In Vivo Measurement of GABA Transmission in Healthy Subjects and Schizophrenia Patients

W. Gordon Frankle, M.D., M.B.A., Raymond Y. Cho, M.D., Konasale M. Prasad, M.D., N. Scott Mason, Ph.D., Jennifer Paris, M.Ed., M.S.L., Michael L. Himes, B.S., Christopher Walker, M.S., David A. Lewis, M.D., Rajesh Narendran, M.D.

Objective: Postmortem studies in schizophrenia reveal alterations in gene products that regulate the release and extracellular persistence of GABA. However, results of in vivo studies of schizophrenia measuring total tissue GABA with magnetic resonance spectroscopy (MRS) have been inconsistent. Neither the postmortem nor the MRS studies directly address the physiological properties of GABA neurotransmission. The present study addresses this question through an innovative positron emission tomography (PET) paradigm.

Method: The binding of [¹¹C]flumazenil, a benzodiazepinespecific PET radiotracer, was measured before and after administration of tiagabine (0.2 mg/kg of body weight), a GABA membrane transporter (GAT1) blocker, in 17 offmedication patients with schizophrenia and 22 healthy comparison subjects. Increased extracellular GABA, through GAT1 blockade, enhances the affinity of GABA_A receptors for benzodiazepine ligands, detected as an increase in [¹¹C]flumazenil tissue distribution volume (V_T).

One of the most consistent and replicated postmortem findings in schizophrenia is the reduced expression of mRNA encoding the 67-kD isoform of glutamic acid decarboxylase (GAD67), the enzyme principally responsible for the synthesis of gamma-aminobutyric acid (GABA) (1). The deficit in GAD67 mRNA appears to be prominent in the parvalbumincontaining subset of GABA neurons and to be conserved with similar magnitude across multiple cortical regions (2). These findings may be interpreted as a reduced capacity for cortical GABA production. GABA neurotransmission plays a key role in sustaining synchronous oscillations in cortical networks (3), which in turn is thought to be a critical neural mechanism for supporting a number of cognitive and perceptual processes (4-7). Thus, lower GABA synthesis in schizophrenia has been hypothesized to contribute to the altered prefrontal cortical oscillations and functional activation associated with impaired performance on working memory or cognitive control tasks (8–15), as well as to contribute to abnormalities **Results:** [¹¹C]Flumazenil V_T was significantly increased across all cortical brain regions in the healthy comparison group but not in the schizophrenia group. This lack of effect was most prominent in the antipsychotic-naive schizophrenia group. In this subgroup, [¹¹C]flumazenil ΔV_T in the medial temporal lobe was correlated with positive symptoms, and baseline [¹¹C] flumazenil V_T in the medial temporal lobe was negatively correlated with visual learning. In the healthy comparison group but not the schizophrenia group, [¹¹C]flumazenil ΔV_T was positively associated with gamma-band oscillation power.

Conclusions: This study demonstrates, for the first time, an in vivo impairment in GABA transmission in schizophrenia, most prominent in antipsychotic-naive individuals. The impairment in GABA transmission appears to be linked to clinical symptoms, disturbances in cortical oscillations, and cognition.

Am J Psychiatry 2015; 172:1148-1159; doi: 10.1176/appi.ajp.2015.14081031

in a range of other cognitive, affective, sensory, and motor functions that depend on GABA neurotransmission in a number of other cortical regions (16–19). However, to date, there is no direct, in vivo evidence that cortical GABA transmission is altered in schizophrenia or linked to cognitive and neurophysiological disturbances in this illness.

We recently validated a method for in vivo measurement of GABA neurotransmission in human subjects, using positron emission tomography (PET) to measure binding of [¹¹C]flumazenil, a radiotracer that binds to the benzodiazepine site of the GABA_A receptor (20, 21). This relationship reflects findings from in vitro, preclinical, and previous imaging experiments suggesting that increased GABA levels enhance the affinity of GABA_A receptors for benzodiazepine ligands via a conformational change (22, 23). While in certain circumstances—for example, in the case of benzodiazepine receptor inverse agonists—increased GABA levels can decrease the affinity (24), our previous studies demonstrate that

See related features: Editorials by Dr. Freedman (p. 1051) and Dr. Abi-Dargham (p. 1062)

increases in GABA levels increase the affinity at the benzodiazepine receptor, detected as an increase in the binding of the GABA_A benzodiazepine receptor site-specific PET radioligand [¹¹C]flumazenil, consistent with findings from preclinical work (22, 25).

In the present study, we utilized this approach to explore, in vivo, the evidence that GABA transmission disturbances span multiple cortical brain regions in schizophrenia and relate these abnormalities to clinical symptoms, disturbances in cortical oscillations, and cognition. We hypothesized that in individuals with schizophrenia, in response to elevated extracellular GABA levels induced by blockade of the GABA membrane transporter (GAT1) with tiagabine (20), the increase in [¹¹C] flumazenil binding would be blunted relative to healthy comparison subjects and that this blunted transmission would be correlated with abnormalities across a range of cognitive functions. In addition, as previous studies (26, 27) have linked PET measurements of benzodiazepine receptors to positive symptoms, we sought to replicate these correlations.

METHOD

Participants

Nineteen patients with schizophrenia were recruited and enrolled in this study between May 31, 2008, and June 24, 2013. (The inclusion and exclusion criteria are listed in the data supplement that accompanies the online edition of this article.) Two patients were unable to complete the study (in both cases, the second PET scan was terminated at the patient's request because of discomfort), leaving a final cohort of 17 schizophrenia patients. Eight of the schizophrenia patients were antipsychotic naive; the other nine had been treated in the past and had been off of psychotropic medications for at least 5 weeks (mean=154 weeks, SD=217, range=5-624). Twenty-two healthy comparison subjects, 10 of whom overlapped with our previously published data (20, 21), matched for age, gender, and ethnicity, were recruited contemporaneously with the schizophrenia patients (see the data supplement for inclusion and exclusion criteria). Menstrual phase was not taken into account during recruitment or scanning in either group, representing a limitation, given previous work showing an effect of menstrual cycle on GABA level (28). The University of Pittsburgh Institutional Review Board approved the study. All participants provided written informed consent after receiving a full explanation of the study procedures. For the schizophrenia patients, capacity to provide informed consent was evaluated by a psychiatrist not associated with the study.

Clinical Assessment

Diagnosis was assessed using the Structured Clinical Interview for DSM-IV (SCID) (29). Absence of psychiatric history and/or symptoms in healthy comparison subjects was determined after administration of the nonpatient version of the SCID by a trained rater. Severity of symptoms in schizophrenia patients was assessed with the Positive and Negative Syndrome Scale (PANSS) (30), and cognitive functioning was assessed with the MATRICS Consensus Cognitive Battery (MCCB) (31).

PET Protocol and Image Analysis

The PET scanning protocol was identical to that used in our previous studies (20, 21). All participants underwent scanning twice with [¹¹C]flumazenil on the same day. First, a baseline PET scan was performed, followed by oral administration of tiagabine, and the second scan was begun 30 minutes after tiagabine administration. The tiagabine dose was rounded to the nearest even number (thus avoiding any splitting of the 2-mg tablets) to provide a dose of approximately 0.2 mg/kg body weight (mean=0.20 mg/kg, SD=0.04; N=39). The plasma level of tiagabine was calculated as the average of three measurements taken 30 minutes, 50 minutes, and 90 minutes after dosing. Participants remained in the Montefiore University Hospital Clinical and Translational Research Center overnight after the study for monitoring of tiagabine side effects.

Regions of interest were drawn on each individual's MRI as described previously (20, 21) and applied to the coregistered dynamic PET data to generate time-activity curves. Three functionally based cortical regions of interest were obtained as weighted averages of component regions of interest: the association cortex, comprising the dorsolateral prefrontal, orbital frontal, medial prefrontal, and anterior cingulate cortices; the sensory cortex, comprising the parietal and occipital cortices; and the limbic medial temporal lobe, comprising the amygdala, hippocampus, entorhinal cortex, and parahippocampal gyrus.

Derivation of Distribution Volumes

Derivation of [¹¹C]flumazenil regional tissue distribution volume (V_T, mL/g) was performed with an unconstrained two-tissue compartment model using arterial input (20, 21). In previous studies, including our own (20), the pons has been used as the region of reference because activity in this region has been reported to represent predominantly nonspecific binding (32, 33). However, postmortem studies (34, 35) as well as previous receptor imaging studies (36), including unpublished human imaging data from our laboratory, have demonstrated that a significant percentage (up to 60%) of the signal from the pons is due to specific binding. We elected to utilize V_T as our main outcome measure because it has been shown to be a more reliable and robust outcome measure for [¹¹C]flumazenil, given that variability in the measurement of the nondisplaceable distribution volume, V_{ND}, will be propagated to measurements of binding potential (BPND or BP_P) (37). The change in [¹¹C]flumazenil binding induced by tiagabine was calculated as ΔV_T = (posttiagabine V_T baseline V_T)/baseline V_T.

Electrophysiology Measurement

In all participants, the electrophysiology study was performed approximately 1 week before the PET scans. EEG data were acquired during the "preparing to overcome prepotency" task, a cued stimulus-response reversal paradigm that requires increases in cognitive control to overcome prepotent response tendencies. The methodology was identical to that used in our previous work (20, 21) and resulted in one summary measure of frontal gamma activity for each participant. This measure of gamma oscillations was then compared with the individual measurements of tiagabineinduced increase in [¹¹C]flumazenil binding as well as baseline [¹¹C]flumazenil binding by PET within each subject. An experimenter blind to the PET data performed the determinations of these EEG measures of frontal gamma. (For more details, see the online data supplement.)

Statistical Analysis

Comparisons between scan parameters and V_{ND} (pons V_T) were assessed with a two-tailed paired t test with a significance level of 0.05. Baseline and posttiagabine V_T for the three functional cortical regions were compared using a twotailed paired t test with a Bonferroni-corrected probability value of 0.02 (0.05/3 regions). For the analysis of the tiagabine-induced change in V_T (ΔV_T) in the component regions of interest (N=10), a univariate repeated-measures analysis of variance (ANOVA) with brain regions as the within-scan factor and condition (baseline or posttiagabine) as the between-scan factor. Comparisons between the three groups initially utilized a repeated-measures ANOVA with brain regions (N=10) as the within-scan factor and diagnosis (healthy, antipsychotic-exposed schizophrenia, or antipsychoticnaive schizophrenia) as the between-subject factor, with subsequent group-by-group repeated-measures ANOVAs performed when the initial analysis indicated a significant difference between the three groups. Although there was no correlation between plasma tiagabine level and ΔV_T in any group (see Figure S1 in the online data supplement), when comparing ΔV_T across groups, plasma tiagabine level was included as a covariate because of the high variability of the plasma levels and the lower plasma level in the antipsychoticnaive compared with the antipsychotic-exposed schizophrenia group, which fell short of significance. Paired t tests were performed when appropriate to determine which regions accounted for significant effects observed in the repeatedmeasures ANOVAs. The relationship between the regional PET scan outcome parameters and PANSS and MCCB scores were analyzed with the Pearson product moment correlation coefficient after first confirming normal distribution of the data using the Kolmogorov-Smirnov test with a Bonferroni-corrected probability value of 0.02 for the three functional cortical regions, as noted above, and a value of 0.005 when examining the component regions (0.05/10)regions).

RESULTS

The schizophrenia group included 10 African Americans and seven Caucasians; 11 of the group were male, and the mean age was 27.5 years (SD=6.8). The healthy comparison group included seven African Americans, 14 Caucasians, and one Asian; 13 of the group were male, and the mean age was 28.4 years (SD=8.7). There were no significant differences between groups on any demographic measure. The antipsychoticnaive group included five African Americans and three Caucasians; six of the group were male, and the mean age was 26.8 (SD=7.7). The antipsychotic-exposed group included five African Americans and four Caucasians; five of the group were male, and the mean age was 28.2 (SD=6.2). There were no significant differences between these subgroups on any demographic measure, nor between either of these groups and the healthy comparison group.

Participants' scores on the PANSS and the MCCB are summarized in Table 1.

PET Scan Parameters

Neither the injected dose, specific activity, injected mass, free plasma fraction, nor V_{ND} differed between the baseline and posttiagabine scan for any of the groups (Tables 2 and 3). Tiagabine administration resulted in a slight increase in the plasma clearance of [11C]flumazenil in the healthy comparison group (Table 2). No significant differences were detected between the schizophrenia and healthy comparison groups for either the baseline or the posttiagabine scan, with the exception of slightly higher injected mass in both conditions for the schizophrenia group (Table 2). Comparison of the healthy comparison group with the antipsychotic-exposed schizophrenia group and with the antipsychotic-naive schizophrenia group revealed that the antipsychoticexposed group had a higher injected mass than the healthy comparison group in both conditions (Table 3). However, although numerically higher, the injected mass for all scans for all subjects remained within tracer dose range of <10 µg (38) and would not be expected to affect the measurement of V_T. The free fraction was lower in the antipsychotic-naive schizophrenia group than in the antipsychotic-exposed group in the baseline condition, and lower than the healthy comparison group in both conditions (Table 3).

Regional Distribution Volumes and Benzodiazepine Receptor Availability

Healthy comparison subjects. Tiagabine administration significantly increased V_T in the large cortical regions, with a Bonferroni-corrected p value of 0.02 (Table 4). Examination of V_T across the component regions of interest revealed a significant regional effect (F=151, df=12, 31, p<0.001), no region-by-condition interaction, and a significant difference across conditions (F=7.2, df=1, 42, p=0.01). On a region-byregion basis, significant increases in all regions were seen in the posttiagabine condition (Table 4).

Schizophrenia patients. No significant change in V_T was observed in any of the large cortical regions after administration of tiagabine (Table 4). Examination of V_T across the component regions of interest revealed no significant

TABLE 1. Baseline Clinical Measures for Schizophrenia Patients

	Schizophre (N=	enia Group 17)	Antipsycho Group (tic-Naive N=8)	Antipsychoti Group (c-Exposed (N=9)	Antipsychotic- Exposed Versus Antipsychotic- Naive Group ^a
Measure	Mean	SD	Mean	SD	Mean	SD	р
Positive and Negative Syndrome Scale							
Total score	83	19	93	13	71	18	< 0.001
Positive score	21	7.5	25	6	15	6	0.004
Negative score	21	6.6	23	6	19	7	0.001
General score	41	9.3	46	7	36	9	0.25
MATRICS Consensus Cognitive Battery composite score	37.5	13	34.1	16	40.1	11	0.39

^a The p values are based on unpaired two-tailed t tests.

TABLE 2. Positron Emission Tomography-Related Measures for Schizophrenia Patients and Healthy Comparison Subjects at Baseline and After Tiagabine Administration^a

	Schizo	phrenia	a Group	(N=17)	Healthy	Compar	ison Grou	o (N=22)	Schizophrenia Group Versus Healthy Comparison Group ^b		
	Base	line	Posttiagabine		Baseline		Posttiagabine		Baseline	Posttiagabine	
Measure	Mean	SD	Mean	SD	Mean	SD	Mean	SD	р	p	
Tiagabine											
Dose (mg/kg)			0.20	0.04			0.21	0.04		0.33	
Plasma level ^c (ng/mL)			244	157			223	152		0.67	
[¹¹ C]Flumazenil											
Injected dose (mCi)	20.7	1.2	20.8	1.6	19.6	2.9	19.9	2.4	0.19	0.21	
Specific activity (Ci/mmol)	1,642	993	1,386	616	1,763	739	1,943	1,381	0.67	0.13	
Injected mass (µg)	5.1	3.0	5.8	3.2	3.8	1.2	3.9	1.6	0.05	0.02	
Free plasma fraction (%)	52.7	9.1	52.8	9.4	55.8	7.7	56.2	8.3	0.26	0.25	
Clearance ^d (L/h)	60	16	64	19	50	18	62	23	0.08	0.74	
Pons V _T (or V _{ND}) ^e (mL/g)	1.0	0.2	1.0	0.2	1.0	0.2	1.0	0.2	0.90	0.68	

^a Except as otherwise noted, there were no significant differences between baseline and posttiagabine measures within the schizophrenia group or the healthy comparison group.

^b The p values are based on unpaired two-tailed t tests.

^c The tiagabine plasma level was calculated as the average of three measurements taken 30 minutes, 50 minutes, and 90 minutes after dosing.

^d Significant difference between baseline and posttiagabine [¹¹C]flumazenil clearance in the healthy comparison group, p=0.04.

 e V_T=tissue distribution volume; V_{ND}=nondisplaceable tissue distribution volume.

difference across conditions with the omnibus test or with region-by-region contrasts (Table 4).

Comparison of healthy comparison and schizophrenia groups. No difference was observed when comparing [¹¹C]flumazenil ΔV_T between the healthy comparison and schizophrenia groups. Performing the repeated-measures ANOVA with the three groups (healthy, antipsychotic-exposed schizophrenia, and antipsychotic-naive schizophrenia) revealed a significant difference between groups (F=3.6, df=2, 33, p=0.04). Further analysis revealed that the antipsychotic-naive group had significantly lower ΔV_T compared with the healthy comparison group (F=5.93, df=1, 26, p=0.02). This difference reached significance in the dorsolateral prefrontal, orbital frontal, medial prefrontal, and parietal cortices (Table 5). No significant differences were observed in $[^{11}C]$ flumazenil ΔV_T between the healthy comparison and antipsychotic-exposed schizophrenia groups or between the antipsychotic-naive and antipsychotic-exposed schizophrenia groups.

To examine the proximal source of the low ΔV_T in the antipsychotic-naive schizophrenia group, the baseline and posttiagabine V_T values were compared with those of the healthy comparison group and the antipsychotic-exposed schizophrenia group. The repeated-measures ANOVA across the three groups on baseline $[^{11}C]$ flumazenil V_T revealed a significant difference between groups (F=5.81, df=2, 36, p=0.007), with the antipsychotic-naive schizophrenia group demonstrating elevated baseline [¹¹C]flumazenil V_T compared with the healthy comparison group (F=10.39, df=1, 28, p=0.003) and the antipsychotic-exposed group (F=6.68, df=1, 15, p=0.02). No differences in posttiagabine $[^{11}C]$ flumazenil V_T were observed in the initial analysis or when the groups were compared separately (Table 6 and Figure 1). No differences were observed when comparing [11C]flumazenil binding in the healthy comparison group and the overall schizophrenia group at baseline or after tiagabine administration, or between the healthy comparison group and the antipsychotic-exposed group in baseline or posttiagabine $[^{11}C]$ flumazenil V_T.

											Comp	oarisons ^a		
	Antipsychotic- Naive Schizophrenia Group (N=8)				Antipsychotic- Exposed Schizophrenia Group (N=9)			Antip Naiv Antip Expo	osychotic- ve Versus osychotic- sed Group	Antips Naive He Com G	sychotic- e Versus ealthy parison roup	Antipsychotic- Exposed Versus Healthy Comparison Group		
	Baselin	ie l	Posttiag	gabine	Base	eline	Posttia	igabine	Baseline	Posttiagabine	Baseline F	Posttiagabin	e Baseline F	osttiagabine
Measure	Mean S	D	Mean	SD	Mean	SD	Mean	SD	р	р	р	р	p	р
Tiagabine														
Dose (mg/kg)			0.19	0.02			0.20	0.04		0.83		0.36		0.53
Plasma level			173	80			308	184		0.07		0.39		0.20
(ng/mL)														
[¹¹ C]Flumazenil														
Injected dose (mCi)	20.6 1	4	21.1	0.7	20.8	1.1	20.5	2.1	0.75	0.48	0.41	0.19	0.28	0.53
Specific activity (Ci/mmol)	1,745 7	32	1,479	671	1,550	1,217	1,303	590	0.70	0.57	0.95	0.37	0.55	0.19
Injected mass (µq)	4.5 2	.9	5.4	2.9	5.7	3.1	6.1	3.7	0.43	0.65	0.31	0.08	0.02	0.02
Free plasma fraction (%)	46.9 2	.8	48.8	5.6	57.9	9.7	56.5	10.8	0.01	0.09	<0.01	0.03	0.53	0.94
Clearance (L/h)	61	16	58	22	59	16	69	15	0.79	0.25	0.14	0.72	0.22	0.38
Pons V _T (or V _{ND}) ^b (mL/g)	1.1 0	.2	1.1	0.2	0.9	0.2	1.0	0.1	0.06	0.32	0.25	0.38	0.36	0.79

TABLE 3. Positron Emission Tomography-Related Measures for Antipsychotic-Naive and Antipsychotic-Exposed Schizophrenia Patients at Baseline and After Tiagabine Administration, and Comparison With Each Other and the Healthy Comparison Group

^a The p values are based on unpaired two-tailed t tests.

 $^{\rm b}$ V_T=tissue distribution volume; V_{ND}=nondisplaceable tissue distribution volume.

	Healthy Comparison Group (N=22)								Schizophrenia Group (N=17)							
	Basel V _T (m	Baseline V _T (mL/g)		Posttiagabine V _T (mL/g)		Δ V _T (%)		Analysis ^b		Baseline V _T (mL/g)		Posttiagabine V _T (mL/g)		ΔV_{T} (%)		ysis ^b
Subdivision and Component Region of Interest	Mean	SD	Mean	SD	Mean	SD	d	р	Mean	SD	Mean	SD	Mean	SD	d	р
Association cortex	6.5	0.6	7.1	0.8	9.2	11.6	0.80	0.001	7.0	0.8	7.3	0.8	5.9	11.4	0.46	0.08
Dorsolateral prefrontal	6.5	0.6	7.1	0.8	9.7	12.1	0.85	0.001	6.9	0.9	7.3	0.8	6.3	11.9	0.48	0.07
Orbital frontal cortex	6.5	0.7	7.0	0.9	9.0	12.2	0.71	0.002	6.9	0.9	7.3	0.8	6.4	11.4	0.46	0.06
Medial prefrontal cortex	6.8	0.7	7.4	0.8	9.1	11.0	0.80	0.001	7.3	0.9	7.6	0.7	4.6	10.3	0.37	0.13
Anterior cingulate cortex	6.7	0.6	7.2	0.9	7.1	12.6	0.60	0.020	7.2	0.8	7.4	0.8	3.0	10.3	0.23	0.34
Sensory cortex	6.4	0.5	7.0	0.8	9.1	11.0	0.86	0.001	6.8	0.8	7.1	0.7	4.8	10.6	0.38	0.11
Parietal cortex	6.2	0.5	6.8	0.8	9.4	11.1	0.88	0.001	6.6	0.8	6.9	0.7	5.8	11.8	0.44	0.09
Occipital cortex	6.7	0.6	7.3	0.9	8.3	11.1	0.77	0.002	7.1	0.8	7.3	0.7	4.2	9.7	0.34	0.13
Medial temporal lobe	5.1	0.4	5.5	0.6	9.0	12.9	0.83	0.003	5.4	0.6	5.6	0.6	4.5	11.5	0.37	0.17
Amygdala	5.0	0.5	5.4	0.7	9.1	13.3	0.75	0.004	5.2	0.6	5.4	0.7	3.3	12.1	0.24	0.35
Hippocampus	5.1	0.5	5.5	0.7	9.3	15.3	0.77	0.009	5.3	0.6	5.5	0.7	3.7	13.8	0.25	0.40
Entorhinal cortex	5.1	0.6	5.5	0.7	8.3	14.2	0.61	0.012	5.3	0.6	5.6	0.7	6.6	11.8	0.50	0.05
Parahippocampus	5.2	0.4	5.6	0.7	8.8	12.4	0.82	0.003	5.5	0.6	5.8	0.6	4.9	11.2	0.42	0.12

	Tiagahing Induced Change i	$n \left[\frac{11}{C} \right] = 0$	Haalthy Comparison Cr	our and the Schizenbrania (•
IADLE 4.	Tiagabine-muuceu Change i	n Cirtumazenit v _T in the	e neattry Comparison Gr	oup and the schizophrenia C	quore

^a V_T=tissue distribution volume.

^b The p values refer to the difference between the baseline and posttiagabine scans in each group (paired t test); d is the Cohen's effect size of this difference.

Given the finding of elevated [¹¹C]flumazenil V_T at baseline in the antipsychotic-naive schizophrenia group, we examined the relationship between time off medications in the antipsychotic-exposed schizophrenia subjects and [¹¹C]flumazenil V_T at baseline to see whether treatment had an effect on this measurement. A correlation was seen between weeks off of medications and baseline [¹¹C]flumazenil

 V_T in the medial temporal lobe, although it did not meet the Bonferroni-corrected significance threshold of p<0.02 (r=0.73, p=0.026).

Clinical and Cognitive Measures

PANSS positive score was correlated with [¹¹C]flumazenil ΔV_T in the medial temporal lobe (r=0.76, p=0.02) and the

			ΔV	T (%)		Comparisons ^b				
	Heal Compa Gro (N=	lthy arison oup 22)	Antipsychotic- Naive Schizophrenia Group (N=8)		Antipsychotic- Exposed Schizophrenia Group (N=9)		Antipsychotic- Exposed Versus Antipsychotic- Naive Group	Healthy Comparison Versus Antipsychotic- Exposed Group	Healthy Comparison Versus Antipsychotic- Naive Group ^c	
Subdivision and Component Region of Interest	Mean	SD	Mean	SD	Mean	SD	р	p	p	
Association cortex Dorsolateral prefrontal cortex	9.2 9.7	11.6 12.1	-0.26 -0.19	7.51 7.39	11.31 12.07	11.76 12.41	0.03 0.03	0.66 0.62	0.04 0.04	
Orbital frontal cortex Medial prefrontal cortex	9.0 9.1	12.2 11.0	-0.88 0.17	7.35 8.05	12.92 8.48	10.64 10.90	0.01 0.10	0.41 0.90	0.04 0.05	
Anterior cingulate cortex	7.1	12.6	-0.28	9.01	5.85	11.04	0.23	0.80	0.14	
Sensory cortex Parietal cortex Occipital cortex	9.1 9.4 8.3	11.0 11.1 11.1	-0.07 -0.08 0.03	7.06 6.98 7.47	9.17 10.99 7.95	11.57 13.12 10.38	0.07 0.05 0.09	0.99 0.74 0.94	0.04 0.03 0.06	
Medial temporal lobe Amygdala Hippocampus	9.0 9.1 9.3	12.9 13.3 15.3	-0.43 -0.54 -0.90	9.68 12.05 11.64	8.94 6.74 7.73	11.65 11.63 14.94	0.09 0.22 0.21	1.00 0.64 0.80	0.07 0.08 0.10	
Entorhinal cortex Parahippocampus	8.3 8.8	14.2 12.4	0.41 -0.08	10.58 8.71	12.01 9.32	10.47 11.68	0.04 0.08	0.49 0.92	0.16 0.07	

TABLE 5. Effects of Previous Treatment on Tiagabine-Induced Change in [¹¹C]flumazenil V_T in the Healthy Comparison Group and the Antipsychotic-Naive and Antipsychotic-Exposed Schizophrenia Groups, and Group Comparisons^a

^a V_T=tissue distribution volume.

^b The p values are based on unpaired t tests.

^c Repeated-measures analysis of variance reached significance only for the comparison of the healthy comparison group and the antipsychotic-naive group.

TABLE 6. Baseline [¹¹ C]flumazenil V_T in the Healthy Comparison Group and the Antipsychotic-Naive and Antipsychotic-Exposition	sed
Schizophrenia Groups, and Group Comparisons ^a	

			V _T (n	nL/g)			Comparisons ^b				
	Heal Compa Grou (N=2	Healthy Comparison Group (N=22)		Antipsychotic- Naive Schizophrenia Group (N=8)		hotic- sed hrenia N=9)	Antipsychotic- Exposed Versus Antipsychotic- Naive Group ^c	Healthy Comparison Versus Antipsychotic- Exposed Group	Healthy Comparison Versus Antipsychotic- Naive Group ^c		
Subdivision and Component Region of Interest	Mean	SD	Mean	SD	Mean	SD	р	р	р		
Association cortex Dorsolateral prefrontal cortex	6.5 6.5	0.6 0.6	7.4 7.3	0.9 0.9	6.6 6.6	0.6 0.7	0.053 0.088	0.84 0.76	0.009 0.013		
Orbital frontal cortex Medial prefrontal cortex	6.5 6.8	0.7 0.7	7.4 7.7	0.9 0.9	6.4 7.0	0.6 0.7	0.014 0.123	0.73 0.53	0.006 0.013		
Anterior cingulate cortex	6.7	0.6	7.6	0.8	6.8	0.7	0.053	0.63	0.004		
Sensory cortex Parietal cortex Occipital cortex	6.4 6.2 6.7	0.5 0.5 0.6	7.2 7.1 7.5	0.8 0.8 0.8	6.4 6.2 6.7	0.6 0.7 0.7	0.039 0.029 0.052	0.98 0.88 0.95	0.003 0.003 0.008		
Medial temporal lobe Amygdala Hippocampus Entorhinal cortex Parahippocampus	5.1 5.0 5.1 5.1 5.2	0.4 0.5 0.5 0.6 0.4	5.7 5.6 5.7 5.7 5.8	0.5 0.5 0.4 0.4 0.5	5.1 4.9 5.0 4.9 5.3	0.5 0.5 0.6 0.5 0.5	0.014 0.007 0.022 0.001 0.041	0.97 0.61 0.75 0.44 0.57	0.001 0.007 0.006 0.008 0.002		

^a V_T=tissue distribution volume.

^b The p values are based on unpaired t tests.

^c Repeated-measures analysis of variance reached significance for the comparison of the healthy comparison and antipsychotic-naive groups and the comparison of the antipsychotic-exposed and the antipsychotic-naive groups.

FIGURE 1. [¹¹C]Flumazenil Regional Tissue Distribution Volumes (V_T) at Baseline and After Tiagabine Administration in Healthy Comparison Subjects and Antipsychotic-Naive and Antipsychotic-Exposed Schizophrenia Patients^a

^a Error bars indicate standard deviations.

medial temporal lobe subregion of the amygdala (r=0.88, p=0.002) in the antipsychotic-naive schizophrenia group, using a Bonferroni-corrected p<0.02 for the medial temporal lobe functional region and p<0.005 for the amygdala (see Figure S2 in the online data supplement). No correlations were noted for [¹¹C]flumazenil ΔV_T with PANSS score or subscores in the antipsychotic-exposed schizophrenia group or the schizophrenia group as a whole. Baseline [¹¹C]flumazenil binding in the antipsychotic-exposed group was negatively correlated with PANSS positive score in the orbital frontal cortex (r=-0.80, p=0.009), but the correlation did not survive Bonferroni correction (p<0.005). No other correlations were observed between [¹¹C]flumazenil binding (baseline, posttiagabine, or ΔV_T) and PANSS measures.

Baseline [11 C]flumazenil V_T in the antipsychotic-naive schizophrenia group, but not in the antipsychotic-exposed

group or the schizophrenia group as a whole, was negatively correlated with the visual learning cognitive domain of the MCCB (using a Bonferroni-corrected threshold of p<0.02 for the functional regions and p < 0.005 for the subregions). This negative correlation was seen in the medial temporal lobe (r=-0.74, p=0.02) as well as in one of its subregions, the entorhinal cortex (r=-0.87, p=0.002). In the antipsychoticnaive schizophrenia group, other regions had similar negative correlations, albeit falling short of significance, between baseline $[^{11}C]$ flumazenil V_T and the MCCB visual learning domain. In addition, negative correlations with baseline [¹¹C]flumazenil V_T, also falling short of significance, were observed across several of the other MCCB domains in various regions in the antipsychotic-naive schizophrenia group but not in the antipsychotic-exposed group or the schizophrenia group as a whole.

Cortical Oscillations

For the healthy comparison group, the association between gamma-band power and the ability to increase extracellular GABA levels was significant in the large cortical area of the association cortex (r=0.69, p=0.04; see Figure S3 in the online data supplement) and the dorsolateral prefrontal cortex (r=0.69, p=0.04), although these relationships did not survive Bonferroni correction. No association between [¹¹C]flumazenil ΔV_T and gamma-band power was noted in the schizo-phrenia group as a whole or in the antipsychotic-exposed and antipsychotic-naive groups.

In the antipsychotic-naive group, but not in the antipsychoticexposed group, the schizophrenia group as a whole, or the healthy comparison group, gamma-band power was strongly correlated with baseline [¹¹C]flumazenil V_T in the medial temporal lobe (r=0.94, p<0.001), the association cortex (r=0.78, p=0.01), and the sensory cortex (r=0.79 p=0.01) (see Figure S4 in the data supplement).

DISCUSSION

After acute GAT1 blockade in healthy subjects and in antipsychotic-naive and antipsychotic-exposed schizophrenia patients, we detected the predicted elevated extracellular GABA levels as increased binding of the benzodiazepine receptor ligand, measured as $[^{11}C]$ flumazenil ΔV_T , in the healthy comparison group. However, schizophrenia patients did not exhibit this same increase in $[^{11}C]$ flumazenil V_T after GAT1 blockade, indicating impaired GABA transmission in this population. Antipsychotic-naive schizophrenia patients showed an absence of change in [11C]flumazenil binding after acute increase in GABA and increased baseline [11C]flumazenil binding, indicating that this subgroup contributed disproportionally to the group effect. In contrast, schizophrenia patients who had past treatment with antipsychotics were indistinguishable from healthy comparison subjects on the PET scan measurements.

There are two potential interpretations of the finding of increased [¹¹C]flumazenil binding at baseline with no change in binding after tiagabine administration in antipsychoticnaive schizophrenia patients. The first possibility is that elevated [¹¹C]flumazenil binding at baseline reflects greater affinity due to higher extracellular GABA levels prior to tiagabine exposure. Consequently, tiagabine administration does not result in significant additional elevations of synaptic GABA in this population. Alternatively, elevated baseline [¹¹C]flumazenil binding may indicate a compensatory increase in GABA_A receptors in response to a deficit in GABA transmission early in the illness, with lower presynaptic GABA synthesis limiting the effect of tiagabine on extracellular GABA levels.

The postmortem findings of lower levels of GAD67 mRNA and protein, which are most prominent in parvalbumincontaining interneurons, as well as alterations in other markers of GABA function, suggest that impairment in inhibitory neurotransmission could contribute to the

symptoms of schizophrenia (see reference 1 for a review). However, reductions in GAD67 mRNA and protein do not, in and of themselves, support lower GABA levels, as these findings could result from a down-regulation of GAD67 transcription in parvalbumin neurons in response to elevated GABA levels. Furthermore, lower GABA synthesis in parvalbumin neurons does not exclude the possibility of other interneurons releasing greater-than-normal levels of GABA (39) in response to elevated activity of excitatory pyramidal neurons, as proposed in the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia (40). Thus GABA may be elevated globally to maintain homeostasis in the face of perturbations in circuit activity. Since GAT1 is widespread across the neocortex and present in both GABA neurons and glial cells (41), the technique employed in our study is well suited to detect alterations in global extracellular GABA levels, but it does not have the resolution to detect localized, circuit-specific perturbations in GABA levels.

Similarly, the other brain imaging technique used to measure GABA levels in vivo, magnetic resonance spectroscopy (MRS), provides a measurement of global GABA levels generated from the average tissue concentration of GABA in all pools (intra- and extracellular), as opposed to PET, which allows the detection of alterations in GABA levels in the extracellular space. Of the published MRS studies exploring GABA in schizophrenia, three demonstrated increased GABA measures in schizophrenia (42-44), three demonstrated decreased GABA measures (45-47), and three showed no difference (42, 48, 49). Two of the MRS studies examined the effect of treatment with antipsychotic medications; Kegeles et al. (42) found increased GABA measures in the medial prefrontal cortex and normal GABA levels in the dorsolateral prefrontal cortex in unmedicated patients, with no effect of previous treatment. Tayoshi et al. (49) found that the lower the dosage of antipsychotic medication, the higher the GABA levels in the anterior cingulate cortex. Both of these findings are consistent with one interpretation of our findings, that basal GABA levels are elevated in antipsychotic-naive schizophrenia patients. They are also consistent with the observed association (falling short of significance) between time off antipsychotic medications and baseline [¹¹C]flumazenil binding in antipsychotic-exposed schizophrenia patients.

Alternatively, our findings could be viewed as reflecting a compensatory increase in GABA_A receptors in response to a deficit in GABA transmission early in the illness, such that a lower pool of presynaptic GABA limits the effect of tiagabine on extracellular GABA levels. We believe this second interpretation is more likely to be the case, for the following reasons. First, this interpretation is consistent with postmortem studies showing increases in GABA_A receptor binding (50) in schizophrenia. Although findings from postmortem studies of benzodiazepine receptors have been mixed—reporting no change (51), decreases (52), or increases (53)—these findings of variable differences in benzodiazepine binding could be due to differences in previous treatment, and if so, they are in line with the differences we observed in relation to the effects of the presence or absence of previous treatment on [¹¹C]flumazenil binding at baseline, as the postmortem studies do not report on antipsychotic-naive individuals. Previous imaging studies of benzodiazepine receptor densities in schizophrenia have found no differences (26, 27, 54-56). Only the study by Asai et al. (56) reported on medication-naive individuals separately and found no difference; however, the study used the pons as a reference region and used [11C]Ro15-4513, a ligand that measures separate, albeit overlapping, populations of benzodiazepine receptors (24), making direct comparison with our results difficult. Second, in our study, schizophrenia patients who had never received antipsychotic treatment had elevated benzodiazepine binding, whereas in those who had received treatment, benzodiazepine binding was no different from that in healthy subjects, with a notable association, approaching significance, between time off medication and benzodiazepine binding. These findings may be explained by low GABA transmission in the illness initially, with a compensatory increase in GABAA receptors. Subsequent treatment with antipsychotics may increase GABA transmission, resulting in normalization of GABAA receptor levels, perhaps through a reduction of excess dopamine D2 receptor stimulation at the convergence of cortical glutamatergic afferents and dopamine projections on GABA-ergic medium spiny neurons (57), although some preclinical work suggests that antipsychotic medications reduce GABA transmission (58). However, continued impairment in other, as yet unknown, processes prevents this normalization from being effective in overcoming the deficits in cognition.

Third, the lack of correlation between gamma power and [¹¹C]flumazenil ΔV_T in the schizophrenia group but not the healthy comparison group further supports impaired GABA neurotransmission in the illness. Consistent with the hypothesis that GABA transmission is critical for various types of perceptual and cognitive processes, in the antipsychoticnaive schizophrenia group, we observed negative correlations between the visual learning cognitive domain of the MCCB and baseline [¹¹C]flumazenil binding (again, interpreted as increased in response to reduced GABA transmission). This association between impaired GABA transmission and impaired cognition in schizophrenia is supported by experimental models (59) that suggest that GABAA receptor-mediated transmission is required for the induction of network oscillations. In turn, synchronous gamma activity has been proposed to be critical for perceptual feature binding and to be associated with higher cognitive processes (4, 60). We measured oscillatory activity during a cognitive load in an attempt to directly link the measurement of GABA in vivo with this phenomenon in our subjects (see the online data supplement). We found no association between GABA transmission and the ability to increase oscillatory activity in the gamma-band range in the schizophrenia group as a whole or when broken down to the antipsychotic-exposed and antipsychotic-naive groups. Interestingly, we noted a strong relationship between baseline

[¹¹C]flumazenil binding in antipsychotic-naive schizophrenia patients and gamma-band power, perhaps indicating that a compensatory increase in GABAA receptors is effective in increasing the ability to entrain cortical networks, albeit not to a sufficient degree to improve cognitive performance. Alternatively, baseline GABA increases could result from increased baseline activity of parvalbumin-positive interneurons, which in turn could give rise to network gamma oscillations (61). In fact, increases in baseline gamma activity have been reported in schizophrenia and have been invoked to explain decreases in task-activated gamma activity, given the standard practice of subtracting prestimulus baseline activity (62). However, on this account, the increases in baseline [¹¹C]flumazenil binding would negatively correlate with task-activated gamma. In other words, a higher baseline gamma activity, resulting from increased baseline GABA, would result in decreased task related-activated gamma when subtracting prestimulus activity from the task-activity measure, meaning that subjects with higher baseline GABA (i.e., higher prestimulus activity) would have the lower gamma, contrary to our findings of a positive relationship.

Our finding of a relationship between clinical symptoms and markers of GABA-ergic transmission is consistent with and extends previous findings. Although it did not survive correction for multiple comparisons, the negative correlation between PANSS positive symptom score and baseline $[^{11}C]$ flumazenil V_T in the orbital frontal cortex is consistent with the findings reported by Busatto et al (26); however, Schröder et al. (27) found a positive correlation with the total score on the Brief Psychiatric Rating Scale. The finding of a positive relationship between $[^{11}C]$ flumazenil ΔV_T and PANSS positive symptom score in the antipsychotic-naive but not the antipsychotic-exposed schizophrenia group is difficult to interpret in the context of a minimal change in V_T in the antipsychotic-naive group and a lower degree of positive symptoms in the antipsychotic-exposed group: further studies are necessary to explore this finding. Interestingly, we did not observe any relationship between negative symptoms and [¹¹C]flumazenil binding parameters, in contrast to the report of Asai et al. (56), who reported a negative correlation between benzodiazepine binding and PANSS negative symptom score.

Taken together, the results of this study are consistent with postmortem studies suggesting lower cortical GABA neurotransmission in schizophrenia (see reference 1 for a review). Our data indicate that impairment in GABA transmission and reduced GABA signaling are most pronounced prior to treatment; with treatment, the abnormalities in the receptor parameters and GABA transmission measured by this paradigm appear to normalize.

The strengths of this study include measurement of the arterial input function, allowing for the assessment of the effects of tiagabine on $V_{\rm ND}$ and free plasma fraction. While the absence of change in these variables after tiagabine administration validates the use of either BP_P or BP_{ND} as an outcome measure, we chose to use $V_{\rm T}$ as our primary outcome

measure. We were concerned that differential effects of increasing GABA levels on [¹¹C]flumazenil-specific binding in the pons would have an effect on the comparison across groups. Differences in specific binding within the pons would affect either BP_P or BP_{ND} to a greater degree in one group relative to the other, potentially obscuring group differences in tiagabine-induced change in [¹¹C]flumazenil binding, despite the fact that, on average, no changes were seen in the pons V_T after tiagabine administration in either group. Moreover, V_T has been shown to be a more reliable and robust outcome measure for [¹¹C]flumazenil than either BP_{ND} or BP_P (37).

This study also has several limitations, among which is the fact that only minimal information on total exposure to antipsychotic medications was available for the previously treated group, thereby limiting our ability to explore the relationship between our outcome measures and time and type of medication. In addition, our previously published studies noted a high variability in the percent change in ^{[11}C]flumazenil binding across subjects (20, 21). The present study was consistent with this, as we again saw a high degree of variability in $[^{11}C]$ flumazenil ΔV_T across all of the regions of interest. Detecting differences between individuals with a psychiatric disorder and healthy comparison subjects remains challenging with this level of variability; however, comparing the groups in this study, we noted the increase in [¹¹C]flumazenil V_T to be greater in the healthy comparison group than in the antipsychotic-naive schizophrenia group, in which there was a near absence of tiagabine-induced increase in $[^{11}C]$ flumazenil V_T. In other words, this relatively large between-group difference could be detected with the present method (the average increase in V_T in the healthy comparison group was 8.3% [SD=2.2%], whereas it was -0.51% [SD=1.1%] for the antipsychotic-naive schizophrenia group), but more subtle differences in GABA availability between the antipsychotic-exposed group and the healthy comparison or antipsychotic-naive group may be difficult to detect without improvements in the methods to reduce the variability.

The results of this study suggest that GABA abnormalities in schizophrenia are widespread across cortical domains, consistent with recent postmortem studies (2), and are linked to clinical symptoms and cognitive impairments of the illness. In addition, treatment with antipsychotic medications appears to normalize the measured abnormalities in GABA signaling; however, the clinical impact of this normalization appears minimal at best with regard to cognitive functioning.

AUTHOR AND ARTICLE INFORMATION

From the Departments of Psychiatry, Radiology, and Neuroscience, University of Pittsburgh, Pittsburgh.

Address correspondence to Dr. Frankle (franklewg@upmc.edu).

Presented at the 10th International Symposium on Functional Neuroreceptor Mapping of the Living Brain, Egmond aan Zee, the Netherlands, May 21–24, 2014.

Supported in part by an NIMH Silvio O. Conte Centers for the Neuroscience of Mental Disorders grant (MH51456, principal investigator, Dr. Lewis) and an NIH/National Center for Research Resources grant that funds the Montefiore University Hospital Clinical and Translational Research Center.

The authors are grateful to the research subjects who participated in this study and they thank the PET facility staff members who carried out the acquisition of PET data and the care of study subjects during PET procedures.

Dr. Frankle has served as a consultant for Otsuka America Pharmaceutical and ONO Pharmaceuticals. Dr. Mason serves as a consultant for Aposense, Banner Good Samaritan Hospital (Phoenix), Janssen AI, and the Gollman Group (Dallas). Mr. Himes serves as a consultant for ONO Pharmaceuticals. Dr. Lewis receives investigator-initiated research support from Bristol-Myers Squibb and Pfizer and has served as a consultant in the areas of target identification and validation and new compound development to Autifony, Bristol-Myers Squibb, Concert Pharmaceuticals, and Sunovion. Dr. Narendran received grant support from GlaxoSmithKline and ONO Pharmaceuticals.

Received Aug. 19, 2014; revisions received Nov. 17, 2014, and Jan. 16, 2015; accepted Jan. 26, 2015; published online July 2, 2015.

REFERENCES

- 1. Lewis DA, Hashimoto T, Volk DW: Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005; 6:312-324
- Lewis DA: Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol 2014; 26:22–26
- Bartos M, Vida I, Jonas P: Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 2007; 8:45–56
- Howard MW, Rizzuto DS, Caplan JB, et al: Gamma oscillations correlate with working memory load in humans. Cereb Cortex 2003; 13:1369–1374
- Miltner WHR, Braun C, Arnold M, et al: Coherence of gamma-band EEG activity as a basis for associative learning. Nature 1999; 397: 434–436
- Singer W, Gray CM: Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995; 18:555–586
- Tallon-Baudry C, Kreiter A, Bertrand O: Sustained and transient oscillatory responses in the gamma and beta bands in a visual shortterm memory task in humans. Vis Neurosci 1999; 16:449–459
- Andreasen NC, Rezai K, Alliger R, et al: Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia: assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 1992; 49:943–958
- Carter CS, Perlstein W, Ganguli R, et al: Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 1998; 155:1285–1287
- Weinberger DR, Berman KF, Illowsky BP: Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia, III: a new cohort and evidence for a monoaminergic mechanism. Arch Gen Psychiatry 1988; 45:609–615
- 11. Weinberger DR, Berman KF, Zec RF: Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia, I: regional cerebral blood flow evidence. Arch Gen Psychiatry 1986; 43:114–124
- Weinberger DR, Berman KF: Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond B Biol Sci 1996; 351:1495–1503
- Callicott JH, Bertolino A, Mattay VS, et al: Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 2000; 10:1078–1092
- Manoach DS, Gollub RL, Benson ES, et al: Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 2000; 48:99–109

- Manoach DS, Press DZ, Thangaraj V, et al: Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 1999; 45:1128–1137
- Butler PD, Schechter I, Zemon V, et al: Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry 2001; 158: 1126–1133
- Carter CS, MacDonald AW 3rd, Ross LL, et al: Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am J Psychiatry 2001; 158:1423–1428
- Rogowska J, Gruber SA, Yurgelun-Todd DA: Functional magnetic resonance imaging in schizophrenia: cortical response to motor stimulation. Psychiatry Res 2004; 130:227–243
- Sullivan EV, Shear PK, Lim KO, et al: Cognitive and motor impairments are related to gray matter volume deficits in schizophrenia. Biol Psychiatry 1996; 39:234–240
- Frankle WG, Cho RY, Narendran R, et al: Tiagabine increases [11C] flumazenil binding in cortical brain regions in healthy control subjects. Neuropsychopharmacology 2009; 34:624–633
- 21. Frankle WG, Cho RY, Mason NS, et al: [11C]Flumazenil binding is increased in a dose-dependent manner with tiagabine-induced elevations in GABA levels. PLoS ONE 2012; 7:e32443
- Miller LG, Greenblatt DJ, Barnhill JG, et al: "GABA shift" in vivo: enhancement of benzodiazepine binding in vivo by modulation of endogenous GABA. Eur J Pharmacol 1988; 148:123–130
- Tallman JF, Thomas JW, Gallager DW: GABAergic modulation of benzodiazepine binding site sensitivity. Nature 1978; 274:383–385
- Stokes PR, Myers JF, Kalk NJ, et al: Acute increases in synaptic GABA detectable in the living human brain: a [¹¹C]Ro15-4513 PET study. Neuroimage 2014; 99:158–165
- 25. Koe BK, Kondratas E, Russo LL: [³H]Ro 15-1788 binding to benzodiazepine receptors in mouse brain in vivo: marked enhancement by GABA agonists and other CNS drugs. Eur J Pharmacol 1987; 142: 373–384
- Busatto GF, Pilowsky LS, Costa DC, et al: Correlation between reduced in vivo benzodiazepine receptor binding and severity of psychotic symptoms in schizophrenia. Am J Psychiatry 1997; 154: 56–63
- Schröder J, Bubeck B, Demisch S, et al: Benzodiazepine receptor distribution and diazepam binding in schizophrenia: an exploratory study. Psychiatry Res 1997; 68:125–131
- 28. Epperson CN, Haga K, Mason GF, et al: Cortical gammaaminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 2002; 59:851–858
- 29. Spitzer RL, Williams JBW, Gibbon M, et al: The Structured Clinical Interview for DSM-III-R (SCID), I: history, rationale, and description. Arch Gen Psychiatry 1992; 49:624–629
- Kay SR, Fiszbein A, Opler LA: The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13:261–276
- Nuechterlein KH, Green MF, Kern RS, et al: The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. Am J Psychiatry 2008; 165:203–213
- 32. Price JC, Mayberg HS, Dannals RF, et al: Measurement of benzodiazepine receptor number and affinity in humans using tracer kinetic modeling, positron emission tomography, and [¹¹C]flumazenil. J Cereb Blood Flow Metab 1993; 13:656–667
- 33. Koeppe RA, Holthoff VA, Frey KA, et al: Compartmental analysis of [¹¹C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 1991; 11:735–744
- Möhler H, Okada T: Benzodiazepine receptor: demonstration in the central nervous system. Science 1977; 198:849–851
- Braestrup C, Albrechtsen R, Squires RF: High densities of benzodiazepine receptors in human cortical areas. Nature 1977; 269: 702–704

- 36. Abi-Dargham A, Laruelle M, Seibyl J, et al: SPECT measurement of benzodiazepine receptors in human brain with iodine-123iomazenil: kinetic and equilibrium paradigms. J Nucl Med 1994; 35:228–238
- Salmi E, Aalto S, Hirvonen J, et al: Measurement of GABAA receptor binding in vivo with [11C]flumazenil: a test-retest study in healthy subjects. Neuroimage 2008; 41:260–269
- Delforge J, Spelle L, Bendriem B, et al: Parametric images of benzodiazepine receptor concentration using a partial-saturation injection. J Cereb Blood Flow Metab 1997; 17:343–355
- Lewis DA, Curley AA, Glausier JR, et al: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 2012; 35:57–67
- Moghaddam B, Javitt D: From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012; 37:4–15
- 41. Conti F, Melone M, De Biasi S, et al: Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 1998; 396:51–63
- 42. Kegeles LS, Mao X, Stanford AD, et al: Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2012; 69:449–459
- Ongür D, Prescot AP, McCarthy J, et al: Elevated gammaaminobutyric acid levels in chronic schizophrenia. Biol Psychiatry 2010; 68:667–670
- Rowland LM, Kontson K, West J, et al: In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophr Bull 2013; 39:1096–1104
- 45. Yoon JH, Maddock RJ, Rokem A, et al: GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 2010; 30: 3777–3781
- 46. Goto N, Yoshimura R, Moriya J, et al: Reduction of brain gammaaminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T proton MRS study. Schizophr Res 2009; 112: 192–193
- 47. Kelemen O, Kiss I, Benedek G, et al: Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: the potential impact of GABA concentration in the visual cortex. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:13–19
- Chen CM, Stanford AD, Mao X, et al: GABA level, gamma oscillation, and working memory performance in schizophrenia. Neuroimage Clin 2014; 4:531–539
- 49. Tayoshi S, Nakataki M, Sumitani S, et al: GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 2010; 117:83–91
- Benes FM, Vincent SL, Marie A, et al: Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 1996; 75:1021–1031
- 51. Benes FM, Wickramasinghe R, Vincent SL, et al: Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 1997; 755: 121–129
- 52. Squires RF, Lajtha A, Saederup E, et al: Reduced [³H]flunitrazepam binding in cingulate cortex and hippocampus of postmortem schizophrenic brains: is selective loss of glutamatergic neurons associated with major psychoses? Neurochem Res 1993; 18: 219–223
- Kiuchi Y, Kobayashi T, Takeuchi J, et al: Benzodiazepine receptors increase in post-mortem brain of chronic schizophrenics. Eur Arch Psychiatry Neurol Sci 1989; 239:71–78
- Verhoeff NP, Soares JC, D'Souza CD, et al: [1231]Iomazenil SPECT benzodiazepine receptor imaging in schizophrenia. Psychiatry Res 1999; 91:163–173

- Abi-Dargham A, Laruelle M, Krystal J, et al: No evidence of altered in vivo benzodiazepine receptor binding in schizophrenia. Neuropsychopharmacology 1999; 20:650–661
- 56. Asai Y, Takano A, Ito H, et al: GABAA/benzodiazepine receptor binding in patients with schizophrenia using [11C]Ro15-4513, a radioligand with relatively high affinity for alpha5 subunit. Schizophr Res 2008; 99:333–340
- 57. Laruelle M, Frankle WG, Narendran R, et al: Mechanism of action of antipsychotic drugs: from dopamine D(2) receptor antagonism to glutamate NMDA facilitation. Clin Ther 2005; 27(suppl A):S16–S24
- Bourdelais AJ, Deutch AY: The effects of haloperidol and clozapine on extracellular GABA levels in the prefrontal cortex of the rat: an in vivo microdialysis study. Cereb Cortex 1994; 4:69–77
- Van Vreeswijk C, Abbott LF, Ermentrout GB: When inhibition not excitation synchronizes neural firing. J Comput Neurosci 1994; 1: 313–321
- Tallon-Baudry C, Bertrand O: Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 1999; 3:151–162
- Sohal VS, Zhang F, Yizhar O, et al: Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009; 459: 698–702
- 62. Gandal MJ, Edgar JC, Klook K, et al: Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 2012; 62: 1504–1518