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Objective: Underage drinking is widely recognized as a
leading public health and social problem for adolescents in
the United States. Being able to identify at-risk adolescents
before they initiate heavy alcohol use could have important
clinical and public health implications; however, few inves-
tigations have explored individual-level precursors of ado-
lescent substance use. This prospective investigation used
machine learning with demographic, neurocognitive, and
neuroimaging data in substance-naive adolescents to identify
predictors of alcohol use initiation by age 18.

Method: Participants (N=137) were healthy substance-
naive adolescents (ages 12–14) who underwent neu-
ropsychological testing and structural and functional
magnetic resonance imaging (sMRI and fMRI), and then
were followed annually. By age 18, 70 youths (51%) initiated
moderate to heavy alcohol use, and 67 remained nonusers.
Random forest classification models identified the most
important predictors of alcohol use from a large set

of demographic, neuropsychological, sMRI, and fMRI
variables.

Results: Random forest models identified 34 predictors
contributing to alcohol use by age 18, including several
demographic and behavioral factors (being male, higher
socioeconomic status, early dating, more externalizing be-
haviors, positive alcohol expectancies), worse executive
functioning, and thinner cortices and less brain activation in
diffusely distributed regions of the brain.

Conclusions: Incorporating a mix of demographic, behav-
ioral, neuropsychological, andneuroimagingdatamaybe the
best strategy for identifying youths at risk for initiating alcohol
use during adolescence. The identified risk factors will be
useful for alcohol prevention efforts and in research to ad-
dress brain mechanisms that may contribute to early drinking.
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Underage drinking is widely recognized as one of the leading
public health and social problems for adolescents in the
United States. Teenage drinking is common in the United
States, with approximately 66% of 18-year-olds reporting
alcohol use (1). Adverse consequences of adolescent drinking
include higher rates of violence, missing school, drunk
driving, riding with a drunk driver, suicide, and risky sexual
behavior, and it accounts formore than 5,000 deaths per year
(2). Thus, being able to identify at-risk children before they
initiate heavy alcohol use could have immense clinical and
public health implications. However, few investigations have
been conducted to gain a greater understanding of individual
differences that could lead to adolescent substance use.

Previous findings have suggested that a mix of social,
psychological, and biological mechanisms contribute to al-
coholuseduringadolescence (3–5).Demographic risk factors
for alcohol initiation include beingmale, having higher levels
of psychological problems and externalizing behaviors, and

having positive expectations about the effects of alcohol (5).
Neuropsychological and neuroimaging data may provide
quantification of underlying behavioral mechanisms of risk
for substance use. Several studies suggest that poorer per-
formance on tests of executive functioning (6), as well as
having less brain activation relative to comparison partici-
pantsduring tasksofworkingmemory, inhibition, andreward
processing, can be used to predict which youths will initiate
alcohol useduring adolescence (7–11). In addition, having less
volume in brain regions involved in impulsivity, reward
sensitivity, and decisionmaking appear to influence initiation
of alcohol and other substance use during adolescence (7, 11).
Understanding factors involved in the initiation and esca-
lationof alcoholuseduring adolescence couldprovide crucial
information for prevention and intervention efforts.

Machine learning approaches (12–17) are increasingly
beingused to generatepredictionsbasedoncomplexdata like
brain imaging (18, 19). Random forests (20) is a machine
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learning tool that canbeused for feature selectionand/or robust
predictive modeling and that has been suggested to be superior
to other machine learning techniques (21). The random forest
technique consists of a complex partitioning of the predictor
variable space and can be used when the number of predictor
variables is much larger than the number of study participants,
as is typically the case with neuroimaging data. Moreover, the
random forest model has a low tendency to overfit, and the
stepwise partitioning of the predictor space can yield high-
order interactions among many predictor variables that
cannot be identified using other classification procedures
(22). Random forest models have been successfully used to
detect a number of clinical outcomes and to predict be-
haviors (23), but they have not been used to identify pre-
dictors of substance use initiation in adolescents.

The present study uses random forest models in combi-
nationwithmultimodal imaging and neuropsychological test
data to identify the best predictors of initiation tomoderate to
heavy alcohol use by age 18 in substance-naive adolescents.
Based on previous research, initiation of substance use was
expected to be associatedwith key demographic factors (e.g.,
being male, endorsing more externalizing behaviors and
psychopathology, having positive expectations about alcohol
use), neuropsychological performance (e.g., poorer perfor-
mance on executive function tasks), and thinner cortices and
less brain activation in key brain regions involved in executive
functioning and decision making. Unlike other studies that fo-
cused on initiation of any alcohol use (11),wewere interested in
factors that predicted a pattern of more frequent and intense
alcohol use, as these have been most consistently associated
with poorer cognitive (7, 24) and social (5) outcomes.

METHOD

Participants
Participants were 137 healthy children and adolescents ages
12–14 (44% female) from a larger ongoing neuroimaging study
recruitedthroughflyerssent tohouseholdsofstudentsattending
local middle schools (Table 1). Extensive screening and back-
groundinformationwasobtainedfromtheyouths,onebiological
parent, and one other parent or close relative. All primary in-
formants livedwiththeyouths.Thestudyprotocolwasexecuted
in accordancewith the standards approved by the University of
California, San Diego, Human Research Protections Program.

Strict exclusionary criteria for project entry included
experiencewith alcohol or drugs, defined as$10 total days in
their life in which drinking had occurred, or .2 drinks in a
week (i.e., two drinks on one occasion or one drink on two
occasions in the same week); $3 lifetime experiences with
marijuana and any use in the past 3 months; $5 lifetime
cigarette uses; any history of other intoxicant use; any sug-
gestion of prenatal exposure to alcohol (.2 drinks during
a given week) or any illicit drug; premature birth (i.e.,
born before the 35th gestational week); a history of any
neurological or DSM-IV axis I disorder (determined by the
National Institute of Mental Health Diagnostic Interview

Schedule for Children, version 4.0), head trauma, or loss of
consciousness.2 minutes; chronic medical illness, learning
disability or mental retardation, or use of medications po-
tentially affecting the brain; contraindication to MRI (e.g.,
braces); inadequate comprehension of English; and non-
correctable sensory problems.

Measures
Substance use measures. At baseline and follow-up assess-
ments, the Customary Drinking and Drug Use Record (25)
was administered toobtain quantity and frequencyof lifetime
and recent (past year) alcohol,marijuana, and other drug use,
withdrawal/hangover symptoms, and DSM-IV abuse and
dependence criteria. Breath alcohol testing and urine toxi-
cology screens confirmed self-report data at baseline. Sub-
stance use informationwas updated every 6months by telephone
or in person after the participant’s baseline assessment. Parent
and/or informant (sibling, friend, roommate) report of youth
substance use was collected as collateral evidence.

Demographic information.The Structured Clinical Interview
(26) was administered to youths to ascertain information
about the child’s sex, age, race, academic functioning (i.e.,
grade point average on a 4.0 scale), grade in school, family
characteristics (i.e., birth order, living situation, parent’s
marital status), dating status (e.g., never dated or history of
dating), involvement in extracurricular activities, and hours
of video games played per week.

Socioeconomic status. Socioeconomic background informa-
tion (i.e., educational attainment, occupation, and salary of
each parent) was obtained from parents and converted to
a Hollingshead Index of Social Position score (27).

Family background. At baseline, the Family History Assess-
mentModule (28) was administered to parents and youths to
ascertain familial density of alcohol and drug use disorders
in first- and second-degree relatives. Family history density
scores were calculated by adding 0.5 for each biological
parent and 0.25 per biological grandparent endorsed by ei-
ther youth or parent as having alcohol use disorder or sub-
stance use disorder (possible scores range from 0 to 4).

Pubertal development. The Pubertal Development Scale (29)
determined the current level of pubertal development for girls
and boys separately with five sex-specific items, with scores
ranging from 1 (prepubertal) to 4 (postpubertal). Participants
in this sample were, on average, early to midpubertal at
baseline and were late to postpubertal at follow-up.

Psychopathology and mood. The parent-administered Child
Behavior Checklist (30) provided age- and gender-normed
continuous measures of externalizing and internalizing psy-
chopathology. T scores from the following subscales of the
Child Behavior Checklist were used in analyses: withdrawn,
somatic complaints, anxious/depressed, social problems, thought
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TABLE 1. Demographic, Psychological, and Neuropsychological Variables for Adolescents Who Remained Nonusers or Transitioned to
Moderate to Heavy Substance Use Patterns by Approximately Age 18 (N=137)a

Variable

Continuous Nonusers
(N=67)

Moderate to Heavy
Alcohol Initiators

(N=70)

Mean SD % Mean SD % t or x2 df p Cohen’s d

Demographic and family variables
Sex (female) 60 29 13.48 1, N=137 ,0.001 0.661
Follow-up age (range=16–19)b 18.20 0.66 18.20 0.57 0.07 135 0.943 0.000
Race (Caucasian) 58 77 5.63 1, N=137 0.018 0.414
Baseline Hollingshead Index of
Social Position score
(socioeconomic status)

24.03 16.75 21.11 11.50 1.19 135 0.235 0.203

Family history density of alcoholor
drug use disorder

0.17 0.28 0.18 0.31 0.14 135 0.887 0.034

Baseline Pubertal Development
Scale score (girls only; N=60)

15.05 3.15 14.95 3.15 0.12 58 0.908 0.032

Baseline Pubertal Development
Scale score (boys only; N=77)

10.81 3.33 11.20 3.37 0.48 75 0.632 0.116

Baseline grade in school 6.76 0.74 7.00 0.87 1.73 135 0.086 0.297
Birth order 1.52 0.79 1.64 0.76 0.91 135 0.364 0.155
Baseline% livingwith bothparents 79 81 0.12 1, N=137 0.732 0.059
Baseline % youth with biological
parents married to each other

78 77 0.00 1, N=137 0.948 0.000

Baseline youth behavior, mood,
and cognition

Initiated dating by age 14 (%) 22 61 21.37 1, N=137 ,0.001 0.860
Involved in extracurricular
activities (%)

82 89 1.15 1, N=137 0.283 0.184

Hours of video games played per
week

3.10 4.95c 2.47 4.04c 0.72 106 0.472 0.139

Grade point average (4.0 scale) 3.65 0.45 3.47 0.55 2.14 135 0.034 0.358
CBCL externalizing disorder
t score

41.09 7.12d 40.42 7.64d 0.52 128 0.606 0.091

CBCL internalizing t score 44.48 8.80d 42.11 7.65d 1.65 128 0.102 0.287
CBCL withdrawn t score 52.00 3.79d 51.42 2.69d 1.00 128 0.319 0.176
CBCL somatic complaints
t score

52.45 4.13d 51.79 3.15d 1.04 128 0.302 0.180

CBCL anxious/depressed
t score

51.61 3.60d 51.11 2.60d 0.92 128 0.361 0.159

CBCL social problems t score 51.33 3.62d 50.55 1.64d 1.60 128 0.113 0.278
CBCL thought problems
t score

51.98 3.90d 51.03 2.31d 1.70 128 0.091 0.296

CBCL attention problems
t score

51.05 2.16d 51.20 2.81d 0.34 128 0.734 0.060

CBCL delinquent behavior
t score

50.59 1.84d 50.98 2.53d 1.01 128 0.317 0.176

CBCL aggressive behavior
t score

50.75 2.06d 50.68 2.11d 0.19 128 0.852 0.034

CBCL total problem t score 39.83 9.75d 37.83 8.83d 1.22 128 0.223 0.215
Conduct Disorder Questionnaire
total score

0.45 1.08 1.17 1.88 2.75 135 0.007 0.470

BeckDepression Inventory–II total
score

1.39 2.75e 1.25 2.81e 0.30 132 0.765 0.050

State-Trait Anxiety Inventory total
score

26.22 6.66f 26.68 6.48f 0.40 130 0.690 0.070

AEQ total score 79.14 32.23 92.45 29.75 2.51 135 0.013 0.429
AEQ global positive score 37.81 8.37 40.83 9.53 1.97 135 0.051 0.336
AEQ social behavior change score 36.92 7.41 41.23 7.94 3.28 135 0.001 0.561
AEQ improved performance score 16.55 4.57 16.96 4.98 0.50 135 0.621 0.086
AEQ sexual enhancement score 20.15 5.06 21.00 4.07 1.09 135 0.279 0.185
AEQ impaired performance score 98.41 10.08 96.39 10.28 1.16 135 0.247 0.198
AEQ increased arousal score 24.24 5.44 24.96 4.78 0.82 135 0.414 0.141
AEQ relaxation score 41.88 9.83 43.87 7.90 1.31 135 0.193 0.293
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problems, attention problems, delinquent behavior, and
aggressive behavior, as well as three summary scores repre-
senting externalizing, internalizing, and total problems. Youths
completed the Conduct Disorder Questionnaire (31), which
determined DSM-IV diagnostic criteria for conduct disorder;
total symptomcountwasused inanalyses.TheBeckDepression
Inventory–II (32) and the State-Trait Anxiety Inventory (33)
assessed recent depressive and anxiety state symptoms in youths.

Alcohol Expectancy Questionnaire–Adolescent version. Youths
completed theAlcoholExpectancyQuestionnaire–Adolescent
version (AEQ) (34), which was developed to assess beliefs
about the anticipated effects of alcohol. This version yields a
total score (AEQ total score) and seven empirically derived
factor scores indicating expectations for the effects of
drinking alcohol: global positive changes (AEQ global posi-
tive), enhancement/impedance of social behavior (AEQ so-
cial behavior change), improvement in cognitive/behavioral
functioning (AEQ improved performance), enhancement of
sexuality (AEQ sexual enhancement), deterioration in cognitive/
behavioral functioning (AEQ impaired performance), increased
arousal (AEQ increased arousal), and promotion of relaxation/
tension reduction (AEQ relaxation).

Neurocognition. A comprehensive neuropsychological bat-
tery was completed by youths at baseline to assess cognitive

functioning on several cognitive domains that could poten-
tially affect initiation of alcohol and marijuana use during
adolescence. (See Table 2 for neuropsychological tests and
domains assessed, and see the supplementary references for
neuropsychological testing materials found in the data sup-
plement that accompanies the online edition of this article.)

Follow-up procedures. At baseline, 12- to 14-year-old youths
underwent a baseline interview, neuropsychological testing,
and a structural and functional neuroimaging session. Every
6months, telephoneor in-person interviewsassessedcurrent
substance use and psychiatric functioning. At baseline, all
participants were considered control participants and had
never had more than 10 lifetime alcohol use occasions, with
never more than one drink per occasion, and no more than
three lifetime marijuana use episodes. Ninety-seven percent
of the samplehadneverusedalcohol, and98%hadneverused
marijuana. Rigorous follow-up procedures were used to
ensure excellent follow-up rates (96%). At follow-up (ap-
proximately age 18), participants were classified as either
continuous controls (baseline control who maintained ab-
stinence during the follow-up, defined as 0–4 drinks on an
occasion and,12 lifetimedrinking occasions) ormoderate to
heavy drinking initiators (baseline controls who transitioned
tomoderateorheavyalcoholuse,definedas3–29drinksonan
occasion and 3–834 drinking occasions; see Figure 1 for

TABLE 1, continued

Variable

Continuous Nonusers
(N=67)

Moderate to Heavy
Alcohol Initiators

(N=70)

Mean SD % Mean SD % t or x2 df p Cohen’s d

Baseline substance use
CDDR baseline lifetime smoking
days

0.03 0.17 0.11 0.65 1.03 135 0.305 0.168

CDDR baseline lifetime drinking
days

0.00 0.00 0.31 1.50 1.72 135 0.089 0.292

CDDR baseline lifetime marijuana
use days

0.00 0.00 0.09 0.44 1.59 135 0.115 0.289

Total number of repetitions
excluded during functional
magnetic resonance imaging

4.46 6.77 7.03 8.82 1.90 134 0.060 0.327

Follow-up substance use
Age at first use of alcohol 16.54 1.27g 15.46 1.60 3.09 94 0.003 0.748
Lifetime alcohol use occasions 1.52 2.87g 69.01 110.58 4.99 135 0.000 0.863
Peak drinks on an occasion in past
year

0.46 0.96g 9.30 4.60 15.41 135 0.000 2.66

Lifetime marijuana use occasions 0.06 0.38h 108.61 256.94 3.46 135 0.001 0.597
Reporting .30 lifetime marijuana
use occasions (%)

0 29

Lifetime other drug use 0.00 0.00 7.04 38.05 1.52 135 0.132 0.261

a CBCL=Child Behavior Checklist; AEQ=Alcohol Expectancy Questionnaire; CDDR=Customary Drinking and Drug Use Record.
b All controls in this samplewere at least 17 yearsof age to allow sufficient time to transition to alcohol use. Sixteen-year-old substanceuserswere includedbecause
it was clear that by age 16 they were already using a substance.

c N=108; continuous nonusers, N=55; alcohol initiators, N=53.
d N=130; continuous nonusers, N=64; alcohol initiators, N=66.
e N=134; continuous nonusers, N=66; alcohol initiators, N=68.
f N=132; continuous nonusers, N=64; alcohol initiators, N=68.
g N=26.
h N=2.
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TABLE 2. Baseline Neuropsychological Test Variables in a Study of Neural Predictors of Alcohol Use Initiation During Adolescence

Continuous
Nonusers
(N=67)

Moderate to Heavy
Alcohol Initiators

(N=70)

Variable Domain Assessed Mean SD Mean SD t df p Cohen’s d

Digit vigilance total time
to complete (sec)

Sustained attention 225.06 52.80a 219.59 41.46a 0.67 132 0.504 0.115

Wechsler Abbreviated Scale of
Intelligence (WASI) block
design raw score

Spatial perception, visual
abstract processing,
problem solving

47.27 13.81a 42.86 13.13a 1.89 132 0.060 0.327

WASI matrix reasoning raw
score

Nonverbal abstract problem
solving, inductive reasoning

27.80 3.62b 26.41 3.34b 2.31 131 0.023 0.399

WASI vocabulary raw score Word knowledge, verbal
concept formation

53.02 7.09a 51.96 7.06a 0.87 132 0.389 0.150

WASI similarities raw score Abstract verbal reasoning 35.17 4.24a 34.31 5.07a 1.06 132 0.292 0.184
Delis-Kaplan Executive
Function System (D-KEFS)
trails number-letter
switching time to complete
(sec)

Flexibility of thinking on a
visual-motor task

70.60 19.45 77.46 28.75 1.63 135 0.106 0.279

D-KEFS towers total
achievement score (raw)

Spatial planning, rule learning 17.04 2.68 17.24 2.73 0.43 135 0.669 0.074

D-KEFS color word
interference inhibition time
to complete (sec)

Inhibitory functioning 57.39 14.25 59.60 13.12 0.95 135 0.346 0.161

D-KEFS color word
interference inhibition/
switching time to
complete (sec)

Inhibition/cognitive flexibility 65.81 15.81 63.91 14.39 0.73 135 0.465 0.126

Rey-Osterrieth Complex
Figure (ROCF) copy
accuracy score

Visuospatial functioning;
organization

29.35 3.02a 28.63 3.01a 1.39 132 0.168 0.239

ROCF delay accuracy score Spatial memory 18.09 4.12c 17.77 4.26c 0.43 130 0.665 0.076
Wechsler Intelligence Scale
for Children, 3rd edition
(WISC-III), digits forward
raw score

Attention 9.91 1.84a 10.17 1.94a 0.81 132 0.421 0.138

WISC-III digits backward raw
score

Short-termmemory, attention 6.44 1.74a 6.19 2.05a 0.76 132 0.447 0.131

WISC-III arithmetic raw score Computational skills, auditory
memory, attention, problem
solving

22.23 3.36a 22.46 3.34a 0.39 132 0.701 0.069

WISC-III coding raw score Visual motor speed, visual
memory, sustained effort
and attention

61.20 10.88a 59.37 10.75a 0.98 132 0.329 0.169

WISC-III mazes raw score Planning, perceptual
organization, visual-motor
coordination and speed,
nonverbal reasoning

23.48 3.71a 22.77 3.20a 1.19 132 0.235 0.205

Wechsler Adult Intelligence
Scale (WAIS-IV) letter-
number sequencerawscore

Attention, auditory short-term
memory, sequencing ability

10.69 1.94d 10.09 1.88d 1.65 108 0.103 0.314

Hooper Visual Organization
Test total raw score

Visuospatial functioning and
spatial integration

25.32 2.26d 24.94 2.40d 0.86 108 0.392 0.163

California Verbal Learning Test
(CVLT) list A total 1 to 5 raw
score

Verbal learning and memory 55.91 8.01a 54.51 6.29a 1.12 132 0.263 0.194

CVLT list A trial 1 raw score Verbal learning and memory 7.72 1.93a 7.37 1.64a 1.13 132 0.262 0.195
CVLT list A trial 5 raw score Verbal learning and memory 12.92 1.68a 12.74 1.57a 0.64 132 0.525 0.111
CVLT short delay free raw
score

Verbal learning and memory 11.87 2.07a 11.74 2.29a 0.33 132 0.743 0.060

CVLT short delay cued raw
score

Verbal learning and memory 12.15 1.94e 12.19 1.70e 0.12 129 0.907 0.022
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classification). Participants who had fewer drinking days but
drank significantly on those occasions (e.g., three lifetime
occasions, 15drinksperoccasion)were classifiedasmoderate
to heavy drinkers to capture the fact that they had initiated
significant levels of alcohol use. Sixty-seven participants
(49%) were classified as continuous controls (of whom 61%
continued to remain completely alcohol-naive at follow-up)
and 70 (51%) as moderate to heavy drinking initiators (see
Table 1; of the alcohol initiators, 27% met criteria for mod-
erate drinking, and 73% met criteria for heavy drinking).
Continuousnonuserswere at least 17 years of age at follow-up
to allow sufficient time to transition to alcohol use. Sixteen-
year-old substance users were included because it was clear
that onset of substance use had occurred by that age. For this
sample, rates of alcohol initiation were consistent with those
of the general U.S. adolescent population (1).

Procedures
Image acquisition. High-resolution anatomical and func-
tionalMRI (fMRI) imageswere collected at the University of
California, San Diego, Center for Functional MRI on a 3-T
CXK4 short-bore Excite-2 MR system (General Electric,
Milwaukee) with an eight-channel phase-array head coil.
Participants were placed on the scanner table, and the head
was stabilized within the head coil using foam cushions
(NoMoCo, La Jolla, Calif.). Scan sessions involved a 10-second
scout scan to ensure good head placement and slice selection
covering the whole brain, followed by a high-resolution T1-
weighted sequence using a sagittally acquired spoiled gra-
dient recalled sequence (field of view=24 cm, 25632563192
matrix, 0.9430.9431 mm voxels, 176 slices, TR=20 ms,
TE=4.8 ms, flip angle=12°, acquisition time=7 minutes and
26 seconds). Blood-oxygen-level-dependent (BOLD) re-
sponse contrast was measured with T2*-weighted axially
acquired echo-planar images (field of view=24 cm, 64364
matrix, 3.7533.7533.8 mm voxels, 32 slices, TE=30 ms,
TR=2,000 ms, flip angle=90°, ramped bandwidth=250 KHz).
Field maps were acquired to minimize warping and signal
dropout (∼4 minutes total) and employed two different echo
times to assess field inhomogeneities and signal distortions

using the same grid parameters under which echo-planar
images were acquired.

Visual working memory task. All participants were admin-
istered the same fast event-related visual working memory
task (35) during fMRI acquisition, which has been shown to
predict future initiation of alcohol use (8). Participants were
instructed to indicate whether dot arrays presented with a
2,000 ms interstimulus interval were identical or different
(i.e., one dot was of a different color). Each participant
completed 30 trials of each level of complexity (two, four, or
six dots) presented randomly, in addition to 69 null trials of
2,000 ms each interspersed to provide an optimized fast
event-related sequence (256 repetitions in all; 8 minutes and
32 seconds). The six-dot condition is considered supra-span
(i.e., higher than most people’s working memory span), and
the two-dot condition is subspan (i.e., well within most
people’s working memory load capacity) (36). None of the
137 total runs used during analysis had performance at or
below chance level (50%) on the two-dot condition (i.e., low-
capacity/easy condition). A greater BOLD response contrast

TABLE 2, continued

Continuous
Nonusers
(N=67)

Moderate to Heavy
Alcohol Initiators

(N=70)

Variable Domain Assessed Mean SD Mean SD t df p Cohen’s d

CVLT longdelay free rawscore Verbal learning and memory 12.11 1.91f 12.30 1.79f 0.60 130 0.550 0.103
CVLT long delay cued raw
score

Verbal learning and memory 12.52 1.80f 12.54 1.75f 0.04 130 0.968 0.011

Wide Range Achievement
Test–3 Reading raw score

Premorbid functioning and
intellectual capacity

45.44 4.14a 44.67 4.04a 1.08 132 0.280 0.188

a N=134; continuous nonusers, N=64; alcohol initiators, N=70.
b N=133; continuous nonusers, N=64; alcohol initiators, N=69.
c N=132; continuous nonusers, N=62; alcohol initiators, N=70.
d N=110; continuous nonusers, N=55; alcohol initiators, N=55.
e N=131; continuous nonusers, N=63; alcohol initiators, N=68.
f N=132; continuous nonusers, N=63; alcohol initiators, N=69.

FIGURE 1. SubstanceUseClassificationChart for a Study of Neural
Predictors of Alcohol Use Initiation During Adolescencea

Average drinks per 
occasion (last 3 months): 1–2 1–2 1–2 3–4 3–4 >4

Largest # drinks in year: 1–2 3–4 >4 3–4 >4 >4

Fr
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q
u

e
n

cy

<1×/year
Control

<1×/month Moderate 
Drinker1–3×/month

4–8×/month

>8×/month Heavy Drinker

Daily

a “Control” indicates continuously nondrinking participants. “Largest #
drinks in year” refers to the largest number of alcoholic drinks con-
sumed on one occasion in the past year. Reprinted with permission
fromAmerican Psychiatric Association Publishing, Squeglia et al., Brain
Development in Heavy-Drinking Adolescents. Am J Psychiatry 2015;
172:531–542.
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(i.e., a largerfit coefficient) to the six-dot (supra-
span) relative to the two-dot (subspan) condi-
tion was interpreted as having more cognitive
energy expended to complete the challenging
supra-span trials.

Data Analysis
Structural image processing. FreeSurfer, ver-
sion 5.0 (surfer.nmr.mgh.harvard.edu) was used
for cortical surface reconstruction and cortical
thicknessestimation(37,38)ofthehigh-resolution
T1-weighted MR data. The FreeSurfer program
uses a series of automated imaging algorithms to
producemeasuresofcortical thickness.Onerater
(L.M.S.), blind to participant characteristics,
followed the reconstructionprocedures (http://
surfer.nmr.mgh.harvard.edu/fswiki/Recom-
mendedReconstruction) to identify and correct
any errors made during the cortical recon-
struction. After inspection, an automated
parcellation procedure divided each hemi-
sphere into 34 independent cortical regions
based on gyral and sulcal features (39; see
Table 3 for a list of parcellated brain re-
gions). Cortical thickness estimates of each
region were extracted for subsequent sta-
tistical analyses.

Functional image processing. AFNI (40) was
usedtoprocess functional images.Artifact and
aberrant signal levels were examined in each
repetition of each slice using an automated
program developed by the University of
California, San Diego, Laboratory of Cognitive
Neuroimaging.Motion in time-seriesdatawas
corrected by registering each acquisition to
the maximally stable base volume with an
iterated least squares algorithm (41) to esti-
mate three rotational and three displacement
parameters for eachparticipant.Anoutputfile
specifying adjustments made controlled for
spin history effects in analyses if no significant
task-correlated motion was found. To evalu-
ate task-related motion, the reference vector
was correlated with the six motion parame-
ters for eachdata set.Data setswith significant
task-correlated or bulkmotion (.2mm)were
excluded from analyses. Two trained raters
then scanned the time series to omit any
remaining repetitions with visually discern-
ible motion; if more than 15% of repetitions in
a task were discarded, the run was not used
(N=10, not described in this article).

Raw time-series data were standardized
to percent signal change from baseline, and
deconvolution was conducted with a reference

TABLE 3. List of Variables Selected as Important in EachModel in a Study of Neural
Predictors of Alcohol Use Initiation During Adolescencea

Variable Model 1 Model 2 Model 3

Demographic and family variables
1. Sex X X X
2. Baseline age
3. Follow-up age X X X
4. Race
5. Hollingshead Index of Social Position
score (socioeconomic status)

X X X

6. Family history density of alcohol or
drug use disorder

7. Pubertal Development Scale score X
8. Grade in school
9. Birth order
10. Living with both parents
11. Parents’ marital status
Youth behavior, mood, and cognition
12. Dating status X X X
13. Child involvement in extracurricular

activities
14. Hours of video games per week
15. Grade point average X
16. CBCL externalizing t score
17. CBCL internalizing t score
18. CBCL withdrawn t score
19. CBCL somatic complaints t score
20.CBCL anxious/depressed t score
21. CBCL social problems t score
22. CBCL thought problems t score
23. CBCL attention problems t score
24. CBCL delinquent behavior t score
25. CBCL aggressive behavior t score
26. CBCL total problem t score X
27. Conduct Disorders Questionnaire

total score
X X X

28.Beck Depression Inventory-II total
score

29. State-Trait Anxiety Inventory total
score

30. AEQ total score X X X
31. AEQ global positive score X X X
32. AEQ social behavior change score X X X
33. AEQ improved performance score
34. AEQ sexual enhancement score
35. AEQ impaired performance score
36. AEQ increased arousal score
37. AEQ relaxation total score
38.CDDR baseline lifetime smoking

days (,5 for all participants)
39.CDDR baseline lifetime drinking

days (,10)
40.CDDR baseline lifetime marijuana

use days (,3)
41. Repetitions excluded from functional

magnetic resonance imaging (fMRI)
series due to motion

X

Neuropsychological testing variables
1. Digit vigilance total time to complete
(sec)

X X

2. WASI block design raw score X X
3. WASI matrix reasoning raw score X X
4. WASI vocabulary raw score X

continued
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function that convolved the behavioral stimuli
with a hemodynamic response model while
covarying for linear trends and motion cor-
rection, ignoringthefirst threerepetitions(42).
This resulted in a functional image in which
every voxel contains a fit coefficient repre-
senting the change in signal across behavioral
conditions, as well as the signal change per-
centage and threshold statistics. Standard-
ized Talairach transformations were made for
each high-resolution anatomical image, and
functional data sets were warped in accor-
dance to manage individual anatomical vari-
ability. Functional data were resampled into
isotropic voxels (3 mm3), and a spatial
smoothing Gaussian filter (full-width, half
maximum, 5 mm) was applied to minimize the
influence of individual anatomic variability.
Coregistrationof structural images to functional
images was performed with a mutual infor-
mation registration program (41) that robustly
handles images with different signal charac-
teristics and different spatial resolutions.

Volumetric and functional image alignment.
The AFNI Surface Mapper (SUMA) program
(43) was used to align segmented volumetric
and functional data sets to the same template
space. SUMA programs allow for fine control
over the mapping between volume and sur-
face domains produced by the FreeSurfer seg-
mentation process while maintaining a direct
link to volumetric data from which surface
models and data originated. Combining func-
tional and structural neuroimaging data using
SUMA has been described in detail elsewhere
(44).BOLDresponsevalues,averagedacross the
parcellation regions derived from FreeSurfer
(39), were imported from AFNI to SPSS (IBM,
Armonk, N.Y.).

Statistical Analysis
Independent-sample t tests or chi-square tests
(for dichotomous variables) compared differ-
ences between groups (Table 1). Random forest
classification was implemented in the R statis-
tics package (http://cran.r-project.org; random-
Forest library) to predict alcohol initiator status,
with missing data handled using the rfimpute
function (see Table 1 for sample sizes per vari-
able). Default parameters for the randomForest
function were used, with the exception of ex-
panding the number of trees to 2,000 (45).

Random forest classification has been de-
scribed in detail elsewhere (20, 23). Briefly,
random forest classification has two primary

TABLE 3, continued

Variable Model 1 Model 2 Model 3

5. WASI similarities raw score
6. D-KEFS trails condition 4 (number-
letter switching) time to complete
(sec)

X

7. D-KEFS towers total achievement
raw score

8. D-KEFS color word interference
inhibition time to complete (sec)

9. D-KEFS color word interference
inhibition/switching time to complete
(sec)

10. ROCF copy accuracy score
11. ROCF delay accuracy score
12. WISC-III digits forward raw score
13. WISC-III digits backward raw score
14. WISC-III arithmetic raw score
15. WISC-III coding raw score
16. WISC-III mazes raw score
17. WAIS-IV letter-number sequence

raw score
18. HooperVisualOrganizationTest total

raw score
19. CVLT list A total 1 to 5 raw score
20. CVLT list A trial 1 raw score
21. CVLT list A trial 5 raw score
22. CVLT short delay free raw score
23. CVLT short delay cued raw score
24. CVLT long delay free raw score
25. CVLT long delay cued raw score
26. WRAT–3 reading raw score
Cortical thickness and BOLD regionsb

1. Banks of superior temporal sulcus L-CT
2.Caudal anterior cingulate R-BOLD
3.Caudal middle frontal
4.Cuneus
5. Entorhinal
6. Fusiform
7. Inferior parietal
8. Inferior temporal
9. Isthmus cingulate
10. Lateral occipital L-CT
11. Lateral orbitofrontal
12. Lingual L-CT
13. Medial orbitofrontal
14. Middle temporal R-CT, L-BOLD
15. Parahippocampal
16. Paracentral
17. Pars opercularis
18. Pars orbitalis R-CT
19. Pars triangularis
20.Pericalcarine
21. Postcentral
22. Posterior cingulate R-BOLD
23. Precentral
24. Precuneus R-CT, L-BOLD,

R-BOLD
25. Rostral anterior cingulate L-CT
26. Rostral middle frontal R-CT
27. Superior frontal R-CT
28. Superior parietal L-CT, R-CT
29. Superior temporal R-BOLD
30. Supramarginal L-CT

continued
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parameters: the number of trees (2,000 were used in these
analyses) and the number of variables tried at each node (as
recommended [20], the square root of the total number of
variables). In addition, trees were grown to the highest
possible number of nodes such that all participants in the
bootstrap training samplewereaccurately classified.Variable
selection was accomplished using permutation importance
scores, defined as themeandecrease inmodel accuracywhen
a predictor variable’s values are randomly permuted.
Specifically, the random forest algorithmwas run 500 times
on the entire set of possible predictors to generate stable
importance scores for each predictor (based on the median
score across the 500 repetitions). Because negative permu-
tation importance scores arise from randomvariation around
zero of the poor predictor variables (22), only variables with
an importance score greater than the magnitude of the most
negative scorewere selected as important predictors (22, 23).
Notably, this technique utilizes bootstrapped cross-validation
to reduce overfitting when generating permutation impor-
tance scores.

This approach is consistentwith thefirst steps executed in
Ball et al. (23). However, we do not generate and evaluate a
final model using the select predictors because this results in
“double dipping,” or selecting and evaluating variables from
the same sample (46). Although a holdout sample could be
used to circumvent this issue (i.e., splitting the sample into
variable selection and final model testing subsamples), this
requires a sample size of greater than200 for sufficient power
in the subsamples. Therefore, analyses are focused exclu-
sively on variable selection to identify potentially important
risk factors for adolescent alcohol use.

Three sequential models were built to compare the fol-
lowing sets of variables (see Table 3): demographic and be-
havioral variables only; demographic and behavioral and
neuropsychological test variables; and demographic and be-
havioral, neuropsychological, and neuroimaging variables.

(See the data supplement for models that were
run on 26 neuropsychological and 136 neuro-
imaging variables separately.) The relatively
wide range in baseline age (12–14 years) could
have biased findings because those enrolled at
age 14 survived2moreyearswithout initiating
alcohol use; this was accounted for by including
baseline and follow-up age in the models.

RESULTS

Demographic Model
The initial variable set comprised 41 demo-
graphic andpsychological variables (seeTable3)
as predictors of moderate to heavy alcohol
initiation. Eleven of these were identified as
important: sex, age at follow-up, socioeco-
nomic status, pubertal development, dating
status, grade point average, Child Behavior
Checklist total problems, Conduct Disorder

Questionnaire total problems count, AEQ total score, AEQ
global positive score, and AEQ social behavior change score.

Demographic and Neuropsychological Performance
Model
After adding neuropsychological test variables (26 additional
variables; see Table 3) to the variable set, 13 of the 67 total
variables were identified as important: eight of 11 from the
previous model (sex, age at follow-up, socioeconomic status,
dating status, Conduct Disorder Questionnaire total problems
count, AEQ total score, AEQ global positive score, and AEQ
social behavior change score), and five additional variables
(Digit Vigilance Test total time; the Wechsler Abbreviated
Scale of Intelligence (WASI) block design, matrix reasoning,
and vocabulary total raw scores; and the D-KEFS trails con-
dition 4 [number-letter switching] time to complete).

Demographic, Neuropsychological Performance, and
Neuroimaging Model
After including theneuroimagingdata (cortical thickness and
BOLD response for each of the 68 brain regions; see Table 3),
34 of the 203 total variables were identified as important (see
Table 3 and Figure 2).

Further Investigation of Model 3
The precise contribution of each variable to the outcome
prediction is complex, owing to the high-order interactions
critical to the success of random forests. However, main
effects can be investigated straightforwardly. As shown in
Table 4, alcohol initiators had less brain activation contrast
between supra- and subspan conditions than continuous
nonusing control participants in all seven brain regions and
had thinner cortices in 13 of the 15 brain regions in the final
model. The lingual gyrus and lateral occipital gyrus were
thicker in future alcohol initiators. Neuropsychological test
variables that contributed to predicting future initiation of

TABLE 3, continued

Variable Model 1 Model 2 Model 3

31. Frontal pole R-CT, R-BOLD
32. Temporal pole R-CT
33. Transverse temporal L-CT
34. Insula

a CBCL=Child Behavior Checklist; AEQ=Alcohol Expectancy Questionnaire; CDDR=Customary
Drinking and Drug Use Record; WASI=Wechsler Abbreviated Scale of Intelligence;
D-KEFS=Delis-Kaplan Executive Function System; ROCF=Rey-Osterrieth Complex Figure;
WISC-III=Wechsler Intelligence Scale for Children, 3rd edition; WAIS-IV=Wechsler Adult
Intelligence Scale; CVLT=California Verbal Learning Test; WRAT–3=Wide Range Achievement
Test–3Reading.Model 1 initially includeddemographic and family and youth behavior,mood, and
cognition variables. Model 2 initially included all of the variables from model 1 plus neuro-
psychological testing variables. Model 3 initially included all of the variables from models 1 and
2 plus neuroimaging variables (cortical thickness and blood-oxygen-level-dependent [BOLD]
response during a visual working memory task). Demographic and neuropsychological variables
predicting initiation intoalcoholusebyage18aremarkedwithX.Forneuroimagingdata inmodel3,
Desikan (39) brain region location is specified using the following: R=right hemisphere; L=left
hemisphere. The neuroimaging index is specified using the following: CT=cortical thickness;
BOLD=BOLD response contrast during a visual workingmemory task (six-dot supra-span relative
to the two-dot subspan condition).

b Based on the Desikan atlas (39); 34 regions per hemisphere, cortical thickness and fMRImeasures
for each region listed; 343232=136 total variables.
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drinking included faster Digit Vigilance Test time and poorer
performance on theWASI blockdesign andmatrix reasoning
tests. Demographic predictors of initiating alcohol use in-
cluded being male, having a higher socioeconomic status,
starting to date at an earlier age (by age 14), having a greater
endorsement of conduct disorder–related behaviors, having
higher positive alcohol expectancies (i.e., higher AEQ global
positive, social behavior change, and total scores), and having
moremotion during the fMRI task. Table 4 lists the variables
in the third model, in order of importance, and indicates
which variables were statistically different between con-
tinuous nonusers and moderate to heavy alcohol initiators.
Notably, while each variable by itself may not differentiate
continuous controls from drinkers (as shown by the p values
inTable 4), selected variables can contribute to prediction via
interaction effects, supporting the importance of using sta-
tistical techniques such as random forests that can model
these complex, high-order interaction terms.

DISCUSSION

This study aimed to address an important public health issue
by identifying variables that can generate individual-level

predictions of initiating alcohol use during adolescence.
This multimodal variable identification will be crucial to
inform ongoing longitudinal adolescent studies (47; see also
https://addictionresearch.nih.gov/abcd-study),whichwill have
sufficient power to provide predictive accuracy estimates.
The findings show that a mix of demographic, neuro-
psychological, and brain imaging indices are important in
predicting which 12- to 14-year-olds would initiate moderate
to heavy alcohol use by approximately age 18.

Specifically, being male and coming from higher socio-
economic backgrounds appear to be risk factors for initiation
of drinking by age 18. Dating by age 14, reporting more ex-
ternalizing behaviors, and having more positive expectations
about how alcohol would affect behaviors and cogni-
tions (particularly in social settings) appear to be risk factors
for adolescent-onset alcohol initiation. In terms of neuro-
psychological functioning, adolescents who showed poorer
performance on executive function tests and were faster
on sustained attention tests (perhaps indicating impulsiv-
ity) during early adolescence had higher rates of alcohol
initiation, consistent with previous findings (48). The neu-
roimaging features of thinner cortices and less BOLD re-
sponse contrast to a cognitive challenge by age 14 also

FIGURE 2. Twenty Brain Regions That Predicted Alcohol Initiation by Approximately Age 18 in a Study of Neural Predictors of Alcohol
Use Initiation During Adolescencea

a Yellow indicates cortical thickness regions identified as important inmodel 3. Blue indicates blood-oxygen-level-dependent (BOLD) response regions
included in thefinalmodel.Green (overlappingof yellowandblue regions) indicatescortical thicknessandBOLDresponse in thesamebrain region.With
regard to neuroimaging data, thinner cortices (in 13 of the 15 regions) and less BOLD response contrast (in all seven regions) predicted initiation of
moderate to heavy drinking by approximately age 18.

Am J Psychiatry 174:2, February 2017 ajp.psychiatryonline.org 181

SQUEGLIA ET AL.

https://addictionresearch.nih.gov/abcd-study
http://ajp.psychiatryonline.org


contribute to risk of moderate to heavy drinking by age 18,
consistent with previous findings (5, 8, 11). Interestingly, more
head movement (yet still within the acceptable limits to be
included in analyses) while in the scanner was selected as
an important variable, perhaps representing a phenotypic

marker of impulsivity. While current substance use is highly
predictive of future use (11), baseline alcohol, cigarette, and
marijuanausewasnot selectedas an importantvariable inour
model; however, this is not surprising given that our sample
was almost completely substance naive at baseline (97% had

TABLE 4. Variables, in Order of Importance, in Model 3 (Including Demographic, Neuropsychological, and Structural and Functional
Neuroimaging Data) in a Study of Neural Predictors of Alcohol Use Initiation During Adolescencea

Measure

Continuous Nonusers
(N=67)

Moderate to Heavy
Alcohol Initiators

(N=70)

p
Variable

Importance Cohen’s dMean SD % Mean SD %

1. L supramarginal cortical thickness 2.96 0.14 2.89 0.13 0.002 10.01 0.518
2. Sex (female)b 60 29 .0.001 9.99 0.661
3. R posterior cingulate BOLD –0.63 3.90 –2.19 3.60 0.016 8.84 0.416
4. R superior temporal BOLD –1.17 3.60 –1.89 2.83 0.194 8.45 0.222
5. Dating at baselineb 22 61 .0.001 8.08 0.860
6. Socioeconomic status 24.03 16.75 21.11 11.50 0.235 7.44 0.203
7. L transverse temporal cortical
thickness

2.78 0.21 2.68 0.21 0.006 7.37 0.476

8. R pars orbitalis cortical thickness 3.02 0.22 2.92 0.19 0.005 7.28 0.487
9. WASI matrix reasoning raw score 27.80 3.62 26.41 3.34 0.023 7.11 0.399
10.WASI block design raw score 47.27 13.81 42.86 13.13 0.060 6.43 0.327
11. R rostral middle frontal cortical

thickness
2.53 0.10 2.49 0.11 0.058 6.06 0.381

12. L middle temporal BOLD –1.11 2.56 –1.62 2.47 0.238 5.83 0.203
13. R superior parietal cortical thickness 2.60 0.12 2.55 0.10 0.016 5.76 0.453
14. L lingual cortical thickness 2.26 0.16 2.28 0.13 0.367 5.62 0.137
15. R precuneus cortical thickness 2.82 0.11 2.78 0.11 0.049 5.42 0.364
16. R caudal anterior cingulate BOLD 2.40 4.90 0.43 4.66 0.017 5.24 0.412
17. AEQ social behavior change total

scoreb
36.92 7.41 41.23 7.94 0.001 5.23 0.561

18. R temporal pole cortical thickness 3.88 0.30 3.76 0.37 0.041 5.18 0.356
19. R precuneus BOLD –1.46 5.64 –3.06 4.90 0.078 4.81 0.303
20.Repetitions excluded from functional

magnetic resonance imaging series
due to motion

4.46 6.77 7.03 8.82 0.060 4.44 0.327

21. L lateral occipital cortical thickness 2.45 0.16 2.46 0.14 0.774 4.41 0.067
22.Conduct Disorder Questionnaire

total score
0.45 1.08 1.17 1.88 0.007 4.04 0.470

23.R frontal pole BOLD 2.02 4.74 0.50 7.54 0.161 3.91 0.241
24.R frontal pole cortical thickness 3.10 0.28 2.99 0.33 0.038 3.80 0.360
25.L rostral anterior cingulate cortical

thickness
3.20 0.30 3.12 0.26 0.107 3.71 0.285

26. AEQ total score 79.14 32.23 92.45 29.75 0.013 2.88 0.429
27. R middle temporal cortical thickness 3.26 0.14 3.22 0.18 0.192 2.85 0.248
28.L banks superior temporal sulcus

cortical thickness
2.85 0.19 2.80 0.16 0.104 2.67 0.285

29.L precuneus BOLD –2.03 5.85 –3.46 5.17 0.130 2.63 0.260
30.L superior parietal cortical thickness 2.60 0.12 2.5 0.11 0.015 2.55 0.869
31. AEQ global positive total score 37.81 8.37 40.83 9.53 0.051 2.42 0.336
32.Digit vigilance completion time

(seconds)
225.06 52.80 219.59 41.46 0.504 2.36 0.115

33.Right superior frontal cortical
thickness

3.05 0.15 3.01 0.13 0.076 2.19 0.285

34.Follow-up age 18.20 0.66 18.20 0.57 0.943 1.22 0.000

a Importancewas defined as themeandecrease inmodel accuracywhen the variablewas permuted. In random forest analyses, the contribution of each variable to
theoutcomeprediction is complex given thehigh-order interactions critical to the success of this technique.While somegroupdifferences on individual variables
are statistically nonsignificant orwould not survive control formultiple comparisons, each variable contributes significantly to the overall success of the predictive
modelwhen allowed to interactwithother variables. The groupdifferences andeffect sizes are presented tobetter understand thedirection andmagnitudeof the
relationship. Cortical thickness is measured in millimeters. AEQ=Alcohol Expectancy Questionnaire; WASI=Wechsler Abbreviated Scale of Intelligence; R=right
hemisphere; L=left hemisphere; BOLD=blood-oxygen-level-dependent response during a visual working memory task (% signal change during six-dot versus
two-dot condition).

b Group differences that survive Bonferroni correction (p#0.001).
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never tried alcohol). These findings build on previous reports
(11) and focus on predicting patterns of more frequent and
intense alcohol use as opposed to initiation alone.

Five of the 10 most important predictors were MRI and
fMRI variables, suggesting that the inclusion of neuroimag-
ing improves the accuracy of predicting future alcohol use
(see Table 4). Morphometry or activation of 20 diffusely dis-
tributed brain regions substantially contributed to alcohol
initiation (see Figure 1). Cortical thickness and BOLD re-
sponse regions did not overlap, except in the right precuneus
and right frontal pole, similar to previous studies showing
that structural and functional maturation tend to show dis-
tinct developmental trajectories during early adolescence
(44).More “mature” neural functioning (i.e., thinner cortices
and less BOLDresponse contrast)was related to greater rates
of transitioning to substance use, which is consistent with
previousfindings (8–10, 49). This “pseudomaturity” in at-risk
youths has also been observed in other behavioral studies,
including a 33-year longitudinal study that found that more
mature behavior during childhood (based on psychiatrist
ratings) predicted greater nicotine dependence in adulthood
(F.X. Castellanos, personal communication, 2015). Early
maturation of neural features could be considered a vul-
nerability for youths, increasing the likelihood of engaging in
sensation-seeking behaviors at an earlier age. Neurodevelop-
mentally precocious youths may have a greater tendency to
initiate and escalate risk-taking behaviors (e.g., early dating,
substance use), relative to peers. Longitudinal studies with
three or more time points will be needed to elucidate the
trajectory of youths with these different outcomes.

Consistent with epidemiological data, alcohol was the
most commonly used substance in this sample (1). However,
significant marijuana use was reported among the moderate
to heavy alcohol initiators. We chose to focus specifically on
alcohol initiationbecauseonly 15%ofouroverall sample (29%
of alcohol initiators) endorsed more than 30 lifetime occa-
sions ofmarijuanause, andmost alcohol initiators (80%)used
alcohol before trying marijuana. However, it is likely that the
reported risk factors confer risk not only to use of alcohol but
also to use of marijuana and other illicit substances, and
potentially to additional risky behaviors. Larger studies and
additional years of follow-upwill indicate the extent towhich
these predictive features are replicated, are predictive of
substance use or problem behavior more broadly, and, as
participants age, are predictive of addiction.

Strengths of this study include its extensive neuro-
psychological and multimodal neuroimaging data and utili-
zation of a robust machine learning technique to identify
potential risk factors for adolescent alcohol use. Limitations
of this study include the lack of an independent replica-
tion sample. Nevertheless, random forests is a robust sta-
tistical technique that has been suggested to be superior to
other machine learning techniques (21), and it includes
bootstrapped cross-validation, with permutation importance
determined based on an out-of-bag sample to reduce over-
fitting. Regardless, futurework should seek to replicate these

predictors. To this end, we are publishing the random forest
script (see the online data supplement) that we used here so
that other groups can try to replicate our findings using their
own data sets. In random forest analyses, the contribution of
each variable to the outcome prediction is complex given the
high-order interactions critical to the success of this tech-
nique. While some group differences on individual variables
are statistically nonsignificant or would not survive control
formultiple comparisons (Table 4), each variable contributes
significantly to the overall success of themodelwhenallowed
to interact with other variables. The group differences are
presented to better understand the direction of the re-
lationship. Genotyping was not included in this study. While
previous findings suggest a nominal role of genetics in ado-
lescent alcohol initiation compared with other personality
and environmental factors (11), future studies should explore
potential genetic risk factors associated with alcohol use and
risk-taking generally. The participants in this sample came
from a relatively high socioeconomic status, which may
limit generalizability to low socioeconomic status youths;
published scripts will allow for replication in more diverse
samples (see the data supplement). A limitation inherent
to fMRI is that the BOLD findings are task dependent and
have sensitivity only to detect regions engaged by the task.
Therefore, it is possible that functional activity in different
regionswould be predictive of future alcohol use if a different
taskwere used. There is a large quantity and frequency range
covered across the moderate to heavy alcohol initiator cat-
egory, and predictors may vary across the severity of this
continuum. While most alcohol users in this study were not
drinking frequently, they tended to drink in large quantities
(an average of .9 drinks on peak occasion in the past year),
suggesting that we were capturing risky drinking behaviors
in this group. Continued follow-up of this sample as some
youths transition to alcohol use disorders will help clarify
which predictors are most important in identifying prob-
lematic drinking.

The results provide evidence that interactions between
multimodal neuroimaging data, neuropsychological testing,
and demographic and clinical information can best pre-
dict future behaviors such as initiation of alcohol use. Un-
derstanding neurocognitive factors that predate substance
use initiation is crucial to specifying the consequences of
substance use on brain development, as well as identifying
at-risk youths and potential targets of preventive efforts. The
random forest script used in this study is now published to
allow other groups to replicate findings, in the hope that a
final, validated model can be used clinically to predict ado-
lescent alcohol use.
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EDITOR’S NOTE

In the January 2017 issue, The American Journal of Psychiatry published a correction stating 
that the article “Neural Predictors of Initiating Alcohol Use During Adolescence” by Lindsay 
M. Squeglia, Ph.D., et al. (doi:10.1176/appi.ajp.2016.15121587) was being extensively revised 
from the version initially published online August 19, 2016. Subsequent to that online publi-
cation, the authors presented their fi ndings at a conference, where Dr. Matthias Guggenmos 
(Department of Psychiatry and Psychotherapy, Charité–Universitätsmedizin Berlin) brought 
to their attention that this strategy yields a biased estimate of predictive power. The authors 
determined that while their feature selection process was sound, the validation scheme in 
their original analytic pathway indeed resulted in an overestimation of the predictive accura-
cy of the models. The revised version that omits the claim of validation appears in this Febru-
ary 2017 issue. Included in the online edition as a data supplement is the previously published 
version marked to show the changes from that article to what appears in this issue.
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