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There will likely be substantial variation in these features 
between patients. Accurately characterizing trajectories for 
any disorder requires considering the sources of variation 
that affect the course of illness in the individual patient, as 
well as differences between patients. These sources of varia-
tion are confounded in many psychiatric studies.

In this article we discuss 1) the sources of between-pa-
tient and within-patient variation that make characteriza-
tion of illness trajectories difficult; 2) the implications for 
design choices in studies aiming to characterize illness 
trajectories; 3) the ways in which psychiatric research of-
ten ignores one source of potential variation in particular, 
namely, variation associated with differences between co-
horts; and 4) the ways in which ignoring the presence of 
age cohorts can produce misleading results. We illustrate 
these challenges with an example taken from the Alzhei
mer’s Disease Neuroimaging Initiative (ADNI). Finally, we 
outline a design approach that addresses many of these 
issues, maximizing the ability of researchers of psychiatric 
disorders to arrive at the most accurate characterization of 
illness trajectories possible.
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Characterization of developmental tra-
jectories across the lifespan is integral to 
understanding the prodromal course of 
many neuropsychiatric illnesses and the 
significant risk factors for disease onset or 
unfavorable outcomes. However, the stan-
dard experimental designs used in psychi-
atric research are not ideal for this pur-
pose. The authors review  the lim itations 
of the most commonly employed designs 
in studies that make developmental or 
lifespan inferences in psychiatry: cross-
sectional, single-cohort longitudinal, and 
unstructured multicohort longitudinal de-
signs. Cross-sectional studies completely 
confound w ithin- and between-subject 
sources of variation and hence rely on 
the presence of parallel trajectories and 
negligible sampling and age cohort dif-
ferences for making valid developmen-
tal inferences. Delineating trajectories of 
w ithin-individual change over substan-
tial periods of time requires data cover-

ing long age spans that often cannot be 
covered using single-cohort longitudinal 
designs. Unstructured multicohort longi-
tudinal designs are a commonly used al-
ternative that can cover a longer age span 
in a shorter interval than necessary for a 
single-cohort design. However, the impact 
of cohort and sampling effects is often 
m inim ized or ignored in unstructured 
multicohort longitudinal designs. The au-
thors propose that structured multicohort 
longitudinal designs are a particularly vi-
able and underutilized class of designs 
in psychiatry that represents a significant 
improvement over cross-sectional designs 
and unstructured multicohort longitudi-
nal designs for making developmental in-
ferences while being more practical to im -
plement than single-cohort longitudinal 
designs. As an example of this approach, 
the authors analyze changes in entorhinal 
cortex thickness in Alzheimer’s disease in 
relation to APOE-ε4 genotype.

Recently, both the National Institute of Mental Health 
and the DSM-5 work groups have emphasized the im-
portance of a lifespan perspective for understanding the 
risk for and the onset, etiology, and prognosis of psychi-
atric disorders (1). While the scientific rationale for such 
a perspective is well justified, there are significant meth-
odological challenges inherent in assessing development 
or change in psychiatric outcomes across broader periods 
of the lifespan. In this article, we specifically discuss the 
design choice issues posed by such developmental or life
span approaches.

Con te x t and  A pp roach

One of the fundamental methodological challenges in 
characterizing illness trajectories in psychiatry involves the 
ability to capture, characterize, and explain between-patient 
variation in illness trajectories. For example, the trajectory 
of a disorder in an individual patient will reflect the timing 
of illness onset as well as when in the course of an illness 
the number and severity of symptoms increase or decrease. 
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may be systematically linked to biases in any trajectories 
derived from the study data. These differences can have 
a marked impact on the accuracy of illness trajectory es-
timates if they are not taken into consideration when de-
signing and analyzing the data in a psychiatric study. A 
common example is the “healthy survivor” effect (Figure 
1). The healthy survivor effect occurs when the psychiatric 
outcomes under investigation affect which subjects of a 
certain age cohort are sampled. For example, a cognitive 
performance outcome may decline as subjects grow older, 
but subjects with cognitive performance below a certain 
level may be too disabled to participate in the study. In this 
case, subjects in the sampled older age cohorts will tend to 
have higher levels of the cognitive outcome than would be 
typical for the general population in that age cohort. The 
net effect would be to bias estimates of cognitive perfor-
mance trajectories upward in later age cohorts.

Another situation that gives rise to sampling variation 
across age cohorts in psychiatric studies occurs when tra-
jectories are nonlinear. As we illustrate below, if outcome 
trajectories are steeper after illness onset, sampling all 
subjects at the same chronological age regardless of age at 
illness onset can introduce spurious effects.

Be tw een -Pa tien t Va ria tio n  in  Nonpa ra lle l 
Tra je c to rie s

Another source of confusion arises from assuming par-
allel trajectories of illness across patients when this is not 
true. If trajectories are nonparallel, simply computing or 
modeling an average value of the outcome at each age re-
sults in an estimated illness trajectory that is a misleading 
characterization of illness trajectories in the population 
(Figure 1).

The ability to differentiate these sources of variation, 
and hence to characterize illness trajectories accurately, is 
intimately tied to the choice of study design. Next, we dis-
cuss how the three most commonly used designs in psy-
chiatry—cross-sectional, single-cohort longitudinal, and 
unstructured multicohort longitudinal designs—affect 
the ability to account for these sources of variation and 
thus to characterize illness trajectories accurately.

Design  Issue s and  Cho ice s fo r 
Charac te riz in g  Tra je c to rie s

Cro ss-Se c tio na l D e sign s

Developmental or longitudinal inferences are often 
drawn from serial cross-sectional designs, in which each 
subject is studied once at a particular age, with age varying 
across subjects (12–17). An unstructured serial cross-sec-
tional study is one in which each subject is observed only 
once and the ages between subjects are randomly distrib-
uted over the age span under investigation. A structured 
serial cross-sectional design is one in which a prespecified 
number of subjects is sampled from a population at pre-
specified ages. The relationship between age and outcome 

Although there is a rich and detailed literature on the 
characterization of trajectories in developmental and life
span psychology (2–7), these issues have been frequently 
neglected in psychiatric research. We emphasize that we 
draw substantially on this literature to underscore for aca-
demic researchers in psychiatry the importance of account-
ing for different sources of variation in accurately estimating 
illness trajectories and how choosing the most appropriate 
study design and analyses can go a long way toward mini-
mizing conflation of sources of variation (3, 5, 8, 9). We also 
expand beyond the traditional methodological literature 
on age cohort effects by emphasizing related issues that are 
particularly germane to psychiatric research, namely, the 
importance of characterizing between-patient differences 
in the timing of transitions between illness states and the 
ways these transitions can interact with study design to af-
fect trajectory estimates of psychiatric disorders.

M ethodo lo g ica l Cha llenge s in  
Charac te riz in g  Tra je c to rie s

Three sources of between-patient variation can seriously 
undermine the utility of commonly employed experimen-
tal designs for making developmental or longitudinal in-
ferences in psychiatric research: population cohort effects, 
sampling variation across cohorts, and presence of nonlin-
ear or nonparallel illness trajectories between patients.

Popu la tio n  Coho rt E ffe c ts

A cohort is defined as “the total population of individu-
als entering a specified environment at the same point 
in time” (10, p. 92). The most commonly implemented 
cohort-defining event is year of birth, giving rise to age co-
horts. A rule of thumb is that individuals born within the 
same 5-year period belong to the same age cohort. Other 
cohort-defining events may be more or less uncoupled 
from chronological age—for example, year of menopause 
or year of disease onset (11). Age cohort effects arise from 
differences between subjects that are linked to year of 
birth, such as improvements in the ability to diagnose and 
treat autism in the first 5 years of life for cohorts born in 
recent decades. Another example might be the impact of 
differences across age cohorts in access to childhood edu-
cation, which could change the risk for cognitive decline 
later in life. In general, variation over time in environmen-
tal exposure, diagnostic criteria, or treatment protocols, 
especially during sensitive periods of development, can 
yield substantial cohort effects.

Age cohort effects should not be confused with changes 
within individual patients with the passing of time. Con-
fusing age cohort effects with within-patient changes over 
time can seriously bias conclusions regarding trajectories 
of illness.

Sam p ling  Va ria tio n  A c ro ss  A ge  Coho rts

Sampling criteria that result in differences in how sub-
jects are selected according to age or across age cohorts 
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gle-cohort longitudinal designs confer an important ad-
vantage over other study designs because they character-
ize trajectories based on directly measuring longitudinal 
change for each patient over the entire age span under 
investigation.

Because single-cohort longitudinal studies contain only 
one cohort, there is no variation in outcome that occurs 
as a result of cohort effects. However, by the same token, 
a single-cohort longitudinal design cannot capture varia-
tion in outcomes that may differ across age cohorts. This 
reduces the ability to generalize trajectory estimates to 
other age cohorts (8). Single-cohort longitudinal designs 
also completely confound aging and period effects. Period 
effects result from historical influences that broadly affect 
a population, regardless of age or age cohort, within that 
historical time frame (6). An example might be the rapid 
introduction of a new and highly effective medication 
to most patients in a given population. This confound is 
more of a problem over longer study time spans (9).

There are also significant practical problems with single-
cohort longitudinal designs. Studies must be of sufficient 
length to observe the impact of longitudinal trajectories 
for psychiatric disorders. For example, if the age span of a 
study were from 55 to 90 years, that would entail recruiting 
a sample of 55-year-olds and following each periodically 
for 35 years. The length of time involved in such a study 
can create a number of problems beyond the frustration of 
waiting 35 or more years to obtain a complete data set of 
longitudinal trajectories. Rapidly developing clinical tools 
and technology related to measurement of outcomes, 
such as gene expression or brain function, are virtually 

may then be described by the average response of the sub-
jects sampled at each age.

Cross-sectional studies completely confound within- 
and between-subject sources of variation (9) and assume 
that there are no age cohort differences, or negligible age 
cohort differences, when drawing longitudinal inferences 
(12). Cross-sectional designs cannot capture individual 
variation in the “shape” of trajectories (i.e., timing of in-
flection points) across subjects and thus can be very mis-
leading. The shape of an average trajectory computed from 
a cross-sectional study is the same as the shape of individ-
ual subject trajectories only if the trajectories for all sub-
jects in the study are parallel. This assumption is usually 
not true. Bell (2) noted that the prepubertal growth spurt is 
often seen in individual growth curves but not in the aver-
age curve, because such spurts begin at different ages for 
different individuals. Similarly, age of conversion to Alzhei
mer’s disease, or age at which the rate of cognitive decline 
accelerates, can be highly variable across individuals (18). 
Thus, cross-sectional data alone are clearly insufficient for 
drawing robust developmental or longitudinal inferences.

S ing le -Coho rt Long itud ina l D e sign s

Prospective single-cohort longitudinal designs follow 
subjects in one cohort over the entire age span of interest, 
measuring outcomes repeatedly over time. The prospec-
tive single-cohort longitudinal design has long been con-
sidered the ideal design for understanding within-subject 
change over time at any stage of the lifespan. True single-
cohort longitudinal designs follow patients from the same 
cohort over a specified age span of interest (19, 20). Sin-

FIGURE  1 . Sou rce s o f  Con found ing  in  Be tw een -Pa tien t and  W ith in -Pa tien t Varia tion a
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a	In the left panel, simulated data show linear trajectories, censored when they fall below 0.1. The heavy red line is the average of censored 
trajectories; the “healthy survivor” effect biases the average upward. In the right panel, simulated data show nonparallel trajectories. The 
heavy red line is the average of population trajectories; nonparallel trajectories cause the population average to be unrepresentative of any 
one individual trajectory.



Tho mps on, Hallmay   er , O ’Ha ra , et  al  .

Am  J Psychiatry 168 :9 , Septem ber 2011 		 a jp.psychiatryonline.o rg	 8 9 7

ing and Bioengineering, the Food and Drug Administra-
tion, private pharmaceutical companies, and nonprofit 
organizations. It is a multisite initiative that collects serial 
MRI images, data on genetics and biological markers, and 
data from clinical and neuropsychological assessments 
to measure the progression of mild cognitive impairment 
(N=400) and early Alzheimer’s disease (N=200). Partici-
pants have been recruited from 50 sites across the United 
States and Canada.

The ADNI study is an unstructured multicohort longitu-
dinal design, in that participants enter the study at base-
line ages that vary randomly between ages 55 and 91 years 
(mean=75, SD=7.4) and are subsequently followed rough-
ly biannually for approximately 2 years (years in study: 
mean=1.7, SD=0.6; number of visits: mean=3.8, SD=1.5). 
The entorhinal cortex-hippocampus system appears par-
ticularly vulnerable to the pathology of this illness and is 
already damaged at the time clinical symptoms first mani-
fest (28).

Our analyses focused on estimating trajectories of 
change in total entorhinal cortex thickness in 157 par-
ticipants with Alzheimer’s disease for whom we had serial 
MRI measures and genetic information. Of these, 107 were 
carriers and 50 were noncarriers of the apolipoprotein E 
(APOE) ε4 risk allele (denoted by ε4+ and ε4–, respectively, 
and coded as 0.5 and –0.5 in analyses) for developing Alz
heimer’s disease. Entorhinal cortex thickness was stan-
dardized to have a mean of zero and a standard deviation 
of 1, and patient age was centered at 55 years. We includ-
ed site of imaging scan as a random factor. All analyses 
were conducted in the R statistical program, version 2.10 
(www.r-project.org).

First, this example clearly illustrates the limits of char-
acterizing illness trajectories from cross-sectional data. 
In Figure 2, the left panel displays a linear regression of 
baseline entorhinal cortex thickness against baseline age 
in the 157 patients with Alzheimer’s disease. APOE-ε4 
status is also entered into the regression along with the 
interaction of ε4 status with baseline age. Baseline thick-
ness decreases as a function of baseline age (mean annual 
change=–0.032, SE=0.010, p=0.001). Neither ε4+ status nor 
the interaction of ε4+ status with baseline age is statistical-
ly significant. The conclusion reached from the baseline 
data alone is that cortical atrophy is modest in patients 
with early-onset Alzheimer’s disease and that APOE-ε4 
status has a negligible effect.

As is illustrated in the right-hand panel in Figure 2, the 
longitudinal data tell a markedly different story. For these 
data, we fitted a linear mixed-effects model with standard-
ized entorhinal cortex thickness as the dependent variable 
and with age, ε4 status, and their interaction as indepen-
dent variables. Intercept and age were entered as random 
effects to account for within-subject correlation in out-
comes. For simplicity, in this example we do not explore 
further correlation structures on error variances. In tests 
of fixed effects, the degrees of freedom for the denomina-

certain to be substantially changed by the end of a 35-
year single-cohort longitudinal study. Employing obsolete 
measurement instruments creates problems of relevance, 
and switching to more modern instruments creates prob-
lems of within-study comparability. Even in the absence 
of problems with funding and measurement, the logistic 
issues in long-term single-cohort longitudinal designs can 
have a strong impact on developmental inferences. Miss-
ing data and subject attrition are likely to be substantial 
over 35 years and unlikely to occur at random, and hence 
estimates of longitudinal trajectories may be quite biased.

Unstruc tu red  M u lticoho rt Long itud ina l D e sign s

In a prospective multicohort longitudinal study, data 
are collected from multiple age cohorts, with each cohort 
followed longitudinally for a given length of time. Typi-
cally, although not necessarily, the length of time each co-
hort is followed is a small fraction of the total age range 
under study. A greater span of ages can thus be obtained in 
a shorter time span than in single-cohort longitudinal de-
signs. Unlike cross-sectional designs, multicohort longitu-
dinal designs capture variation both between and within 
patients across age.

Variation due to age cohort has not been routinely con-
sidered either in the design or in the analyses for most 
multicohort longitudinal studies in psychiatry. Indeed, 
when conducting longitudinal investigations, most psy-
chiatric studies simply specify that subjects must be 
within a certain age range at baseline and otherwise al-
low recruitment to vary randomly as a function of baseline 
age. By allowing age to distribute randomly at baseline, 
investigators assume they are doing a prospective single-
cohort study. But when age at entry covers a broad span, 
for example, a range of 10 years or more, the investigators 
are actually conducting a study that encompasses several 
age cohorts. We denote these designs as unstructured mul-
ticohort longitudinal designs because they enroll subjects 
in a random, or unstructured, fashion with respect to age 
and age cohort.

Unstructured multicohort longitudinal designs are par-
ticularly common in psychiatric studies, sometimes cov-
ering 20–40 years (for examples, see references 21–27). In 
such studies, variation tied to age cohort is typically over-
looked. Random sampling of baseline ages often leads to 
unequal cohort cell sizes that do not necessarily produce 
overlapping trajectories and hence can lead to suboptimal 
assessment of the impact of age cohort or sampling effects 
and less accurate characterization of illness trajectories.

Unstru c tu red  M u lticoho rt Long itud ina l 
D e sign s: A n  Exam p le  From  A DN I

To illustrate the effects of different study designs, we 
conducted an analysis using data from the ADNI database 
(www.loni.ucla.edu/ADNI), current through November 
17, 2011. ADNI was formed in 2003 by the National Insti-
tute on Aging, the National Institute of Biomedical Imag-
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hort than it does as a function of within-subject change 
in age, an effect even more pronounced in the ε4+ group 
(Figure 3).

The estimated age cohort effects allow us to account for 
a significant source of variation in trajectories across pa-
tients and help provide a more accurate characterization 
of cortical atrophy in early-onset Alzheimer’s disease. In 
other words, while longitudinal data yield a more accurate 
picture than cross-sectional data of cortical atrophy with-
in patients (left versus right panel of Figure 2), including 
age cohort further refines the longitudinal model, captur-
ing a more complete picture of entorhinal cortex thick-
ness trajectories (Figure 3 compared to the left or the right 
panel of Figure 2).

In addition to yielding more accurate estimates of the 
relationship between outcomes and age, detection of age 
cohort effects can be highly informative. In this example, 
our results show that younger age cohorts of patients with 
early-onset Alzheimer’s disease have lower entorhinal 
cortical thickness relative to the equivalent-age patients 
in older age cohorts (Figure 3). It may be that this reflects 
true population age cohort effects. However, it is difficult 
to explain scientifically why entorhinal cortex thickness 
would be reduced in younger relative to equivalent-age 
subjects from more recent than older cohorts.

Any detected cohort effects can also be the result of 
sampling criteria, rather than actual true cohort effects. 
If the true illness trajectories are nonlinear, the timing of 
when subjects are sampled can have a dramatic impact on 

tor were approximated using the same decomposition as 
in balanced multilevel analyses of variance (29). Entorhi-
nal cortex thickness trajectories have a much more nega-
tive slope (mean annual change=–0.140, df=288, SE=0.006, 
p<0.001) in the longitudinal model compared with the 
cross-sectional model. Moreover, as seen in the figure, 
entorhinal cortex thickness decreases more rapidly with 
age in the ε4+ group than in the ε4– group (mean annual 
change=–0.032, df=288, SE=0.013, p=0.011).

However, an even more accurate and complete repre-
sentation of the trajectories is obtained if we assess the 
degree to which decreasing thickness with age in both ε4 
groups reflects within-subject aging effects or between-
subject age cohort or sampling effects. To do this, we re-
fitted the mixed-effects model, this time using age cohort 
as an independent variable and including within-subject 
change in age (from baseline) and ε4 status, along with 
their interaction, as additional independent variables. In-
tercept and within-subject change in age were entered as 
random effects.

Our results indicate that age cohort has a significantly 
negative effect on entorhinal cortex thickness (mean an-
nual change=–0.31, df=154, SE=0.010, p=0.001), but only 
at one-fifth the rate of within-subject change in age from 
baseline (mean annual change=–0.157, df=287, SE=0.006, 
p<0.001). The interaction of age with APOE-ε4 status is 
also significantly negative (mean annual change=–0.028, 
df=287, SE=0.013, p=0.030). Thus, entorhinal cortex thick-
ness decreases much more slowly as a function of age co-

FIGURE  2 . En to rh ina l Co rte x  Th ickne ss b y  A ge  and  A po lipop ro te in  E  ε4  S ta tu sa
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a	The left panel plots baseline entorhinal cortex thickness against baseline age for 157 patients with Alzheimer’s disease enrolled in the Al-
zheimer’s Disease Neuroimaging Initiative. Red dots indicate patients with ε4– status (N=50), and blue dots indicate patients with ε4+ status 
(N=107). The heavy red line is fitted from a linear model for ε4– patients, and the heavy blue line is fitted from the same model for ε4+ 
patients. The right panel plots longitudinal entorhinal cortex thickness for the same patients, using data from baseline and all follow-up 
assessments. The heavy red line is fitted from a linear mixed-effects model for ε4– patients, and the heavy blue line is fitted from the same 
model for ε4+ subjects. Entorhinal cortex thickness is standardized to have a mean of zero and a standard deviation of 1 at baseline.
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independent variables. Trajectories of subjects in over-
lapping age cohorts are used to estimate and test for the 
presence of age cohort effects (3, 38–40), and the design 
structure facilitates disentangling the effects of age from 
effects due to age cohort, sampling, or nonlinear and non-
parallel trajectories.

Figure 6, produced from simulated data, illustrates the 
potential advantages of a structured multicohort longi-
tudinal design for characterizing illness trajectories. The 
left panel in the figure presents hypothetical nonlinear, 
nonparallel trajectories of illness from a population 55–90 
years of age. These trajectories might represent, for exam-
ple, the effects of aging on cortical thickness before and af-
ter onset of Alzheimer’s disease, with patients too disabled 
to participate in the study when cortical thickness declines 
below a certain level. The heavy black line corresponds to 
a “typical” trajectory. It has the same shape as other trajec-
tories and has the population median onset time. In con-
trast, computing the average value of outcomes at each age 
(heavy red line) produces an average trajectory estimate 
that does not have the characteristic shape of any individ-
ual trajectory. This is caused by nonparallel illness trajecto-
ries and worsened by the healthy survivor effect.

The middle panel of Figure 6 shows data from an accel-
erated longitudinal design obtained from these popula-
tion trajectories. In this design, departures of individual 
patient trajectory slopes from the average trajectory esti-

the characterization of the trajectory. Thus, for example, 
studies have found evidence of accelerating rates of atro-
phy in brain regions at onset of mild cognitive impairment 
and in early Alzheimer’s disease (30, 31). It is plausible that 
the estimated age cohort slope (heavy unbroken lines in 
Figure 3) reflects rates of atrophy occurring before the di-
agnosis of Alzheimer’s disease is made, whereas the steep-
er within-subject slopes (heavy broken line segments in 
Figure 3) reflect postdiagnosis rates of atrophy. Age cohort 
effects then arise from sampling patients with nonlinear 
trajectories at a time point after illness onset and hence 
after the time at which accelerated decline occurs in ento-
rhinal cortex thickness.

S tru c tu red  M u lticoho rt Long itud ina l 
D e sign s

Many of the deficiencies of unstructured multicohort 
longitudinal designs can be ameliorated by carefully pre-
specifying the number of subjects in each age cohort and 
the degree of overlap across neighboring cohorts. We term 
this approach a structured multicohort longitudinal de-
sign. Unlike in an unstructured design, where age varies 
randomly at baseline, in a structured design, individuals 
enter the study at preselected ages (age cohorts; see Fig-
ure 4) spanning the age range of interest, with each subject 
followed longitudinally over a shorter time span relative to 
the entire age range under investigation. Structured mul-
ticohort longitudinal designs of various types have been 
very successfully conceptualized and applied to devel-
opmental research elsewhere (3, 5, 9, 32) but have been 
used minimally in studies of the genetic, biological, and 
environmental factors that affect the development and 
progression of psychiatric disorders (33–35).

An important example of a structured design is the ac-
celerated longitudinal design, proposed by Bell (2, 36), 
also sometimes called the cohort-sequential design (37). 
Essentially, each age cohort in an accelerated longitu-
dinal design enters a prospective longitudinal study of a 
duration that can be encompassed within, for example, a 
5-year funding period (Figure 5). A crucial design require-
ment is that the short cohort age spans overlap. If the age 
span were 55–90 years, one might select age cohorts fol-
lowed yearly from ages 55–58, 57–60, and so on. There 
would be 17 age cohorts, with each subject being followed 
for 3 years after the first baseline measurement, covering 
the 55–90 year age span, with a 2-year overlap between 
consecutive age cohorts. Thus, by choosing the appropri-
ate overlapping cohorts, trajectories across long age spans 
can be estimated within the confines of a 5-year grant.

Conceptually, a longitudinal model is fitted to subjects 
within each age cohort, and these short sections of devel-
opmental trajectories are spliced together to estimate the 
total developmental trajectory over the entire age span. In 
practice, this is accomplished by an application of mixed-
effects models that include both age and age cohort as 
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Longitudinal Cortical Thickness With Cohort Effects

a Longitudinal entorhinal cortex thickness measures for patients with 
Alzheimer’s disease with ε4– (N=50) and ε4+ (N=107) status. Heavy 
lines and line segments indicate model fitted from linear mixed-
effects model including age cohort, change in age from baseline, 
and APOE-ε4 status. Line segments extending from the longer lines 
indicate departures of within-subject slopes (change in age from 
baseline) from age cohort slopes, for seven age cohorts (55, 60, 65, 
70, 75, 80, and 85 years of age at baseline).
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trajectory shapes and timing of disease onset can be ob-
tained. If additional patient-level information, such as ge-
netic or other biomarkers, is obtained, it can be used to 
help further explain observed between-subject variation 
in the shape or timing of illness trajectories.

mate appear as age cohort effects. These age cohort effects 
can be used to help reconstruct typical trajectories by fit-
ting curves that minimize cohort effects, as in the right-
hand panel of Figure 6. By repeating this analysis across 
age cohorts, a more accurate estimate of the individual 

FIGURE  4 . Com parison  o f  Un stru c tu red  and  S tru c tu red  A ge  Coho rtsa
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a	The left panel shows a frequency histogram of baseline ages of 157 patients with Alzheimer’s disease from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI), an example of an unstructured multicohort longitudinal design. The right panel shows a frequency histogram for 
a hypothetical structured multicohort longitudinal design with the same number of subjects and range of baseline ages as ADNI.

FIGURE  5 . H ypo the tica l A cce le ra ted  Long itud ina l D e sign a
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a	This hypothetical accelerated longitudinal design covers ages 55–90 years. The design results in 17 age cohorts with each cohort assessed four 

times over the course of 3 years. Resulting trajectories for each age cohort overlap at two time points.
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ages. An analytic approach that accounts for potential dif-
ferences in illness trajectories between age cohorts can go 
a long way toward addressing these issues. Furthermore, 
if dropout is expected to be a problem in certain age co-
horts, or if variation in illness trajectories is expected to be 
greater in one cohort than in another, these age cohorts 
can be oversampled to maximize the overall power to es-
timate trajectories reliably. In short, by implementing a 
carefully planned accelerated longitudinal design, the re-
searcher can ensure good coverage across the entire age 
span of interest, thus maximizing the ability to disentangle 
the effects of age from effects due to age cohort, sampling, 
and nonlinear and nonparallel trajectories.

Conc lu sion s

Despite the increased awareness of the importance of 
characterizing trajectories of change in psychiatric disor-
ders, many psychiatric studies use approaches that do not 
lend themselves to the accurate characterization of such 
trajectories. Cross-sectional designs are particularly in-
adequate for this purpose (9, 12). As we have described, 
even a perfectly designed and executed single-cohort 
longitudinal design is not without its methodological and 
practical constraints. Moreover, most longitudinal investi-
gations in psychiatry are in fact unstructured multicohort 
longitudinal designs, and most psychiatric studies em-
ploying these designs do not formally consider the poten-
tial impact of age cohort and sampling effects. Failure to 

Cha llenge s in  U sing  M u lticoho rt 
Long itud ina l D e sign s

Multicohort longitudinal designs are optimal in many 
situations, but they also bring challenges that stem from 
observing only a small proportion of a given subject’s de-
velopmental trajectory compared to the entire age range of 
interest. Cohort or sampling effects may be small and hard 
to detect in neighboring cohorts, yet may cumulatively 
have a large impact across the age range of the sample. 
Moreover, sampling criteria, either explicit or implicit, can 
strongly affect not only which subjects enter the study but 
also what portion of the developmental curve is observed, 
potentially limiting inferences to certain stages of devel-
opment. For example, if all subjects are sampled after ill-
ness onset, it will be difficult to determine the nature of the 
pre-illness trajectories or factors leading to onset of illness. 
To accurately characterize the course of development af-
ter illness onset, it may be necessary to retroactively deter-
mine age at illness onset for each subject in a multicohort 
design and to model trajectories as a function of changing 
duration of illness as well as changing chronological age. 
A further complication arises if the systematic sampling 
across age cohorts does not reflect the prevalence of the 
disorder during the time frame of any specific age cohort. 
Of course, single-cohort longitudinal and unstructured 
multicohort designs face similar challenges, since there is 
no guarantee that patients selected into such studies rep-
resent the true prevalence of the disorder across different 

FIGURE  6 . Com parison  o f  C ro ss-Se c tiona l and  S tru c tu red  M u lticoho rt Long itud ina l D e sign  Tra je c to ry  E stim a te sa
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a	The left panel shows nonlinear, nonparallel trajectories from 100 subjects ages 55–90 years, generated from simulated data. The heavy dark 
line is a “typical” population trajectory; the heavy red line is the population average of trajectories. The middle panel plots data sampled 
from trajectories using an accelerated longitudinal design with four yearly measurements. The heavy red line is the data average, and the 
purple segments are mean within-subject trajectory estimates for evenly spaced age cohorts (baseline ages=55, 57.5, 60, and so on). The 
right panel plots data from the same accelerated longitudinal design. The heavy red line is again the data average, the heavy black line is a 
“typical” trajectory, and the heavy green line is the estimated typical trajectory constructed by minimizing age cohort effects.
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study  is coo rd inated  by  the  A lzhe im er’s D isease  Cooperative  Study  a t 
the  Un iversity  o f Ca lifo rn ia , San  D ie go . ADNI data  are  d issem inated  
by  the  Laborato ry  fo r Neuro  Im aging  a t the  Un iversity  o f Ca lifo rn ia , 
Lo s Ange le s. Th is re search  w as a lso  supported  by  N IH  g ran ts P30  
AG010129  and  K01  AG030514  and  by  the  Dana Foundation .

Data  used  in  the  p reparation  o f th is artic le  w ere  ob ta ined  from  the  
A lzhe im er’s D isease  Neuro im aging  In itia tive  (ADN I) database  (w w w.
lon i.uc la .edu/ADNI). The  ADNI investiga to rs con tributed  to  the  de -
sign  and  im p lem entation  o f ADNI and/o r p rov ided  data  but d id  no t 
partic ipate  in  analysis o r w riting  o f th is repo rt. A  com ple te  list o f 
ADN I investiga to rs is ava ilab le  a t h ttp ://w w w.lon i.uc la .edu/ADNI/Co l-
labo ration /ADNI_M anuscrip t_C ita tions.pd f.

The  autho rs thank D rs. D ilip  Je ste , He lena K raem er, Anders D ale , 
Christine  Fennem a-No testine , and  Anda Gershon  fo r the ir va luab le  
feedback on  the  m anuscrip t.
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