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Endophenotypes, measurable compo-
nents unseen by the unaided eye along
the pathway between disease and distal
genotype, have emerged as an important
concept in the study of complex neuro-
psychiatric diseases. An endophenotype
may be neurophysiological, biochemical,
endocrinological, neuroanatomical, cog-
nitive, or neuropsychological (including
configured self-report data) in nature. En-
dophenotypes represent simpler clues to
genetic underpinnings than the disease
syndrome itself, promoting the view that
psychiatric diagnoses can be decomposed
or deconstructed, which can result in
more straightforward—and successful—

genetic analysis. However, to be most use-
ful, endophenotypes for psychiatric dis-
orders must meet certain criteria, includ-
ing association with a candidate gene or
gene region, heritability that is inferred
from relative risk for the disorder in rela-
tives, and disease association parameters.
In addition to furthering genetic analysis,
endophenotypes can clarify classification
and diagnosis and foster the develop-
ment of animal models. The authors dis-
cuss the etymology and strategy behind
the use of endophenotypes in neuropsy-
chiatric research and, more generally, in
research on other diseases with complex
genetics.

(Am J Psychiatry 2003; 160:636–645)

As we celebrate the 50th anniversary of Nobelists
Watson, Crick, and Wilkin’s discovery (with Franklin) of
the structure of DNA—and its offspring, the complete se-
quencing of the human genome—it is salutary to contem-
plate the relative youthfulness of the field of human genet-
ics. The term “genetics” was provided by William Bateson
in 1902 (the Wright brothers’ first flight was in 1903). In
1909, the clarifying distinction we now take for granted be-
tween the concept of “genotype” and the concept of “phe-
notype” was provided by the Danish botanist Wilhelm Jo-
hanssen. He also introduced the word “gene.” His research
on self-fertilized lines of beans revealed that quantitative
variability in the phenotype confounded thinking about
separable contributions of heredity and environment. He
found that the phenotype is often an imperfect indicator
of the genotype, that the same genotype may give rise to a
wide range of phenotypes, and that the same phenotype
may have arisen from different genotypes. Specific evi-
dence for multifactorial (genetic and nongenetic) contri-
butions to a continuous phenotype was provided about
the same time by H. Nilsson-Ehle on the basis of observa-
tions of seed colors in crosses of oats and wheat. However,
the term “polygene” was not available until K. Mather
coined it in 1941. Exact citations for these historical refer-
ences, often in German, are provided in the classic text by
A.H. Sturtevant (1). 

Genotypes, which can be measured with techniques of
molecular biology such as polymerase chain reaction
(PCR) and DNA sequencing, are often useful as probabilis-
tic prognosticators of disease. In contrast, a phenotype

represents observable characteristics of an organism,
which are the joint product of both genotypic and envi-
ronmental influences. In diseases with classic or Mende-
lian genetics as their distal causes, genotypes are usually
indicative of phenotypes. However, this degree of genetic
certainty does not exist for diseases with complex genetics
(2–4). Genetic probabilism aptly describes the process by
which a particular genotype gives rise to phenotype (5, 6).
Epigenetic factors may also be of critical importance for
modifying the development of phenotypes (7), and such
modifications may be influenced by genotype or environ-
ment or be entirely stochastic in origin (8). Thus, models
of complex genetic disorders predict a ballet choreo-
graphed interactively over time among genotype, environ-
ment, and epigenetic factors, which gives rise to a particu-
lar phenotype (9–12).

Despite the successful characterization of the nucleotide
base-pair order that represents the human genome (13,
14), and although a legion of genetic linkage and associa-
tion studies have been done, psychiatry has had little suc-
cess in definitively identifying “culprit” genes or gene re-
gions in the development of diseases categorized by using
the field’s diagnostic classification schemas (15–18). The
reason there is so much difficulty is undoubtedly—in part—
that psychiatry’s classification systems describe heteroge-
neous disorders (19–22). In addition to the inherent com-
plexity of psychiatric diseases, which have multifactorial
and polygenic origins, the brain is the most complex of all
organs. In organs such as the liver, all cells are nearly iden-
tical in their phenotypes and very similar in their transcrip-
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tomes (mRNA transcripts) and proteomes. In addition to
the homogeneity in the structure of such cells, their inter-
actions are mostly homogeneous. However, individual
cells of the brain are quite different from each other in their
transcriptomes, proteomes, and morphological pheno-
types and also in the thousands of connections and in-
teractions with other neurons and glia that are critically
important to optimal functioning. Different cellular expe-
riences are transduced to differences on the biochemical
and epigenetic levels so that cellular memories regulated
by protein modification, morphometric changes, and epi-
genetic influences make the brain unique among organs.
Furthermore, the brain is subject to complex interactions
not just among genes, proteins, cells, and circuits of cells
but also between individuals and their changing experi-
ences (23). Therefore, the phenotypic output from the
brain, i.e., behavior, is not simply a sum of all its parts. It
stands to reason that more optimally reduced measures of
neuropsychiatric functioning should be more useful than
behavioral “macros” in studies pursuing the biological and
genetic components of psychiatric disorders.

The Endophenotype Concept 
in Psychiatry

The theory that genes and environment combine to
confer susceptibility to the development of diseases sur-
faced in the early half of the last century, but the use of
such a framework for exploring the etiology of schizophre-
nia and other psychiatric disorders is more recent. Dou-
glas Falconer’s 1965 multifactorial threshold model for di-
abetes and other common, non-Mendelizing diseases was
adapted to a polygenic model of schizophrenia in 1967
(24). About this time, it became clear that the classification
of psychiatric diseases on the basis of overt phenotypes
(syndromic behaviors) might not be optimal for genetic
dissection of these diseases, which have complex genetic
underpinnings. In their writings summarizing genetic
theories in schizophrenia 30 years ago, Gottesman and
Shields (25, 26) described “endophenotypes” as internal
phenotypes discoverable by a “biochemical test or micro-
scopic examination.” The term was adapted from a 1966
paper by John and Lewis (27), who had used it to explain
concepts in evolution and insect biology. They wrote that
the geographical distribution of grasshoppers was a func-
tion of some feature not apparent in their “exopheno-
types”; this feature was “the endophenotype, not the obvi-
ous and external but the microscopic and internal.”

That felicitous term seemed to suit the needs of psychi-
atric genetics, and the concept of endophenotype was
adapted for filling the gap between available descriptors
and between the gene and the elusive disease processes.
The identification of endophenotypes, which do not de-
pend on what was obvious to the unaided eye, could help
to resolve questions about etiological models. The ratio-
nale for the use of endophenotypes in exploring disease

processes is illustrated in Figure 1. This rationale held that
if the phenotypes associated with a disorder are very spe-
cialized and represent relatively straightforward and puta-
tively more elementary phenomena (as opposed to behav-
ioral macros), the number of genes required to produce
variations in these traits may be fewer than those involved
in producing a psychiatric diagnostic entity. Endopheno-
types provided a means for identifying the “downstream”
traits or facets of clinical phenotypes, as well as the “up-
stream” consequences of genes and, in principle, could as-
sist in the identification of aberrant genes in the hypothe-
sized polygenic systems conferring vulnerabilities to
disorders. That is, the intervening variables or hypotheti-
cal constructs that were championed as useful for theoriz-
ing about behaviors (35)—and that could mark the path
between the genotype and the behavior of interest (Figure
2)—might Mendelize in a predicted manner.

Despite the inherent advantages of the concept of en-
dophenotype, the term and its promise lay dormant for a
number of years. However, now that multiple genetic
linkage and association studies using current classifica-
tion systems and the development of practical animal
models, have all fallen short of success, the term and its
usefulness have reemerged. (A MEDLINE search for the
years 2000 through 2002 found 62 entries for “endopheno-
type,” compared with 16 entries before 2000.) Endophe-
notypes are being seen as a viable and perhaps necessary
mechanism for overcoming the barriers to progress (28,
51–58). The methods available for endophenotype analy-
sis have advanced considerably since 1972; our current
armamentarium includes neurophysiological, biochemi-
cal, endocrinological, neuroanatomical, cognitive, and
neuropsychological (including configured self-report
data) measures (29). Advanced tools of neuroimaging
such as functional magnetic resonance imaging (fMRI),
morphometric MRI, diffusion tensor imaging, single
photon emission computed tomography (SPECT), and
positron emission tomography (PET) promise to expand
the possibilities even more (30, 59–61). Other terms with
patently synonymous meaning, such as “intermediate
phenotype,” “biological marker,” “subclinical trait,” and
“vulnerability marker,” have been used interchangeably.
These terms may not necessarily reflect genetic underpin-
nings but may rather reflect associated findings (see the

FIGURE 1. Rationale for an Endophenotype Approach to
Genetic Analysis of Disorders With Complex Geneticsa

a The number of genes involved in a phenotype is theorized to be di-
rectly related to both the complexity of the phenotype and the dif-
ficulty of genetic analysis (28–34).
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discussion in the next section). In this context, we use the
term “biological marker” to signify differences that do not
have genetic underpinnings and “endophenotype” when
certain heritability indicators are fulfilled.

Endophenotypes in Genetic Analysis

An endophenotype-based approach has the potential to
assist in the genetic dissection of psychiatric diseases. En-

dophenotypes would ideally have monogenic roots; how-
ever, it is likely that many would have polygenic bases
themselves. Furthermore, the use of endophenotypes in
genetic research must be tempered by the realization that
without controls and limits, their usefulness may be ob-
scured. For example, putative endophenotypes do not
necessarily reflect genetic effects. Indeed, these biological
markers may be environmental, epigenetic, or multifacto-
rial in origin. Criteria useful for the identification of mark-

FIGURE 2. Gene Regions, Genes, and Putative Endophenotypes Implicated in a Biological Systems Approach to Schizophre-
nia Researcha

a The reaction surface (36) suggests the dynamic developmental interplay among genetic, environmental, and epigenetic factors that produce
cumulative liability to developing schizophrenia (9–11, 37). Gene regions where linkage findings are more consistent are in bold, while gene
regions corresponding to candidate genes or endophenotypes are shown in normal lettering (16). Many of these endophenotypes are dis-
cussed in detailed reviews addressing overall strategies for schizophrenia discriminators (38), sensory motor gating (33, 39, 40), oculomotor
function (33, 40–43), working memory (sometimes synonymous with information processing, executive function, attention) (31, 32, 44–46),
and glial cell abnormalities (47). None of the sections of this figure can be definitive; many more gene loci, genes, and candidate endophe-
notypes exist and remain to be discovered (represented by question marks) (47, 48). Linkage and candidate gene studies have been the topic
of recent reviews (15, 16, 49, 50). The figure is not to scale. (Copyright 2003, I.I. Gottesman. Used with permission.)
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ers in psychiatric genetics have been suggested (62) and
have been adapted here to apply to endophenotypes:
1. The endophenotype is associated with illness in the
population.
2. The endophenotype is heritable.
3. The endophenotype is primarily state-independent
(manifests in an individual whether or not illness is active).
4. Within families, endophenotype and illness co-segre-
gate. 

Subsequently, an additional criterion that may be useful
for identifying endophenotypes of diseases that display
complex inheritance patterns was suggested (29):
5. The endophenotype found in affected family members
is found in nonaffected family members at a higher rate
than in the general population.

Other fields of medicine have had some success in using
endophenotypes to assist with genetic linkage studies. For
instance, the multiple genes that cause long QT syndrome
were identified by using an endophenotype-based
method (63, 64). Manifestations of long QT syndrome in-
clude syncope, ventricle arrhythmias, and sudden death
(63). Although not all family members who carry the dis-
ease genes show these symptoms, a much greater percent-
age have QT elongation as measured by ECG. By using QT
elongation as a phenotype—and excluding or including
pedigree members with this finding—linkage studies were
successful in identifying the genes that cause the QT elon-
gation endophenotype and thus the syndrome pheno-
types of syncope, ventricle arrhythmias, and sudden death
(64, 65). The identification of these genes has allowed for
genetic manipulations in mice to study disease pathology
and to further the development of novel medications (66).
Other examples in the literature of endophenotype-based
strategies for identifying genetic linkage include studies of
idiopathic hemochromatosis (excessive serum iron) (67),
juvenile myoclonic epilepsy (an EEG abnormality) (68), and
familial adenomatous polyposis coli (intestinal polyps)
(69). In other disorders with complex genetics such as dia-
betes, hypercholesterolemia, or hypertension, researchers
use physiological challenges, biochemical assays, and
physiological measures to obtain a primary index of dis-
ease pathology. Indeed, these syndromes may all present
to the physician as fatigue, but the pathophysiological un-
derpinnings are substantially different. The glucose toler-
ance test, measurements of serum cholesterol levels, and
sphygmomanometer measurements all represent objec-
tive, quantifiable methods for making disease diagnosis
and classification. In addition to being crucial in diagnosis
and classification of these diseases, the phenomena mea-
sured by these methods constitute endophenotypes that
represent the primary inclusion/exclusion feature by
which “hits” for genetic linkage and association studies
are defined.

In psychiatry, a number of attempts have been made to
develop and determine the feasibility of candidate en-
dophenotypes. However, few have met all the criteria

listed earlier. Nonetheless, some linkage and association
studies—using endophenotypes—have had moderate
success. Candidate endophenotypes have also been used
in the development of animal models and to subtype pa-
tients for classification and diagnostic reasons (see the
discussion in later sections). The hunt for candidate en-
dophenotypes has been described in the literature on sev-
eral psychiatric disorders, including schizophrenia (30,
31–33, 39, 70–73), mood disorders (28, 55, 74, 75), Alz-
heimer’s disease (76, 77), attention deficit hyperactivity
disorder (54, 78, 79), and even personality disorders (80).
We give a brief description of some possibilities in schizo-
phrenia research as salient examples. The interested reader
is referred to the references just cited for more in-depth
discussions.

Sensory Motor Gating and Eye-Tracking 
Dysfunction in Schizophrenia

Deficits in sensory motor gating are consistent neuro-
psychological findings in schizophrenia (33, 39). The hy-
pothesized association between these deficits and schizo-
phrenia has face validity primarily on the basis of patients’
reports that they have difficulty filtering information from
multiple sources (33, 81–83). On the level of neurobiology,
the inhibitory mechanisms of patients with schizophrenia
may not be capable of adequately adjusting to the multi-
ple distinct or repetitive inputs that occur in everyday life.
Neuropsychological tests, including assessments of P50
suppression and prepulse inhibition of the startle re-
sponse, have been developed to discern efficiencies in
these capabilities. Both tasks have been studied in schizo-
phrenic patients, and abnormalities consistent with de-
fects in inhibitory neuronal circuits have been found.

In tests of prepulse inhibition, startling sensory stimuli
(loud noise, bright light) are used to elicit an uncondi-
tional reflexive startle response in individuals. If a weaker
prestimulus is provided before the startling stimulus, the
subsequent startle response is generally diminished. A
relatively reproducible finding is that this dimunition of
the second response is attenuated in patients with schizo-
phrenia, compared to healthy subjects (39, 84, 85). Pre-
pulse inhibition is a generally conserved finding among
vertebrates, and as such it has been the target of several
rodent studies (reviewed in reference 86), both to model a
facet of schizophrenia and to investigate the biology of a
prepulse inhibition response. The presence of this candi-
date endophenotype has been documented in relatives of
patients with schizophrenia (87), but more extensive test-
ing is required. Genetic studies in inbred animals have
suggested at least a partial genetic diathesis (86); how-
ever, environmental influences may also be active (88,
89). Abnormal prepulse inhibition is not specific to schizo-
phrenia; studies have identified this abnormality in
obsessive-compulsive disorder (90) and Huntington’s
disease (91), among others. However, the reproducibility
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of the finding in schizophrenia, the fact that abnormal
prepulse inhibition parallels a putative central abnormal-
ity in the disease, and the fact that prepulse inhibition is a
conserved phenomenon among vertebrates make abnor-
mal prepulse inhibition a promising candidate endophe-
notype to pursue.

The P50 suppression test uses two auditory stimuli pre-
sented at 500-msec intervals. A positive event-related re-
sponse for both stimuli is measured by EEG. In normal in-
dividuals, the neuronal response to the second stimulus is
of lower amplitude than the first. However, patients with
schizophrenia do not show the same degree of suppres-
sion of P50 amplitude (33, 92–95). In addition to this find-
ing in probands, abnormal P50 suppression is found in
unaffected first-degree relatives of patients with schizo-
phrenia (95–99). The heritability of this measure has been
assessed in twins, and the results have suggested that ge-
netics plays a role in the development of variation in this
candidate endophenotype (100, 101). Freedman and col-
leagues (102) also used P50 suppression to identify a po-
tential susceptibility locus for schizophrenia on chromo-
some 15, a chromosomal region where the gene for the α7
nicotinic acetylcholine receptor resides. Furthermore, this
group of researchers has shown linkage disequilibrium in
this region (103) and has shown that promoter variants of
the α7 receptor are associated with schizophrenia and/or
P50 suppression abnormalities (104).

Eye-tracking dysfunction has long been associated with
schizophrenia. This dysfunction was first described in
1908 by Diefendorf and Dodge (105), whose work was re-
discovered in the 1970s, initially by Holzman and col-
leagues (106, 107).

Eye movements are generally of two forms, either sac-
cadic (brief and extremely rapid movements) or smooth
and controlled. The latter “smooth pursuit” eye move-
ments occur only when the subject is following an object
moving at a constant velocity, most commonly a pendu-
lum (in early studies) or bright dot on a computer monitor.
Initiation and maintenance of smooth pursuit eye move-
ments involve integration of functions of the prefrontal
cortex frontal eye fields, visual and vestibular circuitry,
thalamus, and cerebellum, as well as the muscles and neu-
ral circuitry directly responsible for eye movement (108).

A number of studies have found that patients with
schizophrenia have deficiencies in smooth pursuit eye
movements, compared to healthy subjects (see references
41–43 for review). In general, these deficiencies are mani-
fested as corrective saccades, which follow smooth pursuit
eye movements that are slightly slower than the target (re-
viewed in reference 42, where more detailed descriptions
of specific abnormalities are available). Furthermore, the
heritability of these deficiencies has been extensively ad-
dressed; studies have suggested that biological relatives of
schizophrenic subjects have an increased rate of smooth
pursuit eye movement dysfunction. Thus, 40%–80% of
schizophrenic subjects, 25%–45% of their first-degree rel-

atives, and less than 10% of healthy comparison subjects
generally show this trait (41–43). A study requiring replica-
tion has suggested linkage to a region of chromosome 6
(109). Correlating smooth pursuit function with neuroim-
aging measures (110) or performance on working memory
tasks (111, 112) may be a useful research strategy. Smooth
pursuit eye movements are maintained in primates but
not in most other mammals used in preclinical research
(108).

Working Memory in Schizophrenia

Working memory and executive cognition are com-
promised in patients with schizophrenia (44). A primary
brain region involved in working memory is the dorsolat-
eral prefrontal cortex (31, 45, 113), a region in which ab-
normalities have been found in postmortem studies of
schizophrenic patients (114). Family (115, 116), and twin
studies (117, 118) have suggested heritability of working
memory deficits in schizophrenia.

Recent studies have identified gene and chromosomal
regions possibly involved in working memory. A study of
Finnish twins by Gasperoni and colleagues (53), which
used an endophenotype-based strategy, suggested linkage
and association to a region of chromosome 1. In their
study, dizygotic twins discordant for schizophrenia under-
went four neuropsychological tests. Using the sum of per-
formance scores on these tests, Gasperoni and colleagues
identified significant linkage to 1q41, a region previously
suggested in traditional linkage studies of schizophrenia
(119–122). By stratifying their data according to perfor-
mance on each neuropsychological test, they found that
visual working memory performance was highly signifi-
cantly linked with this region (p=0.007), while perfor-
mance on none of the other three neuropsychological
tests was significantly associated with any 1q markers. In
the second part of their study, Gasperoni and colleagues
(53) completed an association analysis involving monozy-
gotic discordant twins, unaffected dizygotic and monozy-
gotic twins, and the dizygotic twin group from the linkage
study. In this analysis, an association of the 1q41 region
and performance on the visual working memory task was
again identified. The facts that previous linkage studies
have identified this region and that performance on work-
ing memory tasks is a reproducible endophenotype for
schizophrenia strengthen the claim that this endopheno-
type—and the putative gene(s) at 1q41 linked to it—may
be relevant to the pathophysiology of schizophrenia. The
study requires replication in a larger group of subjects rep-
resenting a nonisolate population.

Association and physiological evidence have also linked a
specific enzyme with a small increased risk for developing
schizophrenia and with poorer performance on a working
memory task. The enzyme catechol O-methyltransferase
(COMT), the gene for which is found at 22q11.2, assists in
the catabolism of dopamine. This chromosomal region has
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been linked to both schizophrenia and bipolar disorder and
overlaps with a deletion that has been associated with velo-
cardiofacial syndrome (DiGeorge syndrome) and schizo-
phrenia (see reference 16 for review). A functional poly-
morphism (val108/158met) for COMT results in a fourfold
increase in the activity of this enzyme. The considerable
body of evidence implicating dopaminergic neurotrans-
mission, the presence of a common functional polymor-
phism, and the data suggesting the involvement of the dor-
solateral prefrontal cortex in schizophrenia and working
memory led to association studies of COMT (31).

While their effect sizes are small, a number of family
studies have found that the valine allele is transmitted at a
higher rate than the methionine allele to patients with
schizophrenia than to their nonaffected siblings (reviewed
in reference 31). This polymorphism has also been linked
to performance on a working memory task. Specifically,
Egan et al. (123) associated poorer performance on a
working memory task in patients, their siblings, and com-
parison subjects with the same valine allele variation of
COMT found to be transmitted at a higher rate in schizo-
phrenia. They used fMRI to measure dorsolateral prefron-
tal cortex activation in a subset of these individuals; the
fMRI fingerprint from individuals with the valine allele
suggested that activation of the dorsolateral prefrontal
cortex is less efficient in those subjects (123). Additional
studies from two independent laboratories have also sug-
gested that patients with schizophrenia show this ineffi-
ciency (124–126). Callicott and colleagues (127) have re-
cently shown that the fMRI response in the dorsolateral
prefrontal cortex observed in schizophrenic subjects is
also found in unaffected siblings of patients with schizo-
phrenia. Although they found no group differences be-
tween the siblings of schizophrenic patients and the com-
parison group in overall working memory performance,
fMRI measurement showed that the sibling group had less
efficient dorsolateral prefrontal cortex functioning than
the comparison group. Taken together, these results sug-
gest that fMRI analysis of subjects undergoing working
memory tasks may be a more sensitive endophenotype
than working memory performance alone as measured by
neuropsychological testing. Additional studies using PET
have suggested dysfunction of the cortical-thalamic-cere-
bellar-cortical circuit during working memory tasks (72,
73). The “cognitive dysmetria” resulting from this disrup-
tion may provide another candidate endophenotype.

Conclusions: Broader Uses 
for Endophenotypes

Endophenotypes may have additional uses in psychia-
try, including uses in diagnosis, classification, and the de-
velopment of animal models. The current classification
schema in psychiatry were derived from observable clini-

cal grounds to address the need for clinical description
and communication (22). However, they are not based on
measures of the underlying genetic or biological patho-
physiology of the disorders. The most widely used systems
currently in place must serve the needs of clinicians, psy-
chiatric statisticians, administrators, and insurance com-
panies, among other groups and agencies (128). As this
system is designed for a wide range of users and because it
pays little attention to the biological contributors to the
disorders, it is not optimized for the design, implementa-
tion, and success of research studies (128). The lack of a bi-
ological basis for the classification of psychiatric disorders
has led, in part, to a lack of success in studies of the neuro-
biology and genetics of psychiatric disorders. Endopheno-
type-based analysis would be useful for establishing a bio-
logical underpinning for diagnosis and classification; a net
outcome would be improved understanding of the neuro-
biology and genetics of psychopathology.

Animal models are an active area of research in psy-
chiatry. However, despite some progress (129, 130), there
remains a great need for further development (130–132).
Improved animal models will help in understanding the
neurobiology of psychiatric disorders and will further the
development of truly novel medications (133). Develop-
ment of animal partial-models in psychiatry relies on iden-
tifying critical components of behavior (or other neuro-
biological traits) that are representative of more complex
phenomena (134). Animals will never have guilty rumina-
tions, suicidal thoughts, or rapid speech. Thus, animal
models based on endophenotypes that represent evolu-
tionarily selected and quantifiable traits may better lend
themselves to investigation of psychiatric phenomena than
models based on face-valid diagnostic phenotypes (28).

Given the hopefully successful consequences of studies
adopting an endophenotype strategy, psychiatric diagno-
sis will continue to be important in research and clinical
practice. Indeed, similar to the principle we describe here,
optimally reduced or partitioned phenotypes may be use-
ful in refining the diagnostic system. Measures that have
already been used to deconstruct illnesses for genetic
analysis include severity and course of illness (135), age at
onset of illness (136, 137), amount of substance use in
drug and alcohol disorders (138, 139), and response to
specific treatments such as lithium (140, 141).

Gottesman and Shields (25) concluded their 1972 book
on schizophrenia and genetics with the following remarks:

We are optimistically hopeful that the current mass
of research on families of schizophrenics will discover
an endophenotype, either biological or behavioral
(psychometric pattern), which will not only discrimi-
nate schizophrenics from other psychotics, but will
also be found in all the identical co-twins of schizo-
phrenics whether concordant or discordant. All ge-
netic theorizing will benefit from the development of
such an indicator (p. 336).
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Although these words are still pertinent after 30 years,
there is ample reason to be optimistic about anticipated dis-
coveries and refinements in the quest for endophenotypes.
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