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Objective: Interest in candidate gene and candidate gene-
by-environment interaction hypotheses regarding major
depressive disorder remains strong despite controversy
surrounding the validity of previous findings. In response to
this controversy, the present investigation empirically iden-
tified 18 candidate genes for depression that have been
studied 10 or more times and examined evidence for their
relevance to depression phenotypes.

Methods: Utilizing data from large population-based and
case-control samples (Ns ranging from 62,138 to 443,264
across subsamples), the authors conducted a series of pre-
registered analyses examining candidate gene polymorphism
main effects, polymorphism-by-environment interactions,
and gene-level effects across a number of operational def-
initions of depression (e.g., lifetime diagnosis, current se-
verity, episode recurrence) and environmental moderators
(e.g., sexual or physical abuse during childhood, socioeco-
nomic adversity).

Results: No clear evidence was found for any candidate
gene polymorphism associations with depression pheno-
types or any polymorphism-by-environment moderator ef-
fects. As a set, depression candidate genes were no more
associated with depression phenotypes than noncandidate
genes. The authors demonstrate that phenotypic measure-
ment error is unlikely to account for these null findings.

Conclusions: The study results do not support previous
depression candidate gene findings, in which large genetic
effects are frequently reported in samples orders of magni-
tude smaller than those examined here. Instead, the results
suggest that early hypotheses about depression candidate
genes were incorrect and that the large number of associ-
ations reported in the depression candidate gene literature
are likely to be false positives.
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Major depressive disorder (hereafter referred to as “de-
pression”) is moderately heritable (twin-based heritability,
∼37%) (1), but its genetic architecture is complex, and
identifying specific polymorphisms underlying depression
susceptibility has been challenging. With the ability to ge-
notype particular genetic variants and optimism about the
potential public health impact of identifying reliable bio-
markers for depression (2), early research focused on the
effects of specific candidate polymorphisms in genes hy-
pothesized to underlie depression liability. These genes were
chosen on the basis of hypotheses regarding the biological
underpinningsofdepression.The5-HTTLPRvariablenumber
tandem repeat (VNTR) polymorphism in the promoter region
of the serotonin transporter gene SLC6A4, the most com-
monly studiedpolymorphism in relation to depression (Figure
1; see also Table S1.1 in the online supplement), serves as a
prototypical example: Given the theorized importance of the

serotonergic system in the etiology of depression, a logical
target for early association studies was a common, large (and
hence relatively easy to genotype), and potentially functional
repeat polymorphism in a serotonergic gene (3–5). Early in-
vestigations, although by necessity focused on a small num-
ber of variants (low-cost genome-wide arrays were not yet
available), reported promising positive associations. However,
replication attempts produced inconsistent results (6–8).

To critics of candidate gene findings, replication failures
suggested that the initial findings were artifactual (9–11).
However, at least two alternative explanations could account
for the inability to replicate early findings and the incon-
sistent results across studies. First, in the early 2000s, Caspi
et al. (12) posited that previous inconsistencies might re-
flect the effects of candidate polymorphisms that were de-
pendent on environment exposures (gene-by-environment
interaction [G3E] effects). In what would become one of the
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most highly cited (.8,000 citations as of July 2018) and
influential papers in psychiatric genetics, Caspi et al. (13)
reported that the impact of the 5-HTTLPR repeat poly-
morphism in SLC6A4 on depression was moderated by ex-
posure to stressful life events, such that the positive
association between stressful life events and depression was
stronger in individuals carrying the “short” allele. This early
work led many researchers to shift their attention to G3E
hypotheses, focusing on the same polymorphisms first

investigated for main effects (8). Second, in an alternative
but complementary line of reasoning, other researchers
suggested that polymorphisms in the same candidate genes,
other than those studied previously, were likely to explain
depression risk, given the genes’putative biological relevance
(14). These lines of inquiry are well represented in the lit-
erature of the past 25 years. Thousands of investigations of
depression or depression endophenotypes have examined
1) the direct effects of the most studied polymorphisms

FIGURE 1. Estimated lower bounds of studies per candidate genea
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a Panel A shows cumulative sums of the estimated number of depression candidate gene studies identified by our algorithm per year per gene from
1991 through 2016. Estimates reflect the number of correctly classified studies among identified studies, excluding studies not detected by our pro-
tocol, and thus comprise lower bounds for the true number of studies per gene. Panel B shows the 18 candidate genes studied $10 times between
1991 and 2016. The estimated number of studies focused on the top polymorphism (see Table S1.1 in the online supplement) is displayed relative to
the other identified studies within each gene. No top polymorphisms were identified for DTNBP1 or TPH2 (see section S1 of the online supplement).
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within candidate genes, 2) the moderation of their effects
by environmental stressors, or 3) the effects of alternative
polymorphisms within the same candidate genes. The pop-
ularity of these lines of inquiry has not diminished over time
(Figure 1; see also Figures S1.4 and S1.5 of the online sup-
plement), and many studies have reported statistically sig-
nificant associations.

Perhaps surprisingly given the continued interest in
studying these historical depression candidate genes and the
large number of associations documented in the candidate
gene literature, many researchers have expressed skepticism
about the validity of such findings (11, 15–17). There are
several reasons for this. First, genome-wide association
studies (GWASs), which agnostically examine associations
at millions of common single-nucleotide polymorphisms
(SNPs) across the genome in large samples, have consistently
found that individual SNPs exert small effects on genetically
complex traits such as depression (18–20). For example, in
the most recent GWAS of depression, which utilized a
sample of 135,458 case subjects and 344,901 control subjects,
the strongest individual signal detected (rs12552; odds ra-
tio=1.044, p=6.07310219) would require a sample of ap-
proximately 34,100 individuals to be detected with 80%
power at an alpha level of 0.05, assuming a balanced case-
control design (18). In contrast, themedian study sample size
in a review of 103 candidate G3E studies published between
2000 and 2009 was 345, with 65% of studies reporting
positive results (15). Thus, given the small sample sizes
typically employed, candidate gene research has likely been
severely underpowered (21, 22). This, in turn, may suggest
that the false discovery rate for the many positive reports
in the candidate gene literature is high. Consistent with
this possibility, targeted, well-powered genetic association
studies of depression and other psychiatric phenotypes in
large samples have not supported candidate gene hypotheses
(18, 23–27). For example, a preregistered collaborative meta-
analysis of the interaction of stressful life events and
5-HTTLPR genotype in a sample of 38,802 individuals failed
to support the original finding of Caspi et al. (28), although
we note that this variant and several other candidate VNTRs
have not previously been examined in a GWAS context (29,
30). The absence of previous large-sample investigations of
VNTRhypotheses is noteworthy, as VNTRs comprise several
of the earliest candidate polymorphisms to be examined in
the context of behavioral research; concerns about variability
in VNTR genotyping procedures and analytic methods over
time have further complicated the interpretation of the lit-
erature (31). Additionally, a number of researchers have
suggested that incorrect analytic methods and inadequate
control for population stratification characterize the majority
of published candidate gene studies (21, 32–34), and other
researchers have questioned the clinical utility of focus-
ing on individual polymorphisms or polymorphism-by-
environment interactions (35). Finally, there is evidence of
systematic publication bias in the candidate gene literature;
in the aforementioned review of all candidate G3E studies

published between 2000 and 2009, 96% percent of novel
findings were significant, compared with only 27% of rep-
lication attempts, and replication attempts reporting null
findings had larger sample sizes than those presenting pos-
itive findings (15). In response to such skepticism, candidate
gene proponents have argued that lack of replication of
candidate gene associations in large-sample studies may
reflectpooror limitedphenotyping (36–38), exclusionofnon-
SNP polymorphisms such as VNTRs (14, 30), the “multiple-
testing burden” associatedwith genome-wide scans (36), and
failure to account for environmental moderators (36, 37, 39).

The present study is the most comprehensive and well-
powered investigation of historical candidate polymorphism
and candidate gene hypotheses in depression to date. We
focus on three lines of inquiry concerning how historical
candidate genes may affect depression liability: 1) main ef-
fects of the most commonly studied candidate polymor-
phisms, 2) moderation of the effects of these polymorphisms
by environmental exposures, and 3) main effects of common
SNPs across each of the candidate genes.

We first empirically identified 18 commonly studied
candidate genes represented in at least 10 peer-reviewed
depression-focused journal articles between 1991 and 2016
from the body of publications indexed in PubMed. Within
these candidate genes, we identified the most commonly
studied polymorphisms, as well as their canonical risk al-
leles, at which point our primary analysis plan was prereg-
istered. Using multiple large samples (Ns ranging from
62,138 to 443,264 across subsamples; total N=621,214 indi-
viduals), we examined multiple measures of depression (e.g.,
lifetime diagnostic status, symptom severity among indi-
viduals reporting mood disturbances, lifetime number of
depressive episodes) (Table 1), employingmultiple statistical
frameworks (e.g., main effects of polymorphisms and genes,
interaction effects on both the additive and multiplicative
scales) and, in G3E analyses, considering multiple indices of
environmental exposure (e.g., traumatic events in childhood
or adulthood). Previous large-sample studies of depression
have largely focused on genetic main effects on depression
diagnosis in the context of SNP data across the genome. In
contrast, we examined several alternative depression phe-
notypes, analyzed both main effects and interactions with
multiple potential moderators, included the most studied
polymorphisms, includingVNTRs (Figure 1), and employed a
liberal significance threshold. We also quantified the extent
towhichphenotypicmeasurement errormayhavebiased our
results. The unifying question underlying this “multiverse”
analytic approach (44) was the following: Do the large data
sets of the whole-genome-data era support any previous
depression candidate gene hypotheses?

METHODS

Identification of Genes and Polymorphisms
Using the Biopython bioinformatics package (45), we iden-
tified 18 candidate genes studied for their associations with
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TABLE 1. Depression and environmental moderator phenotypes

Phenotype Description Sample Size

Depression phenotypesa

Estimated lifetime
depression diagnosis

Binary indicator of lifetime DSM-5 depression diagnosis assessed in the UK
Biobank online mental health follow-up questionnaire. To meet criteria,
participants had to endorse at least four of eight DSM-5 depression
symptoms (motor agitation/retardation was not assessed), as well as
duration, frequency, and impairment criteria.

N=115,458 (control subjects:
85,513; case subjects:
29,945)

Current depression
severity

Sum score of all nine DSM-5 depression symptom severities (using a 4-point
Likert scale to index the severity of each symptom) over the 2 weeks
preceding to assessment. Assessed in the UK Biobank onlinemental health
follow-up questionnaire.

N=115,463 (mean=2.502,
SD=3.347)

Conditional lifetime
symptom count

Sum of symptom indicators for eight of nine lifetime DSM-5 depression
symptoms (motor agitation/retardation was not assessed) among
individuals endorsing lifetime incidence of a period of at least 2 weeks
characterized by anhedonia and/or depressed mood (questionnaire skip
patterns necessitated this precondition). Assessed in the UK Biobank
online mental health follow-up questionnaire.

N=62,138 (mean=4.746,
SD=1.745)

Lifetime episode count Ordinal measure of incidence/recurrence of a period of at least 2 weeks
characterized by anhedonia and/or depressed mood indicating zero
episodes, a single episode, or recurrent episodes. Assessed in the UK
Biobank online mental health follow-up questionnaire.

N=115,457 (zero: 55,388;
single: 30,724; recurrent:
26,345)

Touchscreen probable
lifetime diagnosis,
ordinal classification

Ordinal measure of depression diagnostic status based on a selection of
items from the Patient Health Questionnaire (40), the Structured Clinical
Interview for DSM-IV Axis I Disorders–Research Version (41), and items
assessing treatment-seeking behavior specific to the UK Biobank
touchscreen interview,asdescribed inSmithet al. (42).Categories included
no depression, single depressive episode, recurrent episodes (moderate),
and recurrent episodes (severe), in that order. Assessed as part of the UK
Biobank initial touchscreen interview.

N=91,121 (control subjects:
66,605; one episode: 6,209;
$2 moderate episodes:
11,634;$2 severe episodes:
6,633)

Touchscreen probable
lifetime diagnosis

Dichotomized coding of the touchscreen probable life diagnosis ordinal
classification, contrasting no depression with the three diagnosis categories.

N=91,121 (control subjects:
66,605; case subjects: 84,516)

Severe recurrent
depression

Binary indicator of case/control status for depression, excluding case and
control subjects with mild to moderate depressive symptoms. Control
subjects were individuals who did not endorse incidence of a period of at
least 2 weeks characterized by anhedonia and/or depressed mood. Case
subjectswere individualswhometcriteria forestimated lifetimedepression
diagnosis, endorsed at least five of the eight measured DSM-5 symptoms,
and experienced recurrent depressive episodes. Assessed in the UK
Biobank online mental health follow-up questionnaire.

N=64,432 (control subjects:
53,218; case subjects:
14,214)

PGC lifetime depression
diagnosis

Binary indicator of lifetime depression diagnosis as measured in the PGC2
depression GWAS (18). The present study utilized data from the full
expanded cohortmeta-analysis, exceptingUK-based cohorts (UK Biobank
and Generation Scotland).

N=443,264 (control subjects:
323,063; case subjects:
120,201)

Moderator phenotypesb

Childhood trauma Binary indicatorof sexual and/orphysical abuseduringchildhood.Assessed in
the UK Biobank online mental health follow-up questionnaire.

N=157,146 (unexposed:
118,800; exposed: 38,346)

Adulthood trauma Binary indicator of any of the following traumatic events during adulthood:
physical assault, sexual assault, witness to sudden/violent death, diagnosis
of a life-threatening illness, involvement in a life-threatening accident, and
exposure to combat or war zone conditions. Assessed in the UK Biobank
online mental health follow-up questionnaire.

N=157,223 (unexposed:
64,286; exposed: 92,937)

Recent trauma Binary indicator of whether any of the above events occurred in the year
preceding assessment.

N=157,220 (unexposed:
142,008; exposed: 15,212)

Stressor-induced
depression

Binary indicator of whether a period of depressed mood or anhedonia was a
possible consequence of a traumatic event among individuals endorsing
lifetime incidence of a period of at least 2 weeks characterized by
anhedonia and/or depressed mood (questionnaire skip patterns
necessitated this precondition). Assessed in the UK Biobank online mental
health follow-up questionnaire.

N=88,585 (unrelated to
stressor: 23,746; stressor-
induced: 64,839)

Townsend deprivation
index

Measure of socioeconomic adversity (43), with higher values indicating
greater adversity. Standardized to have zero mean and unit standard
deviation. Assessed during the UK Biobank initial touchscreen interview.

N=187,094

a Depression phenotypes are described in further detail in section S3.1 and visually summarized in Figure S3.1 in the online supplement.
b Moderator phenotypes are described in further detail in section S3.2 and visually summarized in Figure S3.2 in the online supplement. All moderators were only
measured in the UK Biobank.
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depression phenotypes at least 10 times fromwithin the body
of peer-reviewed biomedical literature indexed in PubMed.
We used regular expressions to find articles potentially
corresponding to each gene and hand-verified the number of
correctly classified articles for each gene in order to estimate
hypergeometric confidence intervals for the true number of
correctly classified studies (for additional details, see section
S1 of the online supplement). We identified single poly-
morphisms comprising a large proportion of study foci for
16 of the 18 candidate genes. Figure 1 lists the most studied
candidate genes and polymorphisms within them, as well as
probabilistic estimates of theminimumnumber of times each
has been studied with respect to depression and the number
of studies per gene per year (confidence intervals are pre-
sented in Table S1.1 in the online supplement).

Samples
UK Biobank samples. A large portion of the data used in our
analysis was collected by the UK Biobank, a population
sample of 502,682 individuals collected at 22 centers across
the United Kingdom between 2006 and 2010 (46). Within
this group, we analyzed several depression phenotypes
andmoderators among 177,950 unrelated (pairwise genome-
wide relatedness, ,0.05) European-ancestry individuals
for whom relevant depression measures were collected. We
analyzed two partially overlapping subsets of these indi-
viduals: 91,121 individuals for whom selected items from the
initial touchscreen interview were available and 115,458 in-
dividuals who completed a series of online mental health
questionnaires, 62,138 of whom endorsed a 2-week period
characterized by anhedonia or depressedmood at somepoint
during their lives. DNA was extracted from whole blood and
genotyped using the Affymetrix UK Biobank Axiom array or
the Affymetrix UK BiLEVE Axiom array and imputed to the
Haplotype Reference Consortium by the UK Biobank (47).
Further details on genotyping and sampling procedures are
available online (48) and in section S2 of the online sup-
plement. Because VNTRs were not genotyped in the UK
Biobank data set, we used two independent whole-genome
SNP data sets (the Family Transition Project [49] and the
Genetics of Antisocial Drug Dependence [50, 51]) that also
measured these repeat polymorphisms as reference panels in
order to impute highly studied VNTRswithinDRD4,MAOA,
SLC6A3, and SLC6A4 in the UK Biobank. The estimated out-
of-sample imputed genotype match rates were$0.919 for all
four VNTRs (mean R2=0.868; details are provided in refer-
ence 29).

Psychiatric Genomics Consortium sample. To investigate
candidate gene polymorphism main effect hypotheses, we
also used data from the most recent GWAS on depression
conducted by theMajorDepressiveDisorderWorkingGroup
of the Psychiatric Genomics Consortium (PGC), which is
described in detail in Wray et al. (18). Lack of access to raw
genotypes for a large number of the PGC cohorts precluded
imputation of VNTRs in the PGC sample. To minimize

sample overlap with the UK Biobank, U.K.-based cohorts
were excluded from the PGC data set, resulting in GWAS
summary statistics for a total of 443,264 individuals (120,201
case subjects and 323,063 control subjects) (for further de-
tails, see section S2 of the online supplement).

Phenotypes
Table 1 describes all phenotypes examined in the present
investigation, and additional information is provided in
section S3 of the online supplement. Correlations between
depression outcomes and Cohen’s kappa estimates for di-
agnosis phenotypes are presented in Tables S3.1 and S3.2 in
the online supplement. Marker-based heritabilities of, and
genetic correlations between, depression outcomes were
estimated via linkage disequilibrium (LD) score regression
(52) and are presented in Tables S3.3 and S3.4 and Figure
S3.3 in the online supplement (for further details, see sec-
tion S4.4 of the online supplement).

Analyses
All analyses were preregistered through the Open Science
Framework and are available at https://osf.io/akgvz/. Sta-
tistical models are described in detail in section S4 of the
online supplement, and departures from the preregistered
analyses are documented in section S5.

Polymorphism-wise analyses. We analyzed associations be-
tween outcomes and each of the top 16 candidate polymor-
phisms using a generalized linear model framework (link
functions are listed in Table S4.1 in the online supplement).
For two of the genes, TPH2 and DTNBP1, no particular
polymorphism was investigated in a preponderance of
studies (see Figures S1.2 and S1.3 in the online supplement),
so these genes were not included in the polymorphism-
wise analyses. Covariates included genotyping batch, testing
center, sex, age, age squared, and the first 10 European-
ancestry principal components. Sixteen polymorphism-by-
environment effects were tested on both the additive and
multiplicative scales for each of the 16 polymorphisms; each
model tested is listed in Table S4.1 in the online supplement. For
interaction tests,we included all covariate-by-polymorphism
andcovariate-by-moderator terms to control for thepotential
confounding influences of covariates on the interaction (53).
We also tested interaction models that controlled only for
covariate main effects, which is insufficient but common
in the candidate gene literature (33). Across all outcomes,
we employed a preregistered significance threshold of
alphapoly=0.05/16=3.1331023, corresponding to aBonferroni
correction across the top 16 candidate polymorphisms. This
threshold is liberal because it does not account for the mul-
tiple ways each polymorphism was analyzed or the multiple
outcomes it was assessed with respect to. Further details
are provided in section S4.1 of the online supplement.

Gene-wise and gene-set analyses. We used the National
Center for Biotechnology Information (NCBI) Build 37 gene
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locations to annotate SNPs to genes, allowing SNPs within a
25-kb window of the gene start and end points to be mapped
to each gene. We used MAGMA, version 1.05b (54), to per-
formgene-wise andgene-set analyses for the top 18 candidate
genes separately in theUKBiobank and PGC data sets. Gene-
wise tests summarize the degree of association between a
phenotype and polymorphisms within a given gene; in
contrast, gene-set tests examine the association between a
phenotype and a set of genes rather than individual genes.

We conducted gene-wise association analyses for each
gene and outcome using the MAGMA default gene-level
association statistic (sum 2log p-based statistics and prin-
cipal components regression, for tests based on summary
statistics and individual-level genotypes, respectively) and
using a liberal significance threshold of alphagene=0.05/
18=2.7831023 to correct for multiple tests across the
18 candidate genes. We used summary statistics from the
PGC2 depression GWAS (18) (excluding UK-based cohorts)
as input for the PGC analyses, whereas individual-level ge-
notypes were available for the UK Biobank. The gene-level
association statistics were in turn used to perform “com-
petitive” gene-set tests that compared enrichment of de-
pression phenotype–associated loci between our set of
18 candidate genes and all other genes not in the gene set,
controlling for potentially confounding gene characteristics.
Further analyses, which compared the 18 candidate genes to
negative control sets of genes involved in type 2 diabetes,
height, or synaptic processes, are described in section S4.2 of
the online supplement, and results are reported in sectionS11.

RESULTS

Polymorphism-Level Analyses
Table 2 lists the most significant result for each of the most-
studied candidate gene polymorphisms for the main effect
across theeightoutcomes investigated (eightmaineffect tests
per polymorphism) and the interaction effect across five
moderatorsmeasured in theUKBiobank (32 interaction tests
per polymorphism [see section S4.1 of the online supple-
ment]). Given the number of tests conducted, there was little
evidence that any effect was larger than what would be
expected by chance under the null hypothesis. Only for
COMT rs4680 on current depression severity was there was
evidence of a small main effect that surpassed our liberal
threshold of significance, such that the incident rate of cur-
rent depression severity scores decreased by a factor of 0.983
per copy of the G allele (odds ratio 95% CI=0.967–0.999; p=
0.002) (Figure 2). Detecting an effect of this size at an alpha
level of 0.05 with 80% power would require a sample of over
100,000 individuals (see section S4.3 of the online supple-
ment). Similarly, across all polymorphisms, outcomes, and
exposures, on both the additive and multiplicative scales,
no polymorphism-by-exposure moderation effects attained
significance at alphapoly. Failing to include all covariate-by-
polymorphism and covariate-by-moderator terms as cova-
riates, as is common in the G3E literature (33), inflated

product term test statistics on average but did not result in
anyadditional significant effects (see sectionS10of theonline
supplement). Complete results for all outcomes are provided
in sections S7–S10 of the online supplement.

Despite the lack of evidence for G3E effects, all moder-
ators exhibited large significant effects on all outcomes in
the expected directions (see section S6 of the online sup-
plement). For example, experiencing childhood trauma in-
creased odds for estimated lifetime depression diagnosis by a
factor of 1.655 (z=32.048, p=2.333102225) and experiencing
a traumatic event in the past 2 years increased incidence
rate of current depression severity index by a factor of 1.431
(z=27.004, p=1.323102160).

Gene-Level Analyses
Across all candidate genes and outcomes, onlyDRD2 showed
a significant gene-wise effect (alphagene=0.05/18=2.7831023),
and only on PGC lifetime depression diagnosis, using both
the sum 2log p statistic (p=5.1431027) and the minimum
p-value statistic (p=2.7431023; see Figure 3 for gene-wise
effects on estimated lifetime depression diagnosis and
current depression severity, section S11.1 of the online
supplement for all gene-wise results, and section S4.2 for
comparison of methods). The former estimate, based on the
sum 2log p statistic, was also significant at the more strin-
gent genome-wide level (alphaGW=0.05/19,165=2.6131026).
DRD2 did not exhibit a significant effect on any of the UK
Biobank outcomes despite its high genetic correlations with
the UK Biobank depression phenotypes (see Table S3.3 and
Figure S3.3 in the online supplement). Investigating the ef-
fects of the 18 genes together as a set revealed no associations
with depression above what would be expected by chance
under the null hypothesis; the set of 18 depression candidate
genes didnot showstronger associationswith anydepression
phenotype compared with all other genes at an alpha of 0.05
(see section S11.2 of the online supplement).

Attempted Replication of Top 16 Loci Implicated by
PGC GWAS Results
In order to contextualize the lack of replication of the
16 candidate genetic polymorphisms, we sought to replicate
the top 16 independent genome-wide significant loci impli-
cated for PGC lifetime diagnosis by examining their associ-
ations with estimated lifetime diagnosis in the independent
UKBiobank sample (for details, see section S4.5 of the online
supplement). Three loci attained significance at alphapoly
(0.05/16) (rs12552, rs12658032, and rs11135349; see section
S12 of the online supplement), which is consistent with the
lowpower to detect small associations; themedian power for
the 16 loci was 0.143, and the 95% confidence interval for
number of replications we would expect given power esti-
mates was 2 to 7 (see Figure S4.6 in the online supplement).

Sensitivity of Results to Measurement Error
One possible reason candidate gene polymorphism associa-
tions detected in small samples are not replicated in large
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GWASs is the potentially worse phenotyping and higher
measurement error in predictor or outcome variables in
GWAS data sets. To investigate this possibility, we used a
Monte Carlo procedure to quantify the extent to which
measurement error may have affected the statistical power
of our tests. As a lower bound on a candidate gene poly-
morphism study effect sizes, we used the minimally detect-
able log odds ratio for both main and interaction effects
corresponding to 50% power at an alpha of 0.05 in a balanced

case-control study of 1,000 individuals and where the risk
allele frequency was 0.5 (e.g., for main effects, genomic
relative risk=1.16). Simulations demonstrated that we had
∼100% power to detect such effects under multiple severe
measurement error scenarios in a sample size typical of that
in our UK Biobank analyses (∼30,000 case subjects and
∼85,000 control subjects; see section S4.3.3 of the online
supplement). This was true even in the extreme scenario in
which half of diagnoses and half of traumatic exposureswere

TABLE 2. Minimum p value effect across eight main effect models and 32 interaction effect models per polymorphisma

Polymorphism MAF
Outcome:

Additive Effect b Min p
Outcome:

Interaction Effect Moderator Scale b Min p

SLC6A4;
5-HTTLPRb,c

0.499 Current depression
severity

0.008 0.138 Lifetime episode
count

TDI Primary 0.019 0.041

BDNF; rs6265 0.188 Severe recurrent
depression

0.018 0.325 Estimated lifetime
depression
diagnosis

TDI Alternate 0.007 0.008

COMT; rs4680 0.483 Current depression
severity

–0.017 0.002d Conditional lifetime
symptom count

Stressor-induced
depressione

Alternate 0.048 0.040

HTR2A; rs6311 0.402 Estimated lifetime
depression diagnosis

0.020 0.045 Estimated lifetime
depression
diagnosis

Childhood trauma Alternate 0.008 0.072

TPH1;
rs1800532

0.391 Current depression
severity

–0.012 0.036 Conditional lifetime
symptom count

Childhood trauma Primary –0.045 0.049

DRD4; VNTRb 0.223 Touchscreen probable
lifetime diagnosis
(ordinal)

0.022 0.079 Severe recurrent
depression

TDI Primary 0.011 0.094

DRD2;
rs1800497

0.201 PGC lifetime diagnosis –0.019 0.006 Conditional lifetime
symptom count

Stressor-induced
depressione

Alternate –0.044 0.134

MAOA; VNTRb f Severe recurrent
depression

0.023 0.073 Conditional lifetime
symptom count

TDI Primary –0.024 0.014

APOE;
rs429358/
rs7412b

0.148 Lifetime episode count 0.019 0.091 Current depression
severity

Recent trauma Alternate –0.182 0.009

MTHFR;
rs1801133

0.334 Current depression
severity

–0.012 0.034 Estimated lifetime
depression
diagnosis

Adulthood trauma Alternate –0.007 0.054

CLOCK;
rs1801260

0.268 Touchscreen probable
lifetime diagnosis

0.030 0.013 Severe recurrent
depression

TDI Primary 0.014 0.012

SLC6A3;
VNTRb

0.255 Touchscreen probable
lifetime diagnosis

0.019 0.114 Estimated lifetime
depression
diagnosis

Childhood trauma Alternate –0.008 0.099

ACE; in/del 0.474 Touchscreen probable
lifetime diagnosis

0.016 0.143 Lifetime episode
count

TDI Primary 0.015 0.107

ABCB1;
rs1045642

0.456 PGC lifetime diagnosis –0.006 0.164 Current depression
severity

Recent trauma Alternate –0.108 0.027

DRD3; rs6280 0.336 Current depression
severity

–0.010 0.078 Current depression
severity

Recent trauma Alternate –0.111 0.031

DBH; rs1611115 0.205 Estimated lifetime
depression diagnosis

–0.014 0.236 Severe recurrent
depression

Adulthood trauma Alternate –0.005 0.087

a MAF=minor allele frequency in the subset of theUKBiobank sample forwhomestimated lifetime depression diagnosis was available; PGC=Psychiatric Genomics
Consortium; TDI=Townsend deprivation index. “Touchscreen” refers to the initial computerized touchscreen interview in the UK Biobank. The p values are
the minimum for each polymorphism across outcomes/moderators for additive and interaction effects (on additive and multiplicative scales), respectively.
Interaction tests were not conducted in the PGC sample because moderators were unavailable for that sample. Only one effect was significant after a liberal
correction for number of polymorphisms (but not for outcomes or moderators; alphapoly=0.05/16=3.125310–3). Details of each model are provided in section
S4 of the online supplement, with all interaction models listed in Table S4.1; complete results are presented in sections S7–S9 of the online supplement.

b VNTRs and the triallelic APOE polymorphism were unavailable for the PGC samples, and thus these variants were examined only across the seven UK Biobank
outcomes.

c Allele frequency reflects the low-activity VNTR/rs25531 haplotype (5).
d Significant at alphapoly=3.125310–3.
e Variant-by-stressor-induced depression estimates reflect differences in the magnitude of variant/outcome associations between individuals reporting that
their depression was induced by a stressful event and those reporting otherwise.

f MAOA is located on the X chromosome; frequencies were 0.336 and 0.341 for females and males, respectively.
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FIGURE 2. Main effects and gene-by-environment effects of 16 candidate polymorphisms on estimated lifetime depression diagnosis
and current depression severity in the UK Biobank samplea
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determined by coin toss (see Figure S4.5 in the online
supplement).

DISCUSSION

We examined multiple types of associations between 18
highly studied candidate genes for depression and multiple
depression phenotypes. The study was very well powered
compared with previous candidate gene studies, with Ns
ranging from 62,138 to 443,264 across subsamples. Despite
the high statistical power, none of the most highly studied
polymorphismswithin these genes demonstrated substantial
contributions to depression liability. Furthermore, we found
no evidence to support moderation of polymorphism effects
by exposure to traumatic events or socioeconomic adversity.
We also found little evidence to support contributions of
other common polymorphisms within these genes to de-
pression liability, except DRD2, which showed a genome-
wide significant gene-wise effect on depression diagnosis in
the PGC sample but not on any outcomes in the UK Biobank
sample.The reasons for the failure ofDRD2 to replicate in the
UK Biobank are unclear, but it could be due to sampling
variability, lower statistical power in theUKBiobank, or false
positive or negative findings. Phenotypic heterogeneity,
however, is an unlikely explanation, as genetic correlation
estimates between depression phenotypes across samples

were high (see Table S3.3 and Figure S3.3 in the online
supplement)—for example, PGC lifetime depression di-
agnosis was strongly associated with estimated lifetime de-
pression diagnosis from the UK Biobank online follow-up
questionnaire (�h2LDSC=0.085, SE=0.004, and �h2LDSC=0.057,
SE=0.007, respectively;�rg= 0.855, SE=0.054, p=2.08310257),
which was in turn strongly associated with probable lifetime
diagnosis from the UK Biobank initial touchscreen interview
(�h2LDSC=0.090, SE=0.008;�rg=0.939, SE=0.082, p=2.83310230).
Finally, as a set, depression candidate genes were no more
related to depression phenotypes than noncandidate genes.
Our results stand in stark contrast to the candidate gene
literature, where large, statistically significant effects are
commonly reported for the specific polymorphisms in the
18 candidate genes we investigated here.

Several features of this investigation set it apart from
previous candidate gene replication attempts, meta-analyses
of candidate gene studies, and genome-wide studies that
failed to support roles for depression candidate polymor-
phisms. First, this is the only study to have imputed and
examined the effects of several highly studied VNTR poly-
morphisms in a largeGWASdata set, including 5-HTTLPR in
SLC6A4, which was examined in 38.14% of the depression
candidate gene studies we identified (see reference 29 for
imputation details). Second,we thoroughly examined several
distinct depression phenotypes (e.g., diagnosis, depressive

FIGURE 3. Gene-wise statistics for effects of 18 candidate genes on primary depression outcomes in the UK Biobank samplea
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episode recurrence, symptom count among depressed indi-
viduals) to ensure that our results did not reflect a single
operationalization of depression. Some researchers have
attributed the poor replicability of candidate gene findings
to specificity of effects with respect to particular types of
depression or stressors (e.g., prior versus subsequent de-
pression onsetwith respect to stress exposure [38], recurrent
versus single-episode depression [55], and financial versus
other stress exposure [56]). We therefore examined all
available depression and exposure phenotypes reflecting
constructs of interest in the candidate gene literature. Re-
sults for all measures and modeling choices (e.g., multipli-
cative versus additive interactions), presented in detail in
the supplement (see sections S7–S11 of the online supple-
ment), were consistently null with respect to candidate
gene hypotheses. Third, we employed exceedingly liberal
significance thresholds (e.g., for polymorphism-wise anal-
yses, alphapoly=3.1331023, as opposed to the standard
alphaGWAS=531028 utilized in GWASs) across all outcomes
to ensure that no possible effect was missed, correcting only
for the number of polymorphisms we examined. Our results
therefore suggest that the zero or near-zero effect sizes of
these candidate polymorphisms, rather than the multiple-
testing burden imposed by genome-wide scans, account for
the previous failures of large GWASs to detect candidate
polymorphismeffects. Finally, andperhapsmost importantly,
unlikemeta-analyses that usepreviously published candidate
gene findings, our results cannot be affected by selective
publication or reporting practices that can inflate type I er-
rors and lead to biased representations of evidence for
candidate gene hypotheses.

Our study has several limitations. First, it is possible that
we failed to identify a small number of candidate gene
publications and that this resulted in the omission of some
depression candidate genes examined in 10 or more publi-
cations. Nevertheless, the top nine of the 18 identified genes
accounted for 86.59%of the estimated number of studies, and
it is unlikely that we omitted any depression candidate genes
with popularity approaching that of, for example, SLC6A4
or COMT. Second, a subset of the UK Biobank sample was
ascertained for smoking behaviors (the BiLEVE study [57]),
and controlling for genotyping batch (which differentiates
the two subsamples) has the potential to induce collider bias
(58). However, only one of the 16 candidate gene polymor-
phisms demonstrated minor allele frequency (MAF) differ-
ences across these two subsamples (rs6311; x2=12.558, df=2,
p=0.002; MAF=0.402 in the BiLEVE sample, MAF=0.405
otherwise) and it is unlikely that ascertainment in the
BiLEVE subsample unduly influenced association statistics.
However, the potential influence of ascertainment in the
BiLEVE subsample on interaction effect estimates, as well as
other possible sources of selection-induced bias, remains
unclear. Third, whereas some of phenotypes we examined
closely matched standard diagnostic instruments (e.g., cur-
rent depression severitywasbasedon thewidely usedPatient
Health Questionnaire–9 [59]), others were of undetermined

reliability. For example, one of the nine DSM-5 depression
symptoms (motor agitation/retardation) was omitted from
the UK Biobank online mental health follow-up question-
naire, and our estimated lifetime depression diagnosis
phenotype required four or more of eight symptoms rather
than the standard five or more of nine symptoms (in addition
to episode duration and impairment criteria; see section S3.1
of the online supplement). However, enforcing stricter case-
control criteria (i.e., comparing individuals who endorsed
no 2-week period of either anhedonia or depressed mood
throughout their lifetime to individuals reporting recurrent
episodes, endorsing five or more of eight symptoms, and
meeting duration and impairment criteria) failed to alter
results (see sections S7–S9 of the online supplement), despite
the fact that even this diminished sample size (N=67,304)was
much larger than any previous candidate gene study we are
aware of. Fourth, some of the phenotypes we examined were
possiblymeasuredwithgreatererror than is typical in smaller
candidate gene studies, an issue for which large studies are
often criticized. For example, the prevalence of our measure
of traumatic exposure in adulthood was uncommonly high
(59.11%), and most of our retrospective measurements were
likely corrupted by recall bias. However, as demonstrated in
section S4.3.3 of the online supplement, even extreme
measurement error cannot explain our failure to detect the
relatively large effects necessary for detection in smaller
samples. Furthermore, follow-up analyses demonstrated
strong effects of all environmental moderators across all
outcomes (see section S6 of the online supplement), sug-
gesting that both moderators and depression phenotypes
were measured with sufficient accuracy to detect known
environmental effects. It is exceedingly difficult to construct
a plausible measurement error model that could, for exam-
ple, comfortably reconcile the large effect estimate of
childhood trauma on estimated lifetime diagnosis (odds
ratio=1.655, p=2.333102225) and the negligible estimate for
the 5-HTTLPR-by-childhood trauma interaction effect (odds
ratio=0.988, p=0.919)with the existence of a substantial G3E
interaction effect.

The genetic underpinnings of common complex traits
such as depression appear to be far more complicated than
originally hoped (60, 61), and large collaborative efforts have
not supported the existence of common genetic variantswith
large effects on depression liability (18). In the context of our
understanding of psychiatric genetics in the 1990s and early
2000s, the most studied candidate genes and the polymor-
phisms within them were defensible targets for association
studies. However, our results demonstrate that historical
depression candidate gene polymorphisms do not have de-
tectable effects on depression phenotypes. Furthermore, the
candidate genes themselves (with the possible exception
of DRD2) were no more associated with depression pheno-
types than genes chosen at random. The present study had
.99.99% power at alphaGWAS=531028 to detect a main ef-
fect of the magnitude commonly reported in candidate gene
studies, evenallowing forextrememeasurementerror inboth
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outcome and moderator phenotypes (see section S4.3 of the
online supplement). Thus, it is extremely unlikely that we
failed to detect any true associations between depression
phenotypes and these candidate genes. The implication of
our study, therefore, is that previous positive main effect
or interaction effect findings for these 18 candidate genes
with respect to depression were false positives. Our results
mirror those of well-powered investigations of candidate
gene hypotheses for other complex traits, including those of
schizophrenia (16, 25) and white matter microstructure (19).
The potential for self-correction is an essential strength of
the scientific enterprise; it is with this mechanism in mind
that we present these findings. In agreement with the re-
cent recommendations of the National Institute of Mental
Health Council Workgroup on Genomics (62), we conclude
that it is time for depression research to abandon historical
candidate gene and candidate gene-by-environment in-
teraction hypotheses.
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