features are not normally distributed, they must be transformed to meet the assumptions. Nonnumerical values (e.g., category labels) must be converted to representative integers (e.g., 0&hx003D;low, 1&hx003D;medium, 2&hx003D;high) and potentially further broken down into individual binary dummy representations, depending on the algorithm used. Managing missing data is another critical feature transformation task. Reasons for missing data must be carefully analyzed to determine whether a systematic relationship exists between the feature and its tendency toward missingness (e.g., data from patients with higher illness severity are more likely to be missing). Deletion of observations missing one or more feature values (complete case analysis) is rarely advised, because it is likely to introduce bias. Estimation of the missing values from other information in the data set, known as imputation, is preferred (26).Model SelectionModel selection is both iterative and heuristic. A model must balance bias (differences between predicted and correct values) and variance (variability of prediction for a given value), which contribute to the total error of a model. A high-bias model will tend toward underfitting, while a high-variance model will tend toward overfitting (Figure 3). Feature selection, cross-validation, and hyperparameter tuning assist in addressing the bias-variance trade-off to produce an optimal model. The numerous methods available for tuning hyperparameters are beyond the scope of this primer but were previously reviewed by Hutter et&hx00A0;al. (27). The most common methods include grid search, where all values in a predefined set are tested for each hyperparameter, and random search, where a range of values for each hyperparameter are randomly sampled and tested to provide &hx201C;good enough&hx201D; coverage. A key point is that for successful cross-validation, both the hyperparameters and the preprocessing method must be developed independently on the training set and then applied to the test set without change (and without any prior testing on the same test set).Performance EvaluationThere are numerous metrics for scoring models during the selection (inner cross-validation) and testing (outer cross-validation) phases. Accuracy is the proportion of correct classifications out of all classifications (28). A classifier is evaluated by computing the true positive, true negative, false positive, and false negative rates, which are commonly presented as a 2&hx2009;&hx00D7;&hx2009;2 table known as the confusion matrix (Figure 3A). From this information, the sensitivity and specificity of the classifier can be calculated. Confusion matrix data may also be visualized as an area under the receiver operating characteristic curve (AUC) plot, which demonstrates the power of a classifier in discriminating one class from another (Figure 3B). An AUC of 1 indicates perfect precision, while 0.5 is equivalent to chance. The confusion matrix will also highlight issues with class imbalance, a situation where most of the data set does not contain the outcome of interest. Imbalance is a common problem in psychiatry, as we are often interested in predicting a rare event (e.g., suicide completion), resulting in poor model performance (29). In general, all of these metrics should be reported as part of a machine learning analysis, as each conveys different information about a classifier&hx2019;s performance and bias-variance trade-offs (Figure 3C).External ValidationIn external validation (Figure 2D), the final model is applied to a data set entirely unrelated to the data set used in model construction, perhaps gathered from a different clinical site or period in time. If the model&hx2019;s accuracy declines significantly, overfitting or underfitting is the most likely culprit. Another cause may be related to a phenomenon known as distributional shift, where the underlying process generating the data changes over time or between data sets. For example, if new therapies become available, clinicians may become more likely to make the diagnoses for which those therapies are indicated. This creates a change in the diagnostic mix between the original training data and new incoming clinical data, leading to inaccurate model predictions. Data-set shift can also result from differences in instrumentation, differing patient cohorts, and changing illness prevalence over time (30).Natural Language ProcessingNatural language processing rests at the intersection of artificial intelligence, machine learning, and linguistics, exploring how computers deconstruct, understand, and manipulate natural language toward a variety of problems (31). While this article does not aim to offer a scoping review of this expanding field, understanding its foundation is critical to an overview of the machine learning mental health landscape. Speech recognition and foreign language translation are common applications of natural language processing. The ambiguity and complexity of language make natural language processing among the more difficult tasks for computers to master. In health care, natural language processing has permitted increased use of narrative electronic health record data, historically underutilized because of the labor intensity of manual curation, and enabled insights from novel text-based data sources, such as social media posts (32, 33).Natural language processing relies heavily on machine learning and deep learning, although it can also be combined with symbolic approaches (34). Natural language processing tasks are generally subdivided into syntactic and semantic analyses (35). In syntactic analysis, a corpus (collection of texts) is systematically parsed and analyzed using formal grammar rules, analogous to the grade-school exercise of constructing sentence diagrams that label the parts of speech (e.g., noun, verb, adjective, article). Semantic analysis explores the relationships between syntactic structures to extract units of meaning, such as whether a corpus contains more negative versus positive emotional expression. Semantic analysis may be applied at any level, from sentences to phrases to whole documents. In a study of suicide risk among veterans, Westgate et&hx00A0;al. (36) applied syntactic analysis and found a higher degree of distancing language, such as the use of third-person pronouns and terms (e.g., he, she, vet), in the mental health notes of veterans who would attempt suicide in the following year compared with their nonsuicidal peers.Development of natural language processing follows a workflow similar to that of the machine learning predictive models covered previously (Figure 4). A raw corpus (or collection of texts) must be cleaned to enable efficient and accurate feature extraction. Cleaning of raw text can include removal of templated text (e.g., standard headers or logos), correction of spelling errors, and removing formatting (e.g., capitalization, punctuation). As part of preprocessing, the cleaned text will be digested into tokens (e.g., words or short phrases). Common words that rarely convey meaning, also known as stop words (e.g., a, the), will often be removed. Tokens may be further transformed, such as by the removal of word endings or stemming (e.g., walk from walking, walked, or walks).Feature engineering in natural language processing involves the transformation of texts and tokens into numerical representations or word embeddings. As with other machine learning approaches, many methods are available, but a few are particularly popular. The term frequency-inverse document frequency (TF-IDF) method, for example, converts the corpus into a matrix where the relative importance of each token is calculated as a metric that normalizes for its frequency within and between documents. Rare words will have higher TD-IDF values (37). TF-IDF vectorization captures no additional contextual information for words, which can lead to misinterpretations (e.g., if two different clinicians use different words to describe the same symptom). Word2vec, by comparison, uses a shallow neural network to generate multidimensional vectors for each token that can preserve context with similar tokens sharing vector space (38). Engineered features may then be used in combination with machine learning algorithms for outcome prediction and clustering of related documents, among other tasks (39, Table 2).PITFALLSMachine learning is not a panacea for every challenge in psychiatry (40). Decisions in model development and validation can significantly affect generalizability to new data. For example, machine learning-based prediction of antidepressant response using quantitative EEG (QEEG) data is widely reported and commercially marketed. However, a meta-analysis of 81 QEEG biomarkers derived from 76 studies found that none of these classifiers had been externally validated, that most were created using small samples, and that the literature as a whole suffered publication bias (41). The authors concluded that these methodological issues made QEEG markers unsuitable for routine clinical use until larger validation studies are performed. Table 2 offers a framework for evaluating the machine learning/natural language processing literature with several examples that highlight common potential pitfalls to bear in mind, which include the following:1.Data quality (&hx201C;garbage in, garbage out&hx201D;). Model accuracy and validity are highly dependent on the availability of large amounts of high-quality training data, which can be expensive and time-consuming to generate. Small training data sets may yield highly inaccurate predictions when applied to new data. Neuroimaging studies, which often use convenience cases from a single academic medical center, are often critiqued in this regard (42). Disparities in demographic coverage, geographic location, clinical setting, and collection methodology (e.g., proprietary algorithms, different instruments or software) can also negatively influence the generalizability of the training data to the general population and affect real-world model performance (30). Significant care must be taken to determine the quantitative and qualitative equivalence of shared features across time, location, and instrumentation when integrating data sets from different sites or collection protocols (43). Electronic health record and claims data, while both wide and tall, were not collected for research purposes and frequently contain inconsistencies and missing data (44). Clinical practice involves the stratification of patients for referral, treatment, and/or documentation. As such, electronic health record cohorts of a particular diagnosis are unlikely to be true randomly selected samples (sampling bias) or reflective of the underlying general population (sampling error) (45). For the purposes of comparing treatments, for example, electronic health record cohorts are highly nonrandomized. A patient receiving one medication versus another is determined by multiple prior decisions (e.g., prior failed medication trials, medical comorbidities).2.Biased data. The ethical questions surrounding the incorporation of machine learning in health care are numerous, particularly in regard to health equity (46). Racial bias is found in existing health care algorithms, often the result of confounding factors that have not been accounted for. Obermeyer et&hx00A0;al. (47) found that a widely used risk algorithm underestimated service needs in Black patients by more than half because it used health care costs as a proxy for illness severity (47). In psychiatry, Black men are disproportionally diagnosed with schizophrenia, even though psychosis symptoms are features in numerous other disorders, including depression (48). A diagnostic model that does not account for flaws in its training data risks propagating bias and reinforcing disparate clinical care. Similar concerns apply to artificial intelligence and machine learning systems in violence risk assessment (49).3.Algorithm selection (&hx201C;no free lunch&hx201D;). Not all machine learning algorithms are created equal, although many behave comparably depending on the data set. Jiao et&hx00A0;al. (50) tested four different algorithms to predict autism spectrum disorder diagnosis, using regional cortical thicknesses on structural MRI. The support vector machine classifier required all 66 features, whereas the tree-based classifier only required seven features for similar accuracy. Algorithm selection is often arbitrary or biased toward preliminary performance results. A potential solution is ensemble learning, a meta-algorithmic technique that combines multiple machine learning algorithms to generate a single optimized model (51).4.Data leakage. One of the most pervasive errors in clinical machine learning occurs when information is inadvertently shared between the training and test data, or data leakage (52). Because a portion of the data is &hx201C;known,&hx201D; the trained model will perform exceedingly well in testing, like a student who knows the test questions in advance. This leads to &hx201C;too good to be true&hx201D; accuracy that drops precipitously when applied to new data as a result of overfitting. A common culprit is preprocessing of the entire data set prior to splitting into training and testing sets. Information about the test data (e.g., its statistical distribution properties) &hx201C;leaks&hx201D; into the training set via the preprocessing. Care must also be taken in the cross-validation of time series data. If the time points are simply randomly shuffled, then the model can use data from the future to predict the past. Finally, certain features may also introduce leakage, such as including information about prior prescriptions in a model seeking to predict a patient&hx2019;s new diagnosis. Natural language processing models that use narrative-free electronic health record text can be prone to this type of leakage (e.g., a history of present illness containing information about prior treatments).5.Model interpretability. Machine learning models, especially deep-learning models, are often criticized for being opaque, &hx201C;black box&hx201D; solutions. The meaning of model parameters and feature relationships can be difficult to determine, and in cases where a model errs, it is difficult to determine why. Dramatic examples outside of medicine include &hx201C;single pixel attacks&hx201D; in image processing, where the output of a high-stakes task (e.g., determining where the road is for a self-driving car) can be dramatically altered by a visually undetectable change to the input image. Interpretability is an active area of investigation. For example, local interpretable model-agnostic explanation (LIME) is an algorithm that will introduce a small amount of noise into each model feature and then determine how predictions were changed by this perturbation. The predictions are then used to generate a linear model, the coefficients of which can be used for interpretation (53). The ability to explain why a model makes a prediction affects trust in implementation, although tolerance of a &hx201C;black box&hx201D; solution may depend on the task. If the aim is to flag anomalies in neuroimaging, sensitivity may be reasonably prioritized over interpretability, whereas in treatment selection, understanding how the recommendation was generated may affect the discussion of alternatives.6.Model generalizability. External validation of trained models is essential to estimating the reproducibility of the model&hx2019;s behavior in real-world conditions but is rarely done (54). For example, when Dinga et&hx00A0;al. (55) attempted to replicate the functional MRI depression subtypes found by Drysdale et&hx00A0;al. (12) in an independent sample using an identical analytical pipeline, they could not replicate the key outcome (55). In contrast, several recent schizophrenia investigations have demonstrated the effectiveness of pooled data sets and site-based cross-validation methods in improving the predictive stability of models (56, 57). A related notion is model &hx201C;portability,&hx201D; or how easily a model can be deployed in other contexts, which is dependent on the number and type of features needed for predictions. If a model requires numerous, expensive, or time-consuming features (e.g., whole-genome sequencing) for adequate performance, clinical utility may be limited.7.Methodological transparency. The degree to which studies share training data and disclose decisions made in model development varies widely, significantly affecting reproducibility. As open-source and validated machine learning packages and pipelines become more readily available, the lack of transparency in methodological reporting is no longer justifiable. Model transparency includes how the overall model operates, the effects of individual parameters, and the algorithm&hx2019;s learning strategy. User-friendly &hx201C;automated&hx201D; machine learning software is emerging, lowering the learning curve for entry into the field but potentially raising risk for studies with methodological flaws. Several multidisciplinary panels have recently proposed guidelines for best practices in reporting machine learning studies (58, 59).REVISITING THE CLINICAL SCENARIOIn a recent global survey of 791 psychiatrists, only 3.8&hx0025; of respondents indicated concern that an artificial intelligence system could replace clinicians in the future, but roughly half expressed certainty that artificial intelligence would transform their work (60). Respondents predicted benefits, including reduced administrative burden, continuous monitoring through wearable technologies, and improved accuracy in diagnosis. In the case of Mr. A in the above clinical scenario, the clinical decision support system employed a deep-learning algorithm with information extracted from multiple sources within the clinical record, including past prescription records and free text notes. Trained on data from a wide variety of practice types and geographical locations, the system underwent a multicenter prospective trial that found, among other outcomes, a lower rate of discontinuation of system-recommended medications in cases of high diagnostic uncertainty.There are numerous ethical, legal, and philosophical challenges to artificial intelligence implementation in health care (61). Deployment in real-world practice will continually challenge artificial intelligence and machine learning systems with unexpected and ambiguous cases. When presented with an anomalous case, humans &hx201C;err on the side of caution&hx201D; and attempt to minimize negative consequences. Machine learning systems, however, prioritize performance. Fail-safes, conditions under which a system refuses to act, are necessary (62). Automation complacency, in which clinicians fail to question inconsistent results, must also be addressed (63). Currently, the clinician is the primary responsible party for negligence, even if a negative outcome is based on malfunctioning software. As artificial intelligence becomes increasingly embedded in devices and clinical workflows, legal standards regarding the fiduciary relationship between patient and clinician and malpractice will require revision (64). The U.S. Food and Drug Administration &hx201C;software as medical device&hx201D; regulations were not designed for real-time adaptive technologies, an issue acknowledged in a recent revision (65).CONCLUSIONSPsychiatry is undergoing a paradigm shift. The heavily biologic approach of recent decades has produced a wealth of specific knowledge but few actionable insights for patients. Machine learning coupled with big data demonstrates promise for eventually generating applications and predictive models of high clinical diagnostic and prognostic utility. The trustworthiness and effectiveness of such applications in real-world practice, however, will necessitate methodological transparency and vigilant scrutiny of results and applications. Best practices for the design and evaluation of machine learning studies are still evolving. However, many of the pitfalls reviewed here appear disturbingly common in current machine learning studies, most notably failure to use cross-validation, data leakage, and lack of external validation. We feel that this may be indicative of developments in the field outpacing editor or peer-reviewer knowledge. For clinicians, interrogating the most critical elements of the machine learning model development pipeline, as reviewed here, provides a preliminary framework for navigating the literature. Formal, systematic reviews that grade the quality of evidence in the extant literature are currently lacking and represent a critical gap for future investigation.
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Examination Questions: Grzenda et al.

1. A researcher builds a model to predict if a patient will respond to an antidepressant 

using magnetic resonance imaging (MRI) scans. The model performed well in the 

held-out test data. However, performance dropped when he applied the trained 

model to a new set of MRI scans from another institution.  What is the most likely 

reason for the drop in performance?

a. Choosing the wrong hyper-parameters for the model fi tting algorithm

b. Not training the algorithm on a separate test set 

c. Changes in the nature of the data produced by the scanner at the second institution

d. Choosing too many cross-validation splits or folds

2. A psychiatrist is interested in improving the treatment of schizophrenia. She gathers 

a dataset of patients with known genotypes and medications tried, and 

hospitalizations over the following year. She develops a model to predict which 

medication, matched with which genotype, predicts a reduced risk of hospitalization 

in the year after starting medication. This is an example of:

a. Clustering

b. Unsupervised learning 

c. Supervised learning with a categorical outcome

d. Supervised learning with a continuous outcome

3. A psychiatry resident is interested in predicting psychotherapy outcomes. He gathers 

a dataset containing numerous possible predictor variables related to patient and 

therapist characteristics, type of therapy, and outcomes. Which of the following 

approaches would explore this dataset without leakage?

a. Fit fi ve diff erent model types on the whole dataset, and report their average 

performance

b. Split the data into an 80% training and 20% testing set. Train a model on the training 

set, then re-fi t it on the testing set and report the parameters of this adjusted model.

c. Split the data into 60% training, 20% validation, and 20% testing set. Train a model 

on the training set, then adjust its parameters to maximize performance on the 

validation set. Run that model on the testing set and report its performance.

d. Split the data into an 80% training and 20% testing set. Train a model on the full set 

of data, then report its performance on the training and testing sets separately.
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