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Objective: Epidemiological studies indi-
cate that experimentation with addictive
drugs and onset of addictive disorders is
primarily concentrated in adolescence and
young adulthood. The authors describe
basic and clinical data supporting adoles-
cent neurodevelopment as a biologically
critical period of greater vulnerability for
experimentation with substances and ac-
quisition of substance use disorders.

Method: The authors reviewed recent lit-
erature regarding neurocircuitry underly-
ing motivation, impulsivity, and addic-
tion, with a focus on studies investigating
adolescent neurodevelopment.

Results: Adolescent neurodevelopment
occurs in brain regions associated with

motivation, impulsivity, and addiction. Ad-
olescent impulsivity and/or novelty seek-
ing as a transitional trait behavior can be
explained in part by maturational changes
in frontal cortical and subcortical mono-
aminergic systems. These developmental
processes may advantageously promote
learning drives for adaptation to adult
roles but may also confer greater vulnera-
bility to the addictive actions of drugs.

Conclusions: An exploration of develop-
mental changes in neurocircuitry involved
in impulse control has significant impli-
cations for understanding adolescent be-
havior, addiction vulnerability, and the pre-
vention of addiction in adolescence and
adulthood.

(Am J Psychiatry 2003; 160:1041–1052)

Substance use disorders are a leading cause of medical
morbidity, mortality, and health expenditures in the
United States (1). Regional availability of substances and
social trends influence the prevalence of specific sub-
stance use disorders (2). Three major observations suggest
that the developmental periods of adolescence and early
adulthood are primary correlates of substance use and
substance use disorders, operating across cultural trends
and substances. First, adolescents and young adults gen-
erally exhibit higher rates of experimental use and sub-
stance use disorders than older adults, as indicated by
studies of the general population spanning the last two
decades and with the use of alternate diagnostic criteria
(3–5). Second, addictive disorders identified in adults
most commonly have onset in adolescence or young
adulthood (6, 7). For example, most adult U.S. smokers be-
gin smoking before age 18 (8), and the onset of daily smok-
ing is uncommon after age 25 (9). Over 40% of adult alco-
holics experience alcoholism-related symptoms between
ages 15 and 19, and 80% of all cases of alcoholism begin
before age 30 (10). The median reported age of initiation of
illicit drug use in adults with substance use disorders is 16
years, with 50% of cases beginning between ages 15 and 18
and rare initiation after age 20 (3). Third, earlier onset of
substance use predicts greater addiction severity and
morbidity, including use of—and substance use disorders
associated with—multiple substances (6, 11, 12). Although

epidemiological surveys generally show greater preva-
lence of substance use disorders in male than in female

subjects across ages, these age-specific trends are ob-
served in both male and female subgroups, suggesting the

existence of gender-independent factors in the develop-

mental onset of substance use disorders (4, 13).

Two key variables in the genesis of addictive disorders

are the 1) degree/amount of drug intake and 2) the inher-
ent vulnerability to addiction given a fixed amount of drug

intake (14, 15). Understanding whether one or both of

these factors are greater in adolescence is important in
explaining the developmental onset of substance use

disorders. Although cultural, peer, and family influences
contribute to drug availability and substance experimen-

tation (16), several lines of evidence suggest that sociocul-

tural aspects particular to adolescent life alone do not fully
account for greater drug intake. Although marketing and

the availability of legal drugs (alcohol and nicotine) are
pervasive across age groups in American society and are

legally sanctioned only for adults, the onset of substance

use disorders associated with these drugs is concentrated
in adolescence and young adulthood and does not in-

crease in a cumulative manner with increasing age. In Eu-
rope, where teen cultural norms and societal limitations

regarding substances vary from those in the United States,

the incidence and morbidity associated with substance
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use disorders similarly occur frequently in adolescents
and young adults (17, 18).

Genetic and neurobiological factors within individuals
are thought to lower the threshold of drug exposure re-
quired for “tripping the switch” from experimental to ad-
dictive drug use (15). Growing clinical evidence suggests
that adolescence represents a period of heightened bio-
logical vulnerability to the addictive properties of illegal
and legally sanctioned substances. For instance, adoles-
cents demonstrate a more precipitous progression of illicit
drug use than adults (4, 19). Despite smoking fewer ciga-
rettes than adults, adolescents show higher rates of de-
pendence at similar levels of use (20), and although rates
of alcohol use are similar throughout adolescence and
adulthood, rates of abuse/dependence vary inversely with
age (5). This article reviews basic and clinical evidence for
adolescent neurodevelopment as a critical period of ad-
diction vulnerability. Behaviors seemingly characterized
by impulsivity and suboptimal decision making are de-
scribed as normative traits of adolescence corresponding
to the development of motivational circuitry involved in
the pathophysiology of addiction. Developmental events
that facilitate motivational drives promoting learning
about adult experiences may simultaneously increase vul-
nerability to neurobehavioral effects of addictive drugs,
leading to substance use disorders.

Impulsivity and Decision Making

The prevalence of substance use disorders is elevated in
adults with schizophrenia, major affective disorders, anti-
social and borderline personality disorders, and pathologi-
cal gambling (2, 3, 10, 21, 22). Adolescents with antecedent
or fully expressed versions of these disorders are also more
likely to have substance use disorders (23–25). Associations
of these mental illnesses and adolescence with substance
use disorders suggest that common brain mechanisms may
underlie vulnerability to substance use disorders in these
different contexts. These mechanisms might manifest as a
general clinical motif or behavioral trait that transcends ad-
olescent, psychiatric, or substance use disorder groups. Im-
paired impulse control represents one such motif (23, 26,
27). As with other descriptive constructs in clinical psy-
chiatry, the precise meaning of impulsivity and its rela-
tionship to traits of novelty or sensation seeking are de-
batable. Varieties of impulsivity have been proposed,
depending on the clinical measure and the function of
specific brain regions being assessed (28). Here we formu-
late impulsivity as goal-directed behavior characterized
by poor judgment in the attainment of rewards, such as
addictive drugs, sex, food, social power (by means of
violence), money, or other resources (27, 28). With this
definition, impulsive behaviors generally lead to disad-
vantageous or deleterious consequences; behaviors char-
acterized by increased novelty seeking or poor decision
making may be considered impulsive (29).

Psychiatric disorders commonly identified with distur-
bances in reward motivation and substance use disorder
comorbidity are associated with impulsivity (3, 27, 28, 30).
Instruments measuring decision making identify impul-
sivity as a preference for high-risk/low-benefit choices or
lesser immediate rewards over greater delayed rewards
(temporal discounting) (31, 32). Impulsive response pat-
terns have been identified in association with impulse-
control disorders, substance use disorders, and psychiat-
ric diagnoses with impulse-control disorder and/or sub-
stance use disorder comorbidity (26, 33). Although similar
instruments have not yet been applied in adolescents, im-
pulsivity and/or novelty seeking are generally observed to
increase in adolescence and decline with age (34, 35).

Understanding the relationship between impulsivity
and substance use disorders may prove important to un-
derstanding the pathogenesis of substance use disorders
and their greater prevalence in specific clinical contexts,
including adolescence. Conceptualizations of the clinical
syndromes of substance use disorders and poor impulse
control or decision making share features suggesting sim-
ilar forms of motivational psychopathology. Individuals
with poor impulse control show a thematic tendency to
engage in behaviors characterized by long-term disadvan-
tageous outcomes. Similarly, addictive substances are col-
lectively associated with chemical stimulation and neuro-
plastic changes in brain motivation substrates, leading to
further drug use at the expense of social and occupational
outcomes (15). Analogous clinical conceptualizations of
impulsivity and addictions in terms of dysfunctional moti-
vational repertoires may reflect common neurobiological
mechanisms involving motivational neurocircuitry.

Neurocircuitry of Motivational 
Substrates

Understanding the anatomy and function of motiva-
tional brain systems may provide important information
about correspondences between impulsivity, risk for sub-
stance use disorders, and adolescence. Motivation can be
conceptualized as brain activity that processes “input” in-
formation about the internal state of the individual and
external environment and determines behavioral “out-
put” (36). Rather than operating as a simple reflex system
producing discrete behaviors in response to discrete stim-
uli, motivation involves higher-order processing designed
to organize behavior to maximize survival (37). Goal-di-
rected behavior involves integrating information about
multiple changing internal states (e.g., hunger, sexual de-
sire, or pain) and environmental conditions (including re-
source or reproductive opportunities, the presence of
danger) in generating an advantageous behavioral re-
sponse (31). Compounding this complexity, multiple sur-
vival goals may be simultaneously important but indepen-
dently attainable in space and time, and there may exist
large numbers of potentially successful behavioral strate-
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gies to attain one or more of these goals. Motivational
neurocircuitry should therefore involve mechanisms ca-
pable of representing alternative motivated drives and ef-
ficiently prioritizing and selecting appropriate motivated
drives for enactment (36, 38).

Translational neuroscience is beginning to generate
neurobiological evidence supporting these theoretical
considerations. The importance of motivation to evolu-
tionary fitness would predict that substantial portions of
the brain are involved, following a hierarchical anatomical
and functional organization conserved across species. An-
imal and human studies suggest the existence of a primary
motivation circuitry involving the prefrontal cortex and
ventral striatum, which has direct access to and influence
on motor “output” structures (37). This anterior system is
supported by a more widely distributed and posteriorly
situated secondary motivation circuitry that provides

multiple modalities of sensory “input” information by
means of direct axonal projections converging into pri-
mary motivation circuits (Figure 1) (39–41). For example,
the hippocampus and amygdala provide contextual mem-
ory and affective information relevant to motivational
stimuli (31, 39, 42, 43), while hypothalamic and septal nu-
clei provide information relevant to primitive or instinc-
tual motivated behaviors, such as nutrient ingestion, ag-
gression, and reproductive responses (44).

Recent findings characterize primary motivation cir-
cuitry as containing populations of neurons capable of
generating firing patterns that may encode multiple as-
pects of motivated drives or alternative motivated drives
(45). These representations occur among neuronal en-
sembles interconnected by parallel loops of serial axonal
projections from the prefrontal cortex to the ventral stria-
tum (the nucleus accumbens to the ventral globus palli-

FIGURE 1. Major Motivational Brain Circuitry Putatively Involved in Impulsivity, Decision Making, and Drug Addictiona

a Primary motivation circuitry directly subserves the neurocomputational events of decision making and the selection of motivational drives
for behavioral action. These events are determined by subsystems integral to cortical-striatal-thalamic-cortical pathways (open yellow arrow)
that can either promote or inhibit the enactment of motivated drives. Secondary motivation circuitry provides the input (affective, memory,
sensory, hormonal/homeostatic information) that generates and influences the fate of motivational drives in primary motivation circuitry.
Addictive drugs, primarily by virtue of neuroplastic changes associated with dopamine activity most highly concentrated in primary motiva-
tion circuitry, produce long-term motivational effects.
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dus) to the thalamus and back to the cortex (46, 47) (Figure
1 and Figure 2). Cortical-striatal-thalamic-cortical loops
are described as parallel because specific subregions of
the prefrontal cortex (e.g., anterior cingulate, ventrome-
dial, and dorsolateral regions) project to specific compart-
ments within the striatum, which in turn maintain some
degree of segregation in projections to the thalamus and
back to the cortex (48). Both anatomical and neurophysio-
logical evidence suggest that firing patterns of neuronal
ensembles within functionally specific compartments of
the striatum are in part correlated with patterns of firing in
specific prefrontal cortex subregions (42, 49). In turn, fir-
ing patterns in both the nucleus accumbens and prefron-
tal cortex are influenced by glutamatergic inputs from the
hippocampus and amygdala, suggesting that abnormali-
ties in these distal structures may produce both mental ill-
ness and motivational disorders (50). Because striatal
populations have direct influence on premotor and motor
cortices and brainstem motor centers, their activity more
directly determines motivational states and behavioral
output (39, 44). Dense collections of γ-aminobutyric acid

(GABA)-ergic inhibitory neurons in the striatum commu-
nicate by means of recurrent collateral inhibition that is
suggestive of the high capacity of local neural networks to
encode vast numbers of alternative firing patterns that
could serve as computational building blocks of multiple,
highly elaborated motivated drives (39, 47, 51–67).

Accumulating evidence suggests that neurocircuitry en-
coding repertoires of alternative motivated drives are sub-
ject to neurobiological events that prioritize and select
motivated drives for behavioral action. Particular neural
substrates have been associated with promoting (increas-
ing the probability of enactment) or inhibiting motivated
drives. Disturbances of motivational repertoire, including
varieties of impulsivity and addictions, may thus com-
monly reflect poor coordination or abnormal functioning
of promotional or inhibitory neural systems integral to
primary motivation circuitry (41, 52). Consistent with this
notion, neuroimaging studies implicate common subcor-
tical-striatal regions and the prefrontal cortex in emo-
tional and cognitive processes of decision making and the
pharmacological action of addictive drugs (53). To further

FIGURE 2. Cortical-Striatal-Thalamic-Cortical Loops Within Primary Motivation Circuitry Involved in the Representation of
Motivated Drives and the Neurocomputational Events of Motivational Decision Making and Behavioral Instigationa

a Part A shows that glutamatergic afferents from the prefrontal cortex, in conjunction with those from the amygdala and hippocampus, convey
executive, affective, and contextual memory information to the nucleus accumbens by influencing the firing patterns of neuronal ensembles
in the nucleus accumbens, depicted as local peaks in firing rates. Nucleus accumbens architecture allows a vast number of motivational pos-
sibilities to be represented by a corresponding diversity of firing patterns. Motivational information is conveyed by GABA-ergic afferents to the
ventral globus pallidus and then to the thalamus, which in turn influence cortical and subcortical centers of motor output. Part B shows that
dopamine discharge in the nucleus accumbens (thickened red arrows) is implicated in the identification of environmental novelty, the actions
of addictive drugs, and the gating of motivated drives into behavioral actions by changing responses of nucleus accumbens neurons to cor-
tical and limbic glutamatergic afferents. These events are proposed to lead to relative extremes in firing patterns among nucleus accumbens
neuronal ensembles, depicted as increases in local peak amplitudes that code for behaviorally activating events in downstream motor sys-
tems. These events may also facilitate mechanisms of neuroplasticity among nucleus accumbens neurons and their afferents, determining
the future repertoire of motivational drive representations and/or thresholds for behavioral instigation. During adolescence, ongoing frontal
cortical maturation (limiting motivational inhibitory capacity), along with robust novelty-encoding dopamine activity, may enhance the ac-
tion of addictive drugs to cause the system to operate in a promotional motivated state (as in B), producing more profound long-term moti-
vational consequences.
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explore this hypothesis, data characterizing promotional
and inhibitory motivation substrates will be described,
followed by a review of changes within these pathways
during adolescence.

Promotional Motivation Substrates

Dopamine release into the striatum is a principal neu-
romodulatory event implicated in the translation of en-
coded motivated drives into action, operating like a gen-
eral “go” signal (54). Dopamine release into the ventral
striatum (nucleus accumbens) and dorsal striatum (cau-
date putamen) is provoked by excitatory signals from the
cortex and other areas that stimulate dopamine neuron
activity in the ventral tegmental area and substantia nigra,
respectively (55, 56) (Figure 1). However, the ventral and
dorsal sections are associated with different levels of pre-
motor processing. Dopamine release into the dorsal stria-
tum, compromised in the pathogenesis of Parkinson’s dis-
ease, is primarily associated with the initiation and flow of
concrete motor activity and habitual behavior (57). In
contrast, dopamine release into the nucleus accumbens is
associated with motivational stimuli, subjective reward,
premotor cognition (thought), and learning of new behav-
iors (43, 46, 58). The precise manner in which dopamine
release is involved in the translation of thought into action
is unknown. Some work indicates that dopamine dis-
charge directly affects the firing patterns of neuronal en-
sembles in the nucleus accumbens and influences their
responses to glutamatergic input from the cortex,
amygdala, and hippocampus (51, 59) (Figure 2B). This
finding suggests that sensory, affective, and contextual
memory information, leading to the generation of repre-
sentations of motivated drives, is gated by dopamine re-
lease in the striatum, such that downstream motor centers
can receive and act upon specific motivational informa-
tion (51, 59, 60). Accordingly, neurotoxic lesions of the pre-
frontal cortex, amygdala, or hippocampus alter behavioral
repertoires provoked by pharmacological stimulation of
dopamine release in the nucleus accumbens (61–63).

A wide variety of motivational stimuli have been shown
to increase dopamine in the nucleus accumbens. These
include the pharmacological actions of addictive drugs
(including nicotine, alcohol, cocaine, amphetamine, opi-
ates, cannabis), natural rewards (food, sex, or other re-
sources), reward-related stimuli and situations (video-
game playing), and stressful or aversive stimuli (43, 64–
67). Environmental awareness is vital for the efficient ac-
quisition of reward resources, and the drive to seek and ex-
plore the unknown is itself a powerful primary motivation
(43). Environmental novelty provokes ventral-striatal
dopamine release (68) and, like addictive drugs, produces
locomotor behavior in laboratory animals (69). Novelty,
presented in the form of unpredicted contingencies or en-
vironmental stimuli, in combination with addictive drugs,
is particularly motivating (70). Rewards delivered in inter-
mittent, random, or unexpected fashions have greater ca-

pacity over repeated trials to maintain dopamine cell fir-
ing and reward-conditioned behavior (71, 72). In contrast,
many well-learned motivated behaviors or habits per-
formed under expected contingencies become less de-
pendent on nucleus accumbens dopamine release. Thus,
direct pharmacological stimulation of dopamine systems
mediated by addictive drugs appears to mimic and/or act
synergistically with the natural motivational-encoding
properties of environmental novelty.

A second important function of dopamine, together
with glutamatergic afferent activity in the nucleus accum-
bens and intrinsic GABA-ergic activity of nucleus accum-
bens neurons, involves the determination of future repre-
sentations and selection preferences of motivated drives.
In reward-related learning, future behavior is shaped ac-
cording to past experiences associated with rewards by
means of neuroplastic changes in nucleus accumbens
neurons (73). Repeated drug-provoked dopamine release
in the nucleus accumbens induces changes in cellular
proteins involved in intracellular receptor signaling path-
ways, gene expression, and cellular architecture (15).
Dopamine transmission in nucleus accumbens and pre-
frontal cortex regions projecting to the nucleus accum-
bens has been implicated in mechanisms of learning and
plasticity, including changes in long-term potentiation
and morphology of neuronal dendritic trees (74–77).
These neuroplastic processes may underlie behavioral
sensitization, whereby the motivational drive associated
with a reward becomes increasingly stronger as that re-
ward context is repeatedly experienced (78, 79). Sensitiza-
tion, as an increase in the motivational priority associated
with a particular contextual reward relative to other en-
coded motivational drives, produces reward-specific ac-
quisition behavior that becomes increasingly compulsive
(78). In this manner, dopamine systems activity may serve
a long-term function of narrowing or focusing the reper-
toire of motivational drives of the individual.

Inhibitory Motivation Substrates

Deficiencies of function or structure of inhibitory sys-
tems are associated with the enactment of motivated
drives deemed suboptimal or inappropriate. Chief among
these are the serotonin (5-HT) neurotransmitter system
and prefrontal cortex components of motivational cir-
cuitry (Figure 1). Measures of decreased brain 5-HT activ-
ity are associated with impulsive behaviors, including out-
ward and self-directed violence, suicide, fire starting, and
pathological gambling (80–82). Pharmacological injury of
5-HT systems in animals results in impulsive responding
in reward-related learning and incentive motivation (83).
Conversely, pro-serotonergic agents decrease social ag-
gression and impulsivity in animals and humans (84, 85).
Although mechanisms for these findings have not been
fully elaborated, 5-HT projections from the midbrain
raphae nuclei to motivational circuitry, including the ven-
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tral tegmental area, nucleus accumbens, prefrontal cortex,
amygdala, and hippocampus, appear involved (55, 86).

Prefrontal cortex function has long been associated with
impulse control. Documented as early as 1848, damage to
the ventromedial prefrontal cortex causes pervasive moti-
vational impulsivity associated with affective instability,
poor decision making and executive planning, and indif-
ference to social cues (87). Impaired impulse control has
subsequently been reported in numerous neuropsychiat-
ric conditions (e.g., antisocial personality disorder, affec-
tive disorders, schizophrenia, substance use disorders, de-
mentias, and traumatic brain injury) characterized by
abnormal measures of prefrontal cortex function (26, 30,
88–90).

Prefrontal cortex abnormalities are associated with a
greater risk of developing substance use disorders, possi-
bly involving changes in motivational responses to addic-
tive drugs. Clinical studies demonstrate an association of
traumatic brain injury, often involving the prefrontal cor-
tex, with heightened substance use disorder comorbidity
and suggest that the onset of either of these factors alone
increases risk for the other (91–93). Functional or anatom-
ical abnormalities of the prefrontal cortex of nonspecific
etiology are also commonly identified in populations with
substance use disorders (94–97). Corresponding to these
clinical observations, prefrontal cortex lesions in rats can
augment the reinforcing efficacy of cocaine during self-
administration (98, 99).

Investigations of corticostriatal interactions suggest a
mechanism for prefrontal cortex dysfunction, producing
both impulsivity and greater risk for substance use disor-
ders. Excitatory glutamatergic projections from the pre-
frontal cortex to the nucleus accumbens and ventral teg-
mental area influence dopamine release, neuronal firing,
and neuroplastic processes in the nucleus accumbens (39,
100, 101). These anatomical and functional linkages
suggest that the prefrontal cortex is involved in the repre-
sentation, execution, and inhibition of motivational
drives by influencing patterns of neural ensemble firing
in the nucleus accumbens. Compromise of the prefrontal
cortex or its inputs to the nucleus accumbens could 1) al-
ter the variety of representations of motivational drive op-
tions in the nucleus accumbens, 2) alter the response pat-
terns across nucleus accumbens neuronal ensembles to
the “go” signal provided by dopamine influx, resulting in
greater probability of enactment of particular motivated
drives, and/or 3) impair neuroplastic processes in the
nucleus accumbens that would normally decrease the
strength of motivated drives deemed inappropriate by
prior experience. Poor prefrontal cortex function, regard-
less of the specific pathology, could increase the probabil-
ity of performing inappropriate motivated drives viewed
clinically as impulsive. Similarly, prefrontal cortex dys-
function may result in 1) preferential motivational re-
sponding to directly encoded rewards provided by the
prodopamine effects of drugs and/or 2) an unchecked

progression of neuroadaptive effects of drugs underlying
motivational sensitization and a switch to compulsive
drug seeking (102, 103). As such, relative impairment of in-
hibitory motivational systems in the setting of robust pro-
motional motivation systems activity would commonly
increase impulsivity and the risk of substance use disor-
ders. Neurodevelopmental changes during adolescence
leading to these conditions could generate heightened ad-
diction vulnerability.

Maturation of Motivational 
Neurocircuitry During Adolescence

Profound psychophysiological change occurs during
adolescence. Adolescents acquire increasingly adult-like
cognitive and emotional styles (104, 105) and become in-
creasingly motivated by adult environmental stimuli
(106). In childhood, motivation to play promotes nonpar-
ticipatory learning about adult experiences, a process that
minimizes damaging outcomes (43). In adolescence, mo-
tivation to play progresses to participation in novel adult
experiences, without the benefits of contextual experien-
tial knowledge to guide decision making (107). From an
adult perspective, novelty-driven adolescent behavior
may seem of poor judgment and impulsive (34, 35).

Promotional Motivation Substrates

Developmental alterations in primary motivation cir-
cuitry during adolescence may promote novelty-seeking
behavior and augment incentive motivational processes.
Neuropsychiatric disorders involving central dopamine
function follow developmental patterns consistent with
this notion. Tic disorders, treated by blocking dopamine
activity, are most prevalent in late childhood and early ad-
olescence and tend to remit in adulthood (108). In con-
trast, the incidence of Parkinson’s disease, involving defi-
cient dopamine function, increases with advancing age
(57). That these observations reflect general developmen-
tal themes is supported by animal studies showing differ-
ences in peri-adolescent behavior involving dopamine
systems function (109). Peri-adolescent rats show height-
ened exploratory behavior in a novel open field and en-
gage more in social play than younger and older rats (110).
Peri-adolescent rats show motoric hyporesponsivity to
prodopaminergic agents and hypersensitivity to dopam-
ine blockade, suggesting that their dopamine system op-
erates at baseline closer to a functional ceiling before
pharmacological challenge (110). Peri-adolescent mice
show a greater baseline preference for novel environments
than adult mice (111). Upon amphetamine treatment,
adults show increases in novelty preferences and peri-
adolescents exhibit decreases, preferring instead the fa-
miliar environment previously paired with amphetamine
delivery (111). Peri-adolescent rats show greater behav-
ioral sensitization and striatal dopamine release after re-
peated psychostimulant injections than adult rats (112,
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113). Together, these findings suggest that adolescent ex-
perimentation with and vulnerability to addictive drugs
involve developmental differences in dopamine system
activity and sensitization.

Maturational differences in promotivational dopamine
systems and inhibitory 5-HT systems may contribute to
adolescent novelty seeking/impulsivity. CSF concentra-
tions of dopamine and 5-HT metabolites decline during
childhood and decrease to near adult levels by age 16
(114). However, the ratio of the dopamine metabolite ho-
movanillic acid to the 5-HT metabolite 5-hydroxyindole-
acetic acid increases, suggesting a higher rate of dopamine
to 5-HT turnover (114). In monkeys, the density of dopa-
mine-bearing presynaptic endings in the prefrontal cortex
increases from one-half of adult levels at 6 months of age
to adult levels by late adolescence (2 years), when the den-
sity of dopamine axonal input is approximately threefold
that of 5-HT (115). In contrast, 5-HT production sites on
prefrontal cortex neurons reach adult levels by the second
week after birth (115). Together, these findings indicate
that adolescence may be characterized by greater activity
in promotivational dopamine systems than in inhibitory
5-HT systems.

Adolescent hormonal changes affecting secondary mo-
tivation circuitry may also contribute to promotivational
functioning of dopamine systems. Sex steroid receptors
mediating profound neuroplastic effects are highly ex-
pressed in the hippocampus and the hypothalamus (116,
117). Neuroplastic revision during puberty may alter rep-
resentations of contextual motivational stimuli in these
structures, changing the nature of motivational drives
represented in primary motivation circuitry (118, 119). For
example, surges in sex hormones contribute to greater
sexual motivation, sensitivity to novel sexual and social
stimuli, sexual competition, and adolescent aggression
(43, 120, 121).

Hippocampal function may be important to sex-hor-
mone-related changes in novelty-oriented behavior. By
means of broad connectivity with the cortex, the hippoc-
ampus compares immediate environmental contexts with
past memories to detect environmental novelty (122). Re-
sultant information can become encoded in motivational
drives by means of hippocampal regulation of the ampli-
tude or impact of dopamine discharge into the nucleus ac-
cumbens or by direct influences on neuronal activity of
the nucleus accumbens (51, 123, 124). This notion is con-
sistent with anatomical and physiological data showing
that hippocampal damage alters quantitative dopamine
release into the nucleus accumbens and behavioral re-
sponses to novel environments (69). Together, these data
suggest a mechanism by which hormonal conditions in
specific stages of life (childhood, adolescence, adulthood)
may influence promotivational dopamine systems to ori-
ent behavior most adaptive to the developmental stage.

Inhibitory Motivation Substrates

Changes in promotional motivation substrates occur
concurrently with developmental events in the prefrontal
cortex. In adolescence, the prefrontal cortex has not yet
maximized a variety of cognitive functions that may in-
clude its capacity to inhibit impulses. Measures of pre-
frontal cortex function, including working memory, com-
plex problem solving, abstract thinking, and sustained
logical thinking, improve markedly during adolescence
(104, 105, 125). Although the ability to inhibit psychomo-
tor responses improves through childhood, peaking by
late adolescence (126), more direct measures of adoles-
cent impulsivity (e.g., decision making) remain largely un-
explored.

Changes in brain anatomy and function correspond
temporally to changes in cognitive function. Throughout
adolescence, changes in EEG measures of cortical activity
and responses to sensory stimuli are observed (104, 127).
From ages 6 to 12, the ratio of lateral ventricle to brain vol-
ume remains constant; it then increases steadily from ages
12 to 18 (128). From ages 4 to 17, there is a progressive in-
crease in white matter density in the frontal cortex, likely
due to increased myelination of neurons and axonal di-
ameters and contributing to increased efficiency of action
potential propagation (129). Changes in brain metabolism
reflecting altered neuroplasticity and information pro-
cessing are also observed. Globally, the brain increases en-
ergy use, matching adult levels by age 2, increasing to two-
fold greater than adult levels by age 9, and declining to
adult levels by the end of adolescence (130, 131). Com-
pared to subcortical regions, cortical areas undergo simi-
lar but more pronounced temporal fluctuations of meta-
bolic rates and exhibit these changes later, with frontal
cortical regions transitioning last (131).

Gross developmental changes in the prefrontal cortex
are paralleled by neuroplastic changes, as shown by densi-
ties of dendritic processes, synapses, and myelination,
rates of neuronal membrane synthesis, and emergence of
adult cognitive styles (129, 132–134). Declines in metabolic
activity in frontal and other cortical regions may reflect
synaptic pruning, whereby reductions are made in energy-
consuming neuronal connections that do not efficiently
transmit information pertaining to accumulating experi-
ence. In the human prefrontal cortex, synaptic density in
major axonal reception zones increases to 17×108 per mm3

between the ages of 1 and 5 and declines to adult levels of
11×108 per mm3 by late adolescence (135). Synaptic prun-
ing in peri-adolescent monkeys occurs in components of
cortical microarchitecture indicative of specific effects on
information processing (134). Reductions in prefrontal
cortex synapses are greater for those of axons originating
from local cortical regions rather than from distant associ-
ation cortices and are proposed to reflect a relative in-
crease in the reliance of local prefrontal cortex circuits on
highly processed multimodal information (125). This fea-
ture may allow top-down processing, whereby a larger,
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more sophisticated repertoire of past experience stored in
distant structures has greater computational influence
(134). Peri-adolescent synaptic pruning decreases both ex-
citatory and inhibitory inputs (136). These counterbal-
anced reductions may increase the stability of firing pat-
terns of cortical neurons (137) and enhance the capacity
for ensembles of prefrontal cortex neurons to fire in a sus-
tained, concerted fashion (134, 138), facilitating short-
term storage of an increasing amount of information. Con-
sistent with this notion, improved working memory per-
formance in adolescent monkeys corresponds positively
with the percentage of prefrontal cortex neurons showing
sustained activity during the task’s delay period (139).

Neural network simulations suggest that the increase in
cortical interconnectivity in childhood followed by a de-
cline to adult levels over adolescence reflects optimization
of learning potential, corresponding to decreases in rates
of neuroplastic change (125, 140). These processes deter-
mine a tradeoff between the capacity to learn new infor-
mation versus that to use and elaborate on previously
learned information (140). As accumulating information
is stored in connections within neural networks, learning
rates, or the capacities for neuroplasticity as represented
by the number of synaptic connections, should decrease,
resulting in a system that operates to prevent loss of previ-
ously learned information (140). Synaptic pruning and
other developmental processes in the prefrontal cortex,
concomitant with greater motivational drives toward
novel adult experiences, may work in combination to fa-
cilitate adolescent acquisition of an increasingly sophisti-
cated cognitive and perceptual understanding of the en-
vironment. Maturation of the prefrontal cortex is thus
facilitated by motivational drives to participate in novel
adult-like experiences, eventually leading to experience-
based motivation that guides the enactment of more “ap-
propriate” decision making.

Conclusions

Adolescent neurodevelopment involves changes in
brain organization and function characterized by rela-
tively greater influence of promotional motivation sub-
strates in the setting of immature inhibitory substrates.
Greater motivational drives for novel experiences, cou-
pled with an immature inhibitory control system, could
predispose to performance of impulsive actions and risky
behaviors, including experimentation with and abusive
use of addictive drugs. Similarly, psychiatric illnesses com-
monly comorbid with substance use disorders often in-
volve impulse dyscontrol putatively reflecting chronically
deficient inhibitory and/or hyperactive promotional
mechanisms of motivational neurocircuitry. In normal ad-
olescence, motivational neurocircuitry undergoes a tran-
sitional phase resembling these conditions. Direct phar-
macological-motivational effects of addictive drugs on
dopamine systems may be accelerated during these devel-

opmental epochs, enhancing the progression or perma-
nency of neural changes underlying addiction.

A major implication of this model is that substance use
disorders constitute neurodevelopmental disorders. As
such, research and treatment targeting adolescents and
young adults may benefit all age groups with substance
use disorders. Further characterization of specific compo-
nents of motivational neurocircuitry undergoing adoles-
cent neurodevelopment (including subcortical dopamine
and prefrontal cortex and other associated substrates)
may reveal discrete mechanisms involved in gender or
mental-illness-related differences in vulnerability to sub-
stance use disorders. The impact of practices in child and
adolescent psychopharmacology on the development of
motivational neurocircuitry and risk for substance use
disorders is virtually unexplored. Limited data exist, with
the majority of information derived from reports of the
use of psychostimulants for attention deficit hyperactivity
disorder. Findings suggest protective effects against sub-
stance use disorders in specific diagnostic groups or sub-
groups and possibly none or detrimental effects in others
(141–144).

Additional investigation is required to test the proposed
mechanisms and implications of this model. Evidence for
an association between impulsivity and risk for substance
use disorders across clinical contexts, including adoles-
cence and/or psychiatric disorders, is strong but mostly
correlative. Coordinated research with a variety of ap-
proaches is needed to examine directly the suggested
causal relationships. Animal models of impulsivity and
addictive behavior in drug self-administration should be
tested within subjects with both cross-sectional and longi-
tudinal approaches. Genetic, molecular, neurochemical,
and neurophysiological methods should be applied to
these models to identify common and unique aspects of
motivational circuitry predisposing to both impulsivity
and addiction. Neurocomputational simulations of pri-
mary motivational circuitry, incorporating multiple lines
of biological data, may be required to examine phenom-
ena on a neural systems level not easily studied in unimo-
dal biological investigations.

Given the proposed existence of brain mechanisms that
commonly produce impulsivity and risk for substance use
disorders in mental illnesses that also frequently appear in
young adulthood, it remains to be determined to what ex-
tent adolescent vulnerability to substance use disorders 1)
reflects the early manifestation of adult psychiatric syn-
dromes that confer greater risk for substance use disor-
ders and/or 2) represents a greater risk across all adoles-
cent subgroups. Possibly both options occur, producing
greater vulnerability for substance use disorders in all ad-
olescents but to a greater degree in psychiatrically com-
promised youth. Such an interpretation would be consis-
tent with the existence of individually unique genetic and
environmental risk and protective factors working in con-
junction with temporal developmental changes in brain



Am J Psychiatry 160:6, June 2003 1049

CHAMBERS, TAYLOR, AND POTENZA

function to generate a specific level of addiction vulnera-
bility. In assessing the relative contributions of these pos-
sibilities, animal modeling of substance use disorders in
subjects during different developmental stages, with alter-
native schedules of peri-adolescent drug exposure, will be
important, including the use of within-subjects animal
models of mental illness and substance use disorders.
Longitudinal clinical studies, particularly those employing
objective measures of impulsivity and decision making
and using genetic and functional neuroimaging technolo-
gies, will be of significant value in understanding ad-
diction vulnerability across age groups in healthy and psy-
chiatrically ill adolescents (31). The identification of
adolescent subgroups with heightened vulnerability to
substance use disorders, development of evidence-based
preventative strategies, and refinement of pharmacother-
apeutic and psychosocial treatments are important areas
to pursue in order to reduce the large impact of substance
use disorders upon society.
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