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Objective: This article reviews findings in
preclinical research on the adverse im-
pact of parental depression on the devel-
opment of offspring, with emphasis on
the relevance of this research for the psy-
chiatric care of depressed parents.

Method: The authors reviewed literature
from the last 40 years reporting laboratory
animal studies pertaining to the persistent
effects of parental stress and parenting
deficits on neurobehavioral and neurobio-
logical development in offspring.

Results: Animal studies indicate that dis-
rupted parenting produces a persistent,
deleterious biobehavioral impact on off-
spring. Stressors, including maternal sep-
aration, variable foraging, and a variety of
prenatal maternal challenges, produce
offspring behaviors reminiscent of the
cardinal features of anxiety and affective
disorders. The stress paradigms also uni-

formly produce persistent hyperrespon-
sivity in hypothalamic-pituitary-adrenal
axis activity secondary to hypersecretion
of corticotropin-releasing hormone. These
findings bear striking similarities to find-
ings for stress-related illnesses in humans,
including major depression.

Conclusions: Data from research on ani-
mal parenting reinforce the idea that pa-
rental mental illness may pose the first
adverse life event for a child. A thorough
risk-benefit assessment for the psychiatric
care of parents of young children must
consider the impact on the infant of expo-
sure both to treatment and to parental ill-
ness. Preclinical data regarding the risk to
offspring posed by untreated parental
mental illness should be incorporated
into clinical decision making in the treat-
ment of parents with mental illness.

(Am J Psychiatry 2002; 159:1265–1283)

Modern psychiatry has consistently stressed the
seminal role of early childhood experiences in shaping
adult behavior. It must, however, be emphasized that a
child does not develop in a psychological vacuum. Freud’s
Oedipal conflict (1), Bowlby’s concepts regarding attach-
ment (2), and Klein’s notion of infant splitting of the
mother (3, 4) all suggest that parent-child interaction is
critical to understanding the developing human psyche.
The ongoing social debate regarding the adequacy of sin-
gle parenting further underscores our societal conviction
that good parenting, however defined, is crucial to optimal
child development.

The children of depressed parents unfortunately are of-
ten ill-adapted to meet the myriad challenges posed by the
modern world. They are more likely to experience psychi-
atric illness (5–9), with depressed adolescents being three
times more likely than nondepressed adolescents to have
had a depressed parent (10). Furthermore, the children of
depressed parents experienced greater social, educa-
tional, behavioral, and vocational difficulties (7, 11, 12).
Although this familial risk is in part genetically transmit-
ted, other potential pathways of transmission include: 1)
exposure to prenatal maternal neuroendocrine aberra-
tions associated with depression during pregnancy, 2) ex-
posure to heightened intrafamilial stress when a parent is

depressed, and 3) exposure to the affective, behavioral,
and cognitive alterations of the depressed parent (13).

Considerable attention has been focused on the impact
of depression on parenting behavior. For example, a re-
cent meta-analysis of 46 observational studies of de-
pressed mothers demonstrated a moderate association of
maternal depression with negative (i.e., hostile, coercive)
parenting behaviors and disengaged parenting behaviors
(14). Despite social changes leading to increased paternal
participation in child rearing, there has been little investi-
gation of the impact of depression on the parenting be-
haviors of fathers. One recent study did indicate that fam-
ilies with a depressed father are less likely to sustain
positive communication (e.g., approval, assent, humor)
than families with a depressed mother (15). Conversely,
another study suggested that depressed fathers are less
likely than depressed mothers to engage in negative
parenting behaviors; however, it remains unclear whether
this is a consequence of gender-specific differences in the
manner of coping with depressive illness or the less taxing
demands of parenting placed on fathers, who more com-
monly serve as secondary caregivers (16).

Alterations in the parenting behaviors of depressed
parents may in turn adversely impact the psychosocial
and neurobiological development of their children. A
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meta-analysis of the association between maternal men-
tal health and the security of infant attachment, encom-
passing 35 studies and more than 200 mother-infant dy-
ads, concluded that maternal depression, maternal stress,
and an unsupportive partner are all associated with a
greater risk of insecure infant attachment (17). The au-
thors noted, however, that the heterogeneous distribu-
tion of the observed effects suggested that other as yet
unidentified contextual factors help determine the prob-
ability that the child of a depressed mother develops an
insecure attachment.

A few studies have demonstrated that neurobiological
alterations are also evident in the children of depressed
parents. For example, in two recent studies the preschool-
age children of depressed mothers exhibited electroen-
cephalographic alterations in frontal lobe activity that
correlated with diminished empathy and other behav-
ioral problems (18, 19). Neuroendocrine function may
also be altered, as one study demonstrated higher serum
cortisol concentration in the children of depressed moth-
ers that was correlated with the severity of maternal de-
pression (20).

Maternal depression during pregnancy also has poten-
tially deleterious consequences for infant development.
The newborns of mothers depressed during pregnancy
have exhibited poorer motor skills during neurological
examination (21). In addition, depression-associated
changes in maternal hypothalamic-pituitary-adrenal
(HPA) axis function during pregnancy have been shown to
be predictive of similar biological alterations in newborn
offspring (22). At 6 months of age, the children of euthymic
mothers who had been depressed during pregnancy con-
tinued to exhibit heightened salivary cortisol responses to
a standardized psychosocial stressor (23).

In summary, parental depression may represent a sig-
nificant early adverse life event for the developing child.
Improving our understanding of the mechanisms whereby
parental depression conveys risk to the child is critical to
the development of therapeutic guidelines for depressed
parents. The progress of this research is hampered by the
understandable ethical and logistical complexities of con-
ducting neurobiological research involving at-risk chil-
dren, but the extant preclinical literature contains a wealth
of information, unfamiliar to many clinical psychiatrists,
that may hasten our understanding of these processes. A
variety of animal research models have been devised to in-
vestigate the impact of early life stress on development.
Although early animal models of stress have most often
been cited in the psychiatric literature for their similarities
to the impact of childhood trauma (e.g., child abuse, expo-
sure to war), a subset of these research models conferred
stress on the young animal by interfering with parental
care. Such animal models consequently may be relevant
to a consideration of human conditions such as depres-
sion that hinder parenting efforts. This review summarizes
the laboratory animal data paralleling the common clini-

cal dilemma of parental depression and its potentially del-
eterious impact on child development.

Defining and Validating Animal Models 
of Human Behavior

The continuum of animal models used in psychiatric re-
search ranges from animal assays to homologous models
(24, 25). Animal assays provide an expeditious preclinical
means to screen potential psychotropic medicines by in-
stituting specific behavioral assessments after the admin-
istration of a candidate compound. Because the target an-
imal behaviors need not be similar to any human parallel,
animal assays have limited utility for the study of disease
etiopathogenesis. Homologous models are instead predi-
cated on the conviction that certain aspects of animal be-
havior and physiology mirror their human counterparts
by virtue of a common evolutionary ancestry. The animal
behaviors of interest are not simply analogous (i.e., mim-
icking a human behavior) but homologous (i.e., resem-
bling a human behavior because they serve a similar func-
tion and are activated by similar biological processes).
Homologous models therefore permit testing of hypothe-
ses regarding human behavior at various levels within the
phylogenetic order.

In a homologous model, the test animal is exposed to a
laboratory stimulus that reliably induces a state approxi-
mating one or more attributes of some human condition.
The stimulus that induces the homologous state may be
either a biological intervention (e.g., pharmacological
probe, surgical procedure) or an environmental manipu-
lation (e.g., thermal extreme, psychosocial deprivation).
When an environmental stressor is used as the laboratory
stimulus, the similarity of both the stressor and its out-
comes are critical to any valid application of the model to
an understanding of human behavior.

Numerous sets of criteria have been developed for eval-
uating animal models. In one of the simplest and most
widely referenced, McKinney and Bunney (26) contended
that the validity of an animal model is contingent on its re-
producibility (i.e., reliability) and its accuracy in portray-
ing the phenomenology and treatment response of a cor-
responding human illness. In the context of psychiatric
research, in which the nosology is predicated not on dis-
ease causality but on a descriptive phenomenology of ill-
ness, this emphasis on empirical evidence has proven
most welcome.

More stringent criteria proposed by Willner (27) require
that animal models exhibit face, predictive, and construct
validity. Face validity refers to the phenomenological sim-
ilarity between an animal model and a human syndrome.
It should be remembered that behaviors may be analo-
gous without being homologous. For example, certain
avian species commonly kill their young for brood reduc-
tion during periods of nutritional stress. Although this
avian behavior bears certain empirical similarities to hu-
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man child abuse, few would argue that it is a relevant
model for studying human infanticide. Predictive validity
refers to the accuracy of a model in forecasting the course
and outcome of a human syndrome. It has been argued
that predictive validity is the only scientifically meaningful
criterion by which to evaluate an animal model (25). Fi-
nally, construct validity represents the degree to which
both the human syndrome and the animal model are un-
ambiguously defined such that a rational theory can be
constructed to explain and test theories regarding the
etiopathogenesis of the disorder. It is ultimately the pres-
ence of homology that constitutes the construct validity of
a purportedly homologous animal model.

Although there is widespread agreement that construct
validity constitutes the defining property of a test, neither
psychosocial nor neurobiological research has success-
fully met Willner’s call for construct validity. Because the
pathophysiology of mental disorders remains obscure, the
homology of an animal model to a human psychiatric
condition cannot be absolutely demonstrated. An animal
model’s homology can nevertheless be inferred, in the ab-
sence of a conclusive determination of construct validity,
when evidence from the model’s face and predictive valid-
ity is consistent with a rational theoretical construct ex-
plaining how the model reflects a human condition.

Parenting and the Diathesis-Stress 
Model

Stress plays a pivotal role in the pathogenesis of many
psychiatric (28) and medical illnesses (29–32). Individuals,
however, display a heterogeneous susceptibility to the ef-
fects of stress. Whereas some are especially resilient, oth-
ers demonstrate an endogenous vulnerability toward
stress-induced illness. It is this predisposition to illness, or
diathesis, that provides the foundation for the diathesis-
stress model (33–37).

The diathesis-stress model has been applied to a host of
psychiatric and medical illnesses. This model has also
been applied to our understanding of parenting styles (38)
and to the development of aberrant parenting behaviors
(39). But what is the source of the diathesis? One con-
tentious area of deliberation has been the relative contri-
bution of inheritance and environment, the so-called
nature-versus-nurture debate. Such arguments have his-
torically been couched in absolute terms, but the diathe-
sis-stress model permits a more balanced consideration.
Because inherited and acquired factors contribute to vul-
nerability, this model becomes a useful structure for orga-
nizing concepts regarding the mechanisms by which par-
ents convey the risk for illness to their offspring. The
parental contribution to the vulnerability of offspring to
psychiatric illness may occur through numerous path-
ways, most notably genetic transmission and altered
parenting. Theoretically, the predisposition to illness
should be demonstrable by using both psychological and

biological measures. It is this conviction that the diathesis
for illness may be measurable that underlies many appli-
cations of animal models to the study of human behavior.

Despite the absence of a definitive conclusion regarding
their validity, homologous animal models do offer a
means to explore the diathesis-stress model. Both inher-
ited and acquired vulnerability to experimentally induced
stress have been demonstrated by using animal models.
The genetic diathesis has largely been demonstrated not
by design but inadvertently as researchers have endeav-
ored through selective breeding to develop animal strains
that either more reliably or more robustly exhibit the tar-
get signs and symptoms resembling a human syndrome.
The success, for example, in breeding animals that are
more susceptible to stress-related behavioral alterations
illustrates the contribution of genetic inheritance to the
vulnerability to stress-related illness.

Animal models have also contributed to our under-
standing of environmentally acquired vulnerability to
disease. Stress sensitization models have been used to
demonstrate that exposure to one stressor can alter the re-
sponse to subsequent milder stress exposures. For exam-
ple, in a predator exposure model, rats placed briefly in a
small enclosure with a cat later demonstrated increased
anxiety-like behaviors that were detectable long after the
initial exposure (40, 41). Similarly, animals exposed to a
foot shock and then repeatedly introduced to the setting
of that initial stressor developed an exaggerated acoustic
startle (42). One frequent application of animal models
relevant to the diathesis-stress model has been to study
the biobehavioral sequelae of early life stress. In some in-
stances, these models simply expose young animals to
nonspecific noxious stimuli such as foot shock or re-
straint. Models of early adverse experiences have recently
evolved to utilize psychosocial stressors. These models
typically stress the young animal by modulating parent-
offspring interaction and thereby reflect not only early life
stress but more specifically conditions such as parental
depression that hinder parenting.

In assessing the validity of such animal models, it is crit-
ical to establish an operational definition of the compara-
tive human experience. As mentioned previously, the ho-
mology applies not only to parallels in early life stress but
also to long-term outcome. The most extensively studied
psychiatric vulnerability arising in the children of de-
pressed parents has been for subsequent depression.
Hence, the predictive validity of homologous animal mod-
els of parental depression ultimately depends on the accu-
racy of these models in recreating the persistent biobehav-
ioral changes underlying a diathesis for depression.

Regarding the neurobiology of depression, existing re-
search has emphasized monoamine neurotransmitter sys-
tems and the HPA axis. The classic HPA axis stress response
commences with increases in hypothalamic corticotropin-
releasing hormone (CRH) secretion from nerve terminals
in the median eminence that in turn induce pituitary re-
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lease of ACTH and ultimately increased adrenal secretion
of cortisol. The role of HPA axis alterations in depression
has been studied for more than 40 years, since it was first
reported that depressed patients have increased concen-
trations of circulating adrenocortical hormones (43, 44).
Cortisol nonsuppression in the dexamethasone suppres-
sion test reliably demonstrates an association between se-
verity of depression and HPA axis hyperactivity, although
clinical utility of such findings is limited because of poor
sensitivity and specificity (45–48). Numerous lines of evi-
dence, including elevated concentrations of CRH in CSF
(49–53), blunted ACTH responses to administration of ex-
ogenous CRH (54–58), and heightened CRH mRNA expres-
sion in the hypothalamus (59), have indicated that CRH
hypersecretion likely underlies the pathogenesis of HPA
axis derangements in depression. More illuminating is the
finding that CRH neurons reside in extrahypothalamic re-
gions of the central nervous system (CNS) and may medi-
ate the neurovegetative symptoms of depression via limbic
projections (60). Though the neurocircuitry of central CRH
alterations during depression remains obscure, it can now
be stated with confidence that depression is commonly as-
sociated with both CRH hypersecretion and hypercorti-
solemia, with the added aberration of dysfunctional HPA
axis negative feedback (36, 60–63).

Monoamine neurotransmitters, particularly norepi-
nephrine and serotonin (5-HT), have likewise garnered
considerable scrutiny in studies of the neurobiology of de-
pression. Noradrenergic systems, once postulated to be
central to the pathophysiology of depression (64), have
produced largely inconsistent results in the intervening
years. Long-standing psychophysiological research has
nonetheless repeatedly demonstrated physical responses
to stress suggestive of sympathetic activation, including
tachycardia, hypertension, diaphoresis, dizziness, height-
ened skin temperature and skin conductance, and in-
creased electromyographic activity. It now appears un-
likely that alterations in central norepinephrine activity
are necessary to the pathophysiology of depression; how-
ever, there remains substantial evidence that dysregula-
tion of locus ceruleus norepinephrine systems contributes
to the elaboration of numerous depressive symptoms (65).
Some theories have implicated a central role for 5-HT dys-
function in depression (66). The widespread utility of sero-
tonergic antidepressants lends considerable credence to
such hypotheses. The identification of numerous anatom-
ical and functional interfaces between CRH and 5-HT sys-
tems in the CNS (36, 67) has provided a theoretical frame-
work for understanding the neurobiology of depression
that is only now beginning to be explored.

It must be acknowledged that the psychophysiological
and peripheral neuroendocrine correlates of depression
provide no direct explanation of disease etiopathogenesis.
Such measures have nonetheless been useful because
they use minimally invasive procedures to obtain a pe-
ripheral window into higher cortical functioning (63, 68).

Consequently, studies of HPA axis dysfunction do not di-
rectly explicate the pathophysiology of depression but
nevertheless offer important insights leading the elucida-
tion of comprehensive theories regarding the primary role
of the dysfunction of cortical CRH systems (60, 69, 70).

Comparing the biobehavioral similarities of animal
studies to parallel indices in human depression research
thus becomes the basis for assessing the valid application
of animal investigations to the consequences of parental
depression on child development. Our focus is therefore
on identifying animal behaviors and peripheral neurobio-
logical alterations that resemble the current clinical find-
ings in depression and the children of depressed parents.

Homologous Models of Parental 
Depression and Child Development

Neonatal Stress Models

Noxious stimuli. One approach to studying early life
stress by using animal models has been to implement
stressors akin to those experienced by adult animals. In so
doing, researchers expose young animals to noxious stim-
uli, including thermal extremes, pinprick, foot shock, or
surgical procedures.

Despite clear evidence of the presence of CRH-contain-
ing neurons in the fetal rat (71), noxious stimuli such as
these evoke only a subnormal HPA axis response during
the first 2 weeks of life (72, 73). During this so-called stress
hyporesponsive period, baseline plasma corticosterone
concentrations are lower than normal (74) and are only
minimally increased by exposure to a noxious stressor
(74–76). Stress-induced CRH and ACTH responses are also
attenuated during the stress hyporesponsive period (77–
79). The HPA axis is not a static but a dynamic system that
at least in the rat continues to undergo maturational adap-
tations postnatally. The failure to mount a full stress re-
sponse during early development may increase the young
rat’s vulnerability, but this may serve as an adaptive evolu-
tionary trade-off, protecting the growing animal from the
catabolic effects of glucocorticoid hypersecretion. There is
no evidence that a similar stress hyporesponsive period
exists in the human neonate. This may, of course, be re-
lated to the fact that the CNS of the newborn rat pup is de-
velopmentally similar to that of a 24-week human fetus
(80). Thus, if a stress hyporesponsive period exists in hu-
mans, it may occur prenatally.

Although studies utilizing the exposure of neonates to
noxious stimuli have limited face validity in addressing the
issue of parenting, and in fact even fail to provide predic-
tive validity for the expected neurobiological stress re-
sponses, these studies do illustrate the dynamic nature of
the stress response. If HPA axis responsivity during child-
hood is modulated by programmed maturational pro-
cesses, then this stress-responsive biological system may
serve as a template for the environmental contribution of
early life stress on the diathesis for subsequent illness.
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Brief neonatal handling in rodents. Another applica-
ble line of animal research has used brief neonatal han-
dling of rodents as the initial stressor. In this paradigm, ro-
dent pups are removed daily from their cages and handled
briefly by laboratory personnel. The biobehavioral re-
sponses of handled and nonhandled pups to postweaning
stress are then examined to determine the persistent ef-
fects of the handling exposure.

The expectation that neonatal handling would increase
anxiety and biological measures of stress responsivity in
future novel situations has not been realized. In fact, neo-
natal handling has been found paradoxically to decrease
anxiety-like behaviors and biological stress responsivity.
Handled pups are resistant to stress and aging decrements
in learning ability (81, 82), exhibit higher levels of explor-
atory behavior in novel environments (83, 84), and dem-
onstrate an attenuated activation of neuronal fear cir-
cuitry in response to stress during adulthood (85).

Neonatal handling produces transient norepinephrine
circuit hyperactivity (86) but surprisingly leads to a de-
creased norepinephrine response to stress during adult-
hood that appears to be a consequence of an up-regulation
of α2 autoreceptors in the locus ceruleus (87). This para-
digm also produces persistent increases in the CNS activity
of γ-aminobutyric acid (GABA) (88), 5-HT (89, 90), and en-
dogenous opioids (91–94). Undoubtedly, however, the
most intriguing findings are decreases in HPA axis activity
induced by neonatal handling. Early studies demonstrated
lower ACTH (95) and corticosterone (96, 97) responses to
subsequent stressors. Neonatal handling also produces re-
ductions in basal circulating levels of ACTH and corticos-
terone (98). These diminished peripheral measures of HPA
axis activity are, at least in part, a consequence of de-
creased CRH secretion as evidenced by lower median emi-
nence concentrations of CRH, decreased expression of hy-
pothalamic CRH mRNA (95, 99), and diminished CRH
release in response to subsequent stress (99, 100).

Two lines of evidence indicate that brief neonatal han-
dling may also induce an increased sensitivity to HPA axis
negative feedback. Specifically, handled pups demon-
strated enhanced dexamethasone suppression of corti-
costerone and a more rapid return of corticosterone to
baseline measures after stress exposure (101). This en-
hanced sensitivity to negative feedback is likely a conse-
quence of glucocorticoid receptor up-regulation at the
hippocampus and other sites (101–105).

Neonatal handling studies have indicated that subtle en-
vironmental variations can affect the ontogeny of biologi-
cal systems but on first review may not be directly applica-
ble to a study of the impact of stress on parenting. How are
we to understand the effects of neonatal handling? In fact,
neonatal handling so improves the rat’s adaptability to
subsequent stress that one study implemented “nonhan-
dling” as an early life stressor (106). One potential explana-
tion is that rodent pups do not experience handling as a
particularly unpleasant stimulus. Although handling intro-

duces an environmental change, it is not empirically nox-
ious. Early exposure to novel nonnoxious environmental
events such as handling may instead improve the animal’s
adaptability to subsequent environmental changes. These
studies may simply represent a variant of other early life
stress paradigms and are otherwise irrelevant to our con-
sideration of parental depression.

However, it has been observed that neonatal handling of
rodent pups stimulates maternal grooming of pups (97,
107–110). The biobehavioral changes induced by neonatal
handling may thus be mediated indirectly through
changes in maternal care. On closer inspection, neonatal
handling studies may in fact be relevant to the study of
parenting in humans. This hypothesis has been supported
by work that has documented that increased maternal
grooming (apart from a handling paradigm) produces
similar down-regulation of HPA axis responsivity to stress
(111) and, in fact, increases hippocampal synaptogenesis
(112). However, although increased maternal care may be
one mechanism by which handling reduces HPA axis re-
sponsivity, it may not be the only or even a necessary
mechanism for the oft-reported handling effect (113). In
summary, with respect to parenting, the rodent neonatal
handling paradigm bears face and predictive validity not
for parental depression but for the beneficial effects of at-
tentive parenting.

Maternal deprivation in rodents. In contrast to the pre-
vious paradigms, maternal deprivation protocols repre-
sent overt models of disrupted parenting. In these models,
rat pups are separated from their mother for prescribed
interval(s) berfore weaning. The pups are not only de-
prived of maternal care during the separation, but mater-
nal behavior typically remains aberrant even after reunion
(114), thereby exhibiting greater face validity in relation to
the behavior of depressed parents than the earlier para-
digms. This parallel to the human condition is under-
scored by Bowlby’s early application of the term “maternal
deprivation” to the impact of mental illness on maternal
behavior (115).

Maternal separation in the rat potentiated behavioral
changes resembling depression and anxiety (116, 117).
Maternally separated female offspring were also more
likely to display aberrant maternal care with their own lit-
ters (118, 119), although not all studies have demonstrated
this finding (120). Furthermore, maternal separation in-
duced acute changes in HPA axis activity, as indicated by
increases in serum corticosterone (121, 122) and ACTH
concentrations (79). CRH secretion was also altered by
maternal deprivation, but the pattern of alteration de-
pended to some extent on the timing of the separation.
For example, maternal separation at postnatal day 10 re-
sulted in decreased CRH concentrations in the median
eminence but no change in the density of pituitary CRH
receptors (123). The decrease in median eminence CRH
was presumably due to depletion of CRH stores from
nerve terminals at that site, and the absence of any alter-
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ation in pituitary CRH receptors could be attributable to
the immaturity of that system. By postnatal day 18, mater-
nal separation produced a down-regulation of pituitary
CRH receptors (presumably a consequence of CRH hyper-
secretion) associated with no changes in CRH concentra-
tions in the median eminence, presumably a consequence
of the further maturation of the system resulting in an in-
creased rate of CRH synthesis (123).

The neurobiological changes induced by maternal dep-
rivation are also long lasting, but the timing of the separa-
tion appears to modify the specific biological sequelae.
For example, repeated separation of 4–6 hours per day on
postnatal days 6–20 produced increased ACTH responses
but normal corticosterone responses to subsequent stress
in adulthood (124). By contrast, a single 24-hour separa-
tion beginning on postnatal day 3 produced a normal
ACTH response but an increased corticosterone response
to subsequent stress. Separation beginning on postnatal
day 11 induced a normal corticosterone but a blunted
ACTH response to stress (125, 126). Taken in isolation, the
specific significance of these findings may be unclear, but
overall they demonstrate that interruption in maternal
care during a period of rapid CNS development may pro-
duce lasting neurobiological alterations.

CRH hypersecretion likely underlies the persistent HPA
axis alterations associated with early maternal deprivation.
Maternally deprived adult rats exhibited increases in hypo-
thalamic expression of CRH mRNA in the paraventricular
nucleus, increased CRH concentrations in the median em-
inence, and dexamethasone nonsuppression (124–127).
Diminished elaboration of glucocorticoid receptors in the
CNS of maternally deprived rats may underlie alterations
not only within the HPA axis but also within noradrenergic
systems emanating from the locus ceruleus (128).

One rat study compared the impact of maternal depri-
vation on two rat strains: one bred for susceptibility to the
inescapable shock (“learned helplessness”) paradigm and
another bred for resistance to inescapable shock (129).
When the two rat strains were exposed to maternal depri-
vation and a subsequent stressor, HPA axis stress re-
sponses in the offspring were markedly dissimilar. The
stress-susceptible group exhibited an increased ACTH re-
sponse, but a normal cortisol response, to stress at postna-
tal day 21, a pattern similar to the HPA axis changes asso-
ciated with posttraumatic stress disorder (PTSD) (130–
132). The stress-resistant line did not demonstrate the ex-
aggerated ACTH response to stress. This study provided an
excellent example of the potential relative genetic and ac-
quired contributions to the vulnerability for illness.

The genesis of the effects of maternal deprivation on
HPA axis activity has been the subject of some debate. The
stress experienced by the maternally deprived rat pup may
result from either the absence of maternal tactile stimula-
tion or secondary food deprivation (133). A study designed
to address this issue isolated the effects of food intake and
tactile stimulation (134). Providing surrogate maternal

care (e.g., stroking the anogenital region with a warm
brush) reversed the effects of maternal separation on CRH
type 2 receptor mRNA expression in the hypothalamus.
However, neither food supplementation nor contact with
a sedated or nonlactating mother reversed this effect,
suggesting that alterations in maternal care underlie the
biological changes induced by maternal separation in the
neonate.

Maternally separated rat pups also demonstrated alter-
ations in the function of endogenous opioids. This is likely
a byproduct of hypothalamic CRH hypersecretion that in-
duces pituitary secretion of proopiomelanocortin, a pro-
hormone that is not only a precursor of ACTH but also of
melatonin and certain endogenous opioids. In studies that
used a hotplate for nociception testing, maternally sepa-
rated rat pups demonstrated increased response latencies
believed to be a consequence of the analgesic effects of el-
evated concentrations of endogenous opioids (135). This
effect was potentiated by morphine and blocked by pre-
treatment with the opioid antagonist naloxone (135). A re-
cent study indicated that adult male rats subjected to re-
peated maternal separation during the first 2 weeks of life
exhibit diminished morphine antinociception during test-
ing with a hotplate (136). Since the effect was not wit-
nessed in adult female rats, this study raises interesting
questions regarding the gender-specific effects of dimin-
ished maternal care on the maturation of opioid systems.

A limited subset of rodent studies has investigated the
effects of maternal deprivation on other neurotransmitter
systems. Although there is some inconsistency in the data,
numerous studies have suggested that the activity of the
principal inhibitory CNS neurotransmitters is diminished
in adult rats previously exposed to maternal separation.
For example, maternally deprived adult rats in novel situ-
ations exhibited heightened anxiety-like behaviors and
showed evidence of reduced GABA activity, including de-
creased GABAA binding, and decreased levels of CNS ben-
zodiazepine type I receptors (137). These findings contrast
with earlier findings that the offspring of attentive female
rats who more frequently groomed their young showed
less fearfulness in novel situations and increased CNS lev-
els of benzodiazepine type 1 receptors (138). Surprisingly
little attention has been devoted to the effect of rodent
maternal deprivation on the ontogeny of central 5-HT sys-
tems. Maternal deprivation has been associated with de-
creased 5-HT concentrations in the dorsal hippocampus
and prefrontal cortex of offspring (139), but this finding is
in contrast to other results demonstrating no alterations in
the density of 5-HT fibers in the prelimbic, anterior cingu-
late, and precentral medial cortices of maternally de-
prived rats (140). Although only tangentially relevant to
animal modeling of parenting, postweaning social isola-
tion of young rats has been shown to decrease the seroton-
ergic innervation of the hippocampus (141) but to have no
impact on 5-HT concentrations in the hedonic circuitry
innervating the nucleus accumbens (142). To our knowl-
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edge, only one rodent maternal deprivation study has ex-
amined the function of neuropeptide Y, another transmit-
ter with putative inhibitory activity at the locus ceruleus
(143). In that study, pups demonstrated increased expres-
sion of preproneuropeptide Y mRNA immediately after a
24-hour separation. Because the pups were also deprived
of food and water during the 24-hour separation, it is diffi-
cult to ascertain whether the result was primarily an effect
of nutritional deprivation or of disrupted maternal care.

Social and maternal deprivation in primates. Sc r u -
tiny of the primate social deprivation model has been
quite extensive. Initial reports accentuated its value as a
homologous model for depression (144). Experimental re-
finements in which the monkey’s mother is replaced with
a series of incrementally more realistic maternal surro-
gates (145) have lent the model utility for investigating the
consequences of disrupted parenting.

Most neurobiological research using the social depriva-
tion model has focused on catecholamine systems. Mon-
keys reared with no attachment object or an inanimate sur-
rogate exhibit depressive-like symptoms during later
separations and markedly lower CSF norepinephrine con-
centrations (146). In most studies, although not all (147),
peer-raised monkeys have exhibited less pronounced de-
spair on separation and have shown baseline CSF norepi-
nephrine concentrations that are intermediate between
those of mother-reared monkeys and total isolates (148–
150). These findings suggest an inverse relationship be-
tween maternal contact, norepinephrine neuronal activity,
and later socialization. It is noteworthy that desipramine
administration produced elevations in CSF norepineph-
rine concentrations largely consistent with its known phar-
macology in both peer-raised and mother-raised monkeys
(148). Differential rearing may (147) or may not (148) pro-
duce alterations in CSF concentrations of 5-HT metabo-
lites. One intriguing study did indicate that maternally de-
prived monkeys with the short rhesus macaque serotonin
transporter allele (rh5-HTTLPR) exhibit an exaggerated ex-
pression of the attentional and emotional alterations com-
monly associated with this genotype (151).

HPA axis function has also been studied in socially de-
prived primates. A study comparing socially isolated to
peer-reared rhesus monkeys demonstrated higher basal
cortisol levels in the isolates but no differences between
groups in cortisol responses to a novel situation (152). An-
other study comparing peer-reared to mother-reared
rhesus monkeys surprisingly reported higher basal con-
centrations of ACTH and more pronounced stress-in-
duced increases in both ACTH and cortisol in the mother-
reared offspring (153) that was not appreciably altered by
antidepressant administration (154). These surprising re-
sults contrast with more recent findings of higher cortisol
increases during subsequent social separation in peer-
raised than in mother-raised monkeys that were corre-
lated with higher self-administration of alcohol under typ-
ical living conditions (155).

The magnitude of social deprivation in these models ex-
tends beyond the loss of parent-child interaction. In some
models, animals are deprived of an entire range of social
interaction when they are removed not only from their
mothers but from the social group as a whole. Therefore,
findings from such research bear limited face validity to
the study of parental depression (156). In designs that rec-
ognize this limitation, other studies have evaluated the
acute sequelae of brief maternal separation. For example,
one study examined effects of 24-hour separation by com-
paring four conditions: total isolation, remaining with the
mother, being placed with a peer of the same group, or be-
ing placed with a peer from another group (157). Thirty
minutes after separation, the isolated infants and the in-
fants placed with a strange peer had markedly elevated
cortisol concentrations; 24 hours later only the isolated in-
fants exhibited hypercortisolemia. Thus, the presence of
peer-aged conspecifics modulated the acute biological
stress response.

Other studies have modified the manner of separation
from the infant’s mother. A study of 24-hour separation
placed infants in one of three conditions: total isolation,
remaining with the mother, or separated from the mother
but able to see her (158). In this study, the totally isolated
infants were the least likely to vocalize but had the highest
plasma cortisol concentrations; there were no detectable
differences in the behavioral measures or cortisol concen-
trations of the other two groups. In a similar study in
which infants were totally isolated, left with the mother, or
placed in an adjacent cage with the mother in full view, el-
evations in plasma cortisol and CSF catecholamine me-
tabolites (i.e., 3-methoxy-4-hydroxyphenylglycol, homo-
vanillic acid) were greatest in the total isolates and at an
intermediate level in the infants that were separated from
but able to see the mother (159). In yet another primate
study, monkeys were subjected to a 2-hour separation
from their social group at the ages of 6 months and 1 year
to investigate the impact of aging on the HPA axis re-
sponse to separation (160). In this investigation, there
were considerable individual differences in both the be-
havioral and cortisol responses to separation at both in-
tervals, although the cortisol response was attenuated at 1
year of age. A recent study suggested that these alterations
in HPA axis responsivity may be a consequence of changes
in negative feedback mediated by the glucocorticoid re-
ceptor (161).

Variable foraging in primates. Although separation
paradigms that interfere with the quality of parenting reli-
ably induce neurobiological and behavioral alterations in
both rodents and primates, these strategies depend on an
experimental intervention that is disparate from normal
human experience. The face validity of the research proto-
col may be improved by instead altering a naturalistic
stressor that indirectly stresses the infant by contesting the
parent’s ability to provide adequate care.
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All mammalian species face the challenge of feeding
their offspring. The difficulty of this task depends both on
the availability of a food source and the proficiency of the
parent in procuring food from that source. During periods
of nutritional stress, mammalian parents may struggle he-
roically to feed their young (162), but they may also aban-
don their young (163). Incorporating this reality of survival
into an experimental paradigm provides a technique for
modulating parental stress and thereby investigating the
adequacy of parental care.

The objective in these studies is not to subject the ani-
mals to malnutrition but to increase the effort of parenting
while permitting adequate nutrition. If the model achieves
this goal, then the effects of parental stress on offspring
development can be ascertained without the confounding
effects of aberrant nutrition. A suitable primate model has
been implemented by using three foraging conditions: low
foraging demand, high foraging demand, and variable for-
aging demand. In the low foraging demand condition,
food is readily available and requires no maternal effort for
procurement. By contrast, in the high foraging demand
condition, mothers are required to perform a task such as
digging through wood chip bedding to obtain food. In the
variable foraging demand condition, the requirements for
food procurement are unpredictable. In this paradigm, the
high foraging demand condition serves both as a compar-
ator state and a nutritional control.

Infants raised in the variable foraging demand condi-
tion exhibited behavioral alterations suggestive of inse-
cure attachment that resemble anxiety in humans (164–
168). As juveniles and adults, primates raised under vari-
able foraging demand conditions exhibited persistently
elevated CSF CRH (169, 170). The CRH elevations, how-
ever, were not accompanied as anticipated by elevations
in cortisol. Instead, these offspring demonstrated lower
CSF, and presumably plasma, cortisol concentrations than
the comparator groups (169). This finding is strikingly
similar to the profile of HPA axis activity reported in pa-
tients with PTSD (130–132). A follow-up study demon-
strated that CSF concentrations of somatostatin, a peptide
whose release has been reported to be potentiated by CRH
but that itself suppresses HPA axis activity, was also ele-
vated in adult primates raised under variable foraging de-
mand conditions (171). Thus, hypersecretion of soma-
tostatin is one potential explanation for the conundrum of
decreased cortisol release in the face of CRH hypersecre-
tion. In primates raised in variable foraging demand con-
ditions, the growth hormone response to clonidine was in-
versely correlated with CSF CRH concentrations (172),
suggesting a potential mechanism for this often reported
finding in depressed patients.

The impact of variable foraging demand on biogenic
amine systems has had limited investigation. CSF concen-
trations of 5-HT and dopamine, but not norepinephrine,
metabolites were elevated in adults reared in conditions of
variable foraging demand (171). The 5-HT results are con-

sistent with previous findings of hyposensitivity to a phar-
macological challenge with the 5-HT agonist m-chlo-
rophenylpiperazine in subjects reared in variable foraging
demand conditions; however, the norepinephrine find-
ings are surprising given the behavioral sensitivity to the
α2 antagonist yohimbine exhibited by variable foraging
demand subjects (173).

Prenatal Stress Models

It is not surprising that many view parenting as begin-
ning not only before birth but even before conception. For
example, avian species diligently build nests before laying
their eggs. Likewise, agencies such as Planned Parenthood
encourage prospective parents to prepare for parenting
before conception. This is an important concept because
there is growing evidence that the quality of prenatal
parenting has a significant impact on the well-being of the
offspring.

Mental illness during pregnancy may well represent the
first adverse life event for the developing child (174). For
example, maternal depression during pregnancy may
slow fetal growth (175, 176), increase the risk of obstetrical
and postnatal complications (177–180), and precipitate
long-term behavioral changes in the offspring (181, 182).
These observations have tremendous implications for
perinatal psychiatric practice.

A long line of animal research has investigated the ef-
fects of prenatal stress on the developing offspring. Con-
sistent with the limited human data, data from animal
studies have suggested that stress during pregnancy can
adversely affect offspring growth (183–187), learning abil-
ity (188–191), and attainment of developmental mile-
stones (192). Prenatal stress may also induce persistent
behavioral aberrations. In particular, adult rats exposed to
prenatal stress continued to exhibit anxiety-like behaviors
in novel situations (193–198), depression-like behaviors
(199), and exaggerated behavioral responses to stress
(200–202). Primate studies have also demonstrated de-
creased exploratory behavior in prenatally stressed off-
spring (203, 204).

As expected, these behavioral changes have been asso-
ciated with long-term neurobiological changes. Pregnant
rats exposed to an uncontrollable stressor exhibited in-
creases in basal corticosterone concentrations and de-
creases in corticosteroid-binding globulin (further elevat-
ing the free fraction of corticosterone) (205). Fetuses of
these stressed pregnant dams also demonstrated in-
creased concentrations of plasma corticosterone (205).
Initial evidence suggested that fetal hypersecretion of
CRH may underlie the increased HPA axis activity. For ex-
ample, repeated but brief exposure to prenatal stress in-
creased the expression of CRH mRNA in the paraventricu-
lar nucleus of the fetal hypothalamus; however, prolonged
stress exposure induced neuronal apoptosis (206).

Prenatally induced alterations in HPA axis activity may
persist into adulthood. For example, prenatally stressed
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adult rats demonstrated exaggerated corticosterone re-
sponses to subsequent mild stressors (202, 207–212) and
showed a phase advance in the circadian rhythm of corti-
costerone secretion (213). Basal concentrations and stress-
induced elevations of ACTH have been reported to be
higher in prenatally stressed rats than in comparison ani-
mals (208, 214). These changes are accompanied by a
down-regulation of glucocorticoid receptors at the hippo-
campus (209). The elevations in ACTH concentrations are
paralleled by heightened concentrations of β-endorphin
in prenatally stressed rats at 10 days of age (215). The ef-
fects of prenatal stress on the ontogeny of opioid systems
may have consequences both for the behavioral responses
to novelty (216) and the differentiation of sexually dimor-
phic behaviors (217). However, measures of CRH secretion
have been inconsistent. One study of prenatally stressed
adult rats did not detect any alterations in median emi-
nence CRH concentrations (100), but another reported in-
creased concentrations of CRH in the amygdala (218).

The mechanism by which maternal stress during preg-
nancy modulates the fetal HPA axis is unclear. Placental
passage of maternal corticosterone during prenatal stress
exposure may be one mechanism by which stress expo-
sure during pregnancy affects the offspring. For example,
eradicating maternal corticosterone via bilateral adrenal-
ectomy before stress exposure obviated the impact of pre-
natal stress on neonatal hippocampal glucocorticoid
receptors (219). However, the finding that neonatal adop-
tion reversed the impact of prenatal stress on hippocam-
pal glucocorticoid receptors suggests that the effect may
be mediated through changes in postnatal maternal care
(209). Consistent with the latter hypothesis is evidence
that stress during pregnancy adversely affected postnatal
efforts at maternal care (220, 221).

There has been relatively little study of the impact of
prenatal stress on primate HPA axis activity. In one study,
prenatally stressed juvenile rhesus monkeys exhibited in-
creases in basal and stress-responsive ACTH and cortisol,
compared with juveniles whose mothers were not stressed
(222). Another study in which the administration of ACTH
to pregnant rhesus monkeys produced developmental
changes similar to other stress paradigms during preg-
nancy lends additional credence to the theory that HPA
axis hyperactivation mediates the long-term sequelae of
prenatal stress (223).

Preclinical studies have also indicated that prenatal
stress affects biogenic amine systems. For example, prena-
tally stressed animals have exhibited alterations in the
plasma concentrations of norepinephrine, dopamine, and
their metabolites (212, 224–229) that were consistent with
increases in the turnover of these catecholamines. Further-
more, prenatal stress has been associated with alterations
in both norepinephrine (230) and dopamine receptors
(231). Changes in the asymmetric patterns of dopamine
neural circuitry in the CNS of prenatally stressed adult rats
have also been reported (232, 233).

Prenatal stress has also been associated with long-term
alterations in serotonergic activity. Decreased plasma and
CNS concentrations of 5-HT and its metabolites in prena-
tally stressed animals have been reported (212, 234, 235).
5-HT receptor profiles in the hippocampus (234, 236) and
behavioral responses to 5-HT challenge (237, 238) were
also changed in adult rats subjected to prenatal stress.
These changes in serotonergic function may in part be
programmed by increased glucocorticoid exposure during
pregnancy (239). Moreover, the effect of prenatal stress on
cholinergic neurotransmission appears to be mediated by
CRH activity at the hippocampus (240).

Maternal stress during pregnancy is associated with
persistent behavioral and cognitive changes in both ro-
dents and nonhuman primates, paralleling concerns aris-
ing from clinical psychiatric experience. The long-term
neurobiological effects may be mediated in large part
through organizational effects of maternal HPA axis acti-
vation on fetal CNS maturation (241). Although it remains
unclear whether the placental passage of maternal gluco-
corticoids or the impact of inadequate postnatal care me-
diates the alterations in offspring HPA axis function, the
ultimate clinical importance of these data is the same. It
would seem prudent to treat perinatal maternal mental ill-
ness aggressively to circumvent the potential adverse im-
pact of maternal illness on the developing child.

Two-Parent Models

Despite the considerable breadth of animal research in-
vestigating parental care, the study of paternal care is woe-
fully inadequate. Throughout most modern cultures, hu-
mans are monogamous (albeit in many cases serially so)
and provide biparental care (although mothers continue
to provide a disproportionate share of child care). How-
ever, single-parent households are increasingly prevalent,
and we have made little progress in understanding the be-
havioral and neurobiological consequences of single
parenting. Without this knowledge, our efforts to educate
and guide single parents are not evidence-based and may
therefore be seriously deficient.

Two-parent animal models that incorporate paternal
care and consider the impact of its absence are sorely
needed. Unfortunately, nonhuman primate research has
provided little insight. Group-living primates typically are
not monogamous; therefore, male primates have little as-
surance of paternity and from an evolutionary standpoint
little incentive to provide parental care. In fact, adult male
primates of several species interact no more often with
their own offspring than with other infants (242–244).
Adult male primates appear to initiate interaction with in-
fants, not in an effort to provide care for their own off-
spring or even to curry favor with potential mates, but in-
stead as part of a triadic interaction to buffer tensions with
other adult males (243). Numerous avian species mate for
life and provide biparental care, but the complex neurobi-
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ological and behavioral issues requiring study are not
likely to be addressed adequately in a nonmammalian
species.

Fortunately, a small number of monogamous mamma-
lian species that provide biparental care are being stud-
ied. In particular, rodent species such as the prairie and
meadow voles, Siberian and Djungarian dwarf hamsters,
and California mice have been studied. Most of this re-
search has scrutinized the neurobiology underlying the
affiliative behaviors of these species. There is clear evi-
dence that oxytocin stimulates maternal behavior, mat-
ing activity in males, and infant attachment behaviors in
these highly social creatures (245, 246). A limited subset of
these investigations have studied the determinants of pa-
ternal care and the impact on the offspring when paternal
care is unavailable.

Research with voles has demonstrated that the father
and the mother demonstrate distinct patterns of interac-
tion with their young that suggest unique parental roles
(247). Furthermore, the presence of the father during in-
fancy has a positive effect on the subsequent paternal be-
havior of male offspring. Juvenile male voles allowed to re-
main in the nest when a subsequent litter is delivered were
more likely to provide alloparental care if their fathers
were present during upbringing (248). Similarly, paternal
care was more readily initiated by adult male voles reared
as neonates with their fathers present rather than with un-
familiar males (249). However, exposure to pheromones of
the mate also facilitated the initiation of paternal care
(250). In addition, continued exposure to pups eventually
induced paternal care even in voles raised without a father
(249, 250).

The success of another species, the Djungarian dwarf
hamster, appears to be particularly dependent on the par-
ticipation of both parents in rearing the offspring. Pup sur-
vival was compromised by the removal of the father (251).
The introduction of a second unmated female to the nest
did not compensate for the father’s absence (252).

The biological substrate for paternal behavior in these
species remains unclear. It is unlikely to be solely predi-
cated on oxytocin. In males of numerous species includ-
ing humans, oxytocin has been shown to potentiate sex-
ual behavior and to facilitate the ejaculatory response
(245). A study with the monogamous, biparental Cali-
fornia mouse, which provides biparental care, has shown
that plasma oxytocin remains elevated in the male after
copulation and during early gestation but declines before
delivery and remains low throughout lactation (253). Pre-
liminary evidence indicated instead that vasopressin may
potentiate the effects of androgens to induce paternal be-
havior in these rodent species (254, 255).

Although the data produced to date are limited, two-par-
ent, monogamous animal models offer numerous advan-
tages. They provide greater face validity for human parent-
ing by affording an opportunity to investigate paternal
care. They also furnish a means to study the impact of

parenting without a father. Future studies should investi-
gate the neurobiological effects of paternal separation not
only on the developing offspring but also on the mother
who remains behind to care for her litter. Unfortunately, no
two-parent primate models have been identified.

Conclusions

An impressive array of evidence indicates that stressful
events in early life contribute significantly to the vulnera-
bility for adulthood psychopathology (Table 1). Parental
nurture helps to foster adaptive responses to early life
stressors, thereby protecting the child from this vulnera-
bility to later illness; however, parental depression may
undermine this protection and occasionally is itself the
source of early life stress. Increasing evidence substantiates
the observation that parental depression contributes to the
child’s diathesis for subsequent stress-related illness.

Although ideal parenting may be poorly defined, the an-
imal literature indicates that deficits in parental care may
lead to persistent adverse sequelae for the offspring. As an-
imal modeling of human parental behavior is further re-
fined, we will gain additional insights into the qualitative
impact on psychiatric vulnerability in the offspring of
events such as depression that interfere with parental nur-
ture. Animal models already are an important component
of psychiatric research offering several distinct advantages
over human research. First, some species such as rodents
have brief gestational and developmental periods, en-
abling researchers to study outcomes in an expeditious
manner. Second, animal models permit researchers to in-
voke particular environmental manipulations (e.g., mater-
nal deprivation, food supply limitation, pharmaceutical
challenge) that would be impractical in naturalistic human
studies. Third, invasive measurement of CNS activity is
only feasible in an animal model. Despite these advan-
tages, an animal model with poor homology to the human
experience is not particularly useful. Defining and validat-
ing homologous animal models is in fact often the most
challenging aspect of preclinical psychiatric research.

Homologous studies relevant to our consideration of
parental depression have used both rodent and primate
models. Among the existing animal paradigms, the vari-
able foraging model demonstrates the greatest face valid-
ity for parental depression in humans. This model avoids
direct interaction between the researchers and the animal
offspring. Furthermore, the variable foraging model does
not abolish parental care (even transiently) but introduces
instead an environmental stressor that challenges the ma-
ternal capacity for caregiving. Although this more closely
parallels some of the difficulties encountered by de-
pressed parents, it must be acknowledged that the stress of
a variable environmental perturbation is not fully homol-
ogous (i.e., does not bear absolute construct validity) to
the presence of a stress-related illness (i.e., depression).
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Both prenatal and postnatal experimental laboratory
stressors that either directly or indirectly impair maternal
care produce a persistent deleterious impact on offspring.
By contrast, the only early life stressor studied to date that
tends to bolster maternal care, i.e., neonatal rat handling,
typically produces adaptive behavioral effects and re-
duces neurobiological sensitivity to subsequent stress in
the offspring. Consequently, the neonatal stress studies
exhibit predictive validity with regard to the clinical se-

quelae of parental depression in that they demonstrate
that deficits in maternal care are associated with anxiety-
like and depression-like behaviors in the offspring that
commonly persist into adulthood. The predictive validity
is further underscored by the fact that the stress para-
digms also uniformly produce acute hyperactivity and
long-term hyperresponsivity of HPA axis function. The key
event in these HPA axis changes appears to be CRH hyper-
secretion. This pattern bears striking parallels to findings

TABLE 1. Findings for Behavioral and Neurobiological Outcome Measures in Human and Animal Studies of Effects of
Depression and Stress 

Effect and Study Reference Numbera

Outcome Measure

Effect of 
Major

Depression 
in Humans

Effect of
Parental 

Major
Depression 
in Humans 

Effect of
Prenatal 
Stress in

Rodents and 
Primates

Effect of 
Maternal 

Deprivation 
in Rodents

Effect of  
Maternal 

Deprivation 
in Primates

Effect of 
Variable 

Foraging in 
Mammals

Effect of  
Neonatal 

Handling in 
Rodents

Effect of 
Neonatal 
Noxious 

Stimuli in 
Rodents

Behavioral measures
Parental care provided 

by parent
Low (14–

16)
Low (220, 

221)
Decrease 

(114)
Not known Not known Increase 

(97, 107–
110)

Not known

Anxiety in  offspring High (5–10) High (193–
198)

Increase 
(116, 117)

Not known High (164–
168)

Low (83–
85)

Not known

Depression in offspring High (5–10) High (199) Increase 
(116, 117)

High (144–
150)

Not known Not known Not known

Parental care provided 
by offspring

Not known Not known Low or no 
difference 
(118–120)

Not known Not known Not known Not known

Neurobiological 
measures in primary 
subject or offspringb

Corticotropin-releasing 
hormone (CRH) and 
hypothalamic-
pituitary-adrenal 
(HPA) axis

Corticosteroid secretion High or no 
difference 
(43, 44)

High (20, 
22)

High (222) Increase 
(121, 122)

Increase 
(157–160)

Low (169) Decrease 
(98)

Decrease 
(74)

CRH secretion High (49–
59)

Not known High or no 
difference 
(100, 218)

Increase 
(123–126)

Not known High (169, 
170)

Decrease 
(95, 99)

Not known

Cortisol response to 
dexamethasone 
suppression test

Increase or 
no change 
(45–48)

Not known Not known Increase 
(127)

Not known Not known Not known Not known

Cortisol response to 
stressor

No change 
(256)

Increase 
(23)

Increase 
(207–212)

Increase or 
no change 
(125–127)

Low or high 
(152–155)

Not known Decrease 
(95–97)

No change 
(74–76)

CRH response to 
stressor

Not known Not known Not known Not known Not known Not known Decrease 
(99, 100)

No change 
(77–79)

Glucocorticoid 
receptors

Low (70) Not known Low (209, 
219)

Decrease 
(128)

Not known Not known Increase 
(101–105)

Not known

Neurotransmitter 
systems
Norepinephrine 

activity
Low or high 

(65)
High (22) High (224–

230)
Increase or 

no change 
(87, 139)

High (148–
150)

High (171) Decrease 
(87)

Not known

Serotonin activity Low (66) Not known Low (226–
230)

Decrease or 
no change 
(131–134)

Decrease or 
no change 
(148, 149)

Increase 
(163)

Increase 
(89, 90)

Not known

γ-Aminobutyric acid 
activity

Low (257, 
258)

Not known Not known Decrease or 
increase 
(137, 138)

Not known Not known Increase 
(88)

Not known

Opioid activity Low or high 
(259–264)

Not known Not known Decrease  or 
increase 
(135, 136)

Not known Not known Increase 
(91–94)

Not known

a Effects are relative to normal (high, low) or pre-intervention condition (increase, decrease). Reference numbers are shown in parentheses.
b Measures for primary subjects in studies of effect of major depression in humans; measures for offspring in studies of all other effects.



1276 Am J Psychiatry 159:8, August 2002

PARENTAL DEPRESSION

in human studies of acute stress responses and may also
be germane to the pathophysiology of stress-related ill-
nesses, including depression. In addition, CRH not only
drives the endocrine stress response but also integrates
immunological, autonomic, and behavioral responses.
Manageable designs for multisystem stress studies are
only now being contemplated.

Once appropriate homologous animal models of paren-
tal depression are identified, they should dramatically
hasten the progress of this important line of research,
which is currently hampered by the inherent limitations of
conducting neurobiological research with children at risk.
We anticipate that this research will ultimately help clarify
the alterations in central CRH function that are believed to
exist in those vulnerable to psychiatric illness by virtue of
early adverse life events such as parental depression.
Moreover, appropriate animal models will ease the imple-
mentation of multisystem research. For example, because
most norepinephrine-secreting neurons emanate from a
single brain stem region, the locus ceruleus, interaction
between the norepinephrine system and other neurobio-
logical systems is robust. Future research will undoubt-
edly investigate the homeostatic interactions between
norepinephrine activity and other biological systems. The
well-documented stimulatory effects of CRH (265, 266)
and glutamate (267, 268), in addition to the inhibitor ef-
fects of 5-HT (269–271), GABA (272), endogenous opioids
(265, 273), and neuropeptide Y (274), on locus ceruleus ac-
tivity provide one potential framework for future cross-
system research.

The preclinical findings regarding parenting carry pro-
found clinical implications. First, it is imperative that we
better understand the mechanisms whereby parental de-
pression contributes to the developing child’s subsequent
psychiatric vulnerability. These animal data may direct the
development of pharmacological interventions for a child
once an insult from parental depression has occurred.
Such treatments may find utility both for children in the
acute aftermath of a childhood stressor and for adult off-
spring with a persistent vulnerability to illness that is, at
least in part, a consequence of the persistent effects of de-
pressive illness suffered by their parents.

Second, these animal data pose a seminal clinical ques-
tion relevant to the psychiatric care of parents with young
children. Does parental mental illness pose the first ad-
verse life event for a child (174)? The preclinical data have,
for example, been absent in many of the proposed treat-
ment guidelines for perinatal psychiatric illness (275–279).
We contend that the clinician should consider the preclin-
ical data regarding the risk to offspring posed by untreated
parental mental illness during the child’s formative years
when planning treatment for both men and women with
children (280, 281). Data from animal parenting research,
for reasons we have described, have helped to delineate
the potential adverse consequences of parental depres-

sion and must be incorporated into rational clinical deci-
sion making in the context of parental mental illness.
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