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Objective: Recent invest igat ions of
schizophrenia have targeted glutamatergic
neurotransmission, since phencyclidine,
an N-methyl-D-aspartate (NMDA) receptor
antagonist, can induce schizophreniform
psychosis. The authors previously reported
alterations in thalamic NMDA receptor
subunit expression in schizophrenia, con-
sistent with the hypothesis that thalamic
glutamatergic hypofunction may contrib-
ute to the pathophysiology of this illness.
In this study they generalized this hypoth-
esis to include other molecules of the
glutamate synapse, specifically excitatory
amino acid transporters (EAATs), whose
normal expression and regulation in the
thalamus may also be disrupted in sub-
jects with schizophrenia.

Method: In situ hybridization with ribo-
probes specific for the human excitatory
amino acid transporter transcripts EAAT1,
EAAT2, and EAAT3 was performed in dis-
crete thalamic nuclei in persons with
schizophrenia and comparison subjects.

Results: Higher expressions of transcripts
encoding EAAT1 and EAAT2, but not EAAT3,
were detected in the thalamus of subjects
with schizophrenia.

Conclusions: These findings support the
hypothesis of glutamatergic dysfunction
in schizophrenia and suggest that mole-
cules other than glutamate receptors are
abnormally expressed in glutamatergic
synapses in this illness.

(Am J Psychiatry 2001; 158:1393–1399)

Recent investigations in schizophrenia have targeted
glutamatergic neurotransmission in the thalamus because
of both its central role in sensory processing and its rich
glutamatergic connections to limbic regions of the brain
(1). Several lines of evidence have implicated thalamic ab-
normalities in subjects with schizophrenia. Studies that
used magnetic resonance imaging or unbiased volume es-
timation techniques have reported thalamic volume defi-
cits in patients with schizophrenia (2–7). Other work that
used positron emission tomography or single photon
emission computed tomography detected abnormalities
in thalamic metabolism, while other studies have reported
deficits in the number of thalamic neurons and glia in pa-
tients with schizophrenia (5, 8–14). The reported deficits in
thalamic volume, metabolism, and cell number in patients
with schizophrenia are consistent with other work that has
demonstrated that persons with schizophrenia have defi-
cits in recalling complex narrative material, which suggests
an abnormality in cortico-thalamic-cerebellar connectiv-
ity (11, 12). While these data suggest the thalamus as a can-
didate region for pathophysiology in schizophrenia, they
do not indicate which neurochemical substrates are asso-
ciated with these abnormalities. The glutamatergic system
is a likely candidate, since pharmacological evidence has
implicated glutamatergic dysfunction in schizophrenia.

Glutamate receptors are implicated in the pathophysi-
ology of schizophrenia in part because phencyclidine

(PCP) induces schizophreniform psychosis (15–19). PCP
binds to the intrachannel site of the N-methyl-D-aspartate
(NMDA) receptor, blocking normal receptor activity (20,
21). Thus, abnormalities in thalamic glutamatergic neu-
rotransmission may contribute to the pathophysiology of
schizophrenia. Previous work in our laboratory has de-
tected lower expression of some NMDA receptor subunits
and binding sites in the thalamus of subjects with schizo-
phrenia (22). Striking alterations in AMPA and kainate
subunit mRNA and binding site expression were not de-
tected (22), and there were no significant changes in the
expression of transcripts encoding the metabotropic
glutamate receptors in the thalamus in schizophrenia
(23). These results are consistent with the hypothesis that
NMDA receptor hypoactivity may contribute to psycho-
pathology in schizophrenia. In addition to the NMDA re-
ceptor, however, other synaptic elements, such as excita-
tory amino acid transporters (EAATs), may directly affect
glutamatergic neurotransmission in schizophrenia.

Recently, a novel family of excitatory amino acid trans-
porters was cloned and characterized (24). This family of
sodium-dependent glutamate/aspartate transporters in-
cludes five members (EAAT1–EAAT5) and is structurally
similar to the neutral amino acid transporters ASCT1 and
ASCT2 but is unrelated to other neurotransmitter trans-
porters (25, 26). Structural studies have predicted that
these transporters possess six to 10 transmembrane do-
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mains, which may form an aqueous transmembrane pore
(27). The transporter is reversible when the sodium gradi-
ent is altered, such as during a seizure (28). It is of interest
that EAAT4 and EAAT5 appear to have the unique property
of gating chloride ions (29, 30). The transcripts have spe-
cific patterns of cellular localization: EAAT1 and EAAT2
have been localized to astroglia, whereas EAAT3 and
EAAT4 are localized to neurons (31–37).

The best studied of the glutamate transporters, EAAT2
(called GLT-1 in the rodent), accounts for approximately
90% of rodent forebrain glutamate reuptake (38, 39). Ex-
pression of EAAT2 protein and mRNA has been observed
throughout the human brain but is highest in the fore-
brain (31, 32). Astrocytes have been identified as the pre-
dominant cell type expressing EAAT2 protein by immuno-
histochemical staining (33–35). GLT-1 knockout mice
exhibit hippocampal neurodegeneration and develop le-
thal seizures, emphasizing the physiologic importance of
homeostatic regulation of glutamate levels (38, 39).

Similar to EAAT2, EAAT3 (called EAAC1 in the rodent)
protein expression in the human brain is detected in the
frontal cortex and the hippocampus (31). Postmortem hu-
man EAAT3 mRNA localization has not been evaluated.
EAAT3 is localized to both post- and presynaptic neuronal
soma and contributes approximately 40% of hippocampal
glutamate transport (34). In contrast, levels of EAAT1
(called GLAST in the rodent) and EAAT4 protein expression
in rodent CNS are highest in the cerebellum, in the Berg-
mann glia and Purkinje cell types, respectively (31, 36, 37).
Human studies of EAAT1 protein expression indicate high
levels in the frontal cortex, while EAAT1 and EAAT4 mRNA
levels have not been extensively examined in humans. CNS
EAAT5 mRNA expression is limited to the retina (29).

Subtle functional differences between the glutamate
transporters illustrate the complexity of the glutamate
synapse. For example, EAAT2, but not EAAT1, is inhibited by
dihydrokainate, suggesting that anatomic or circuit-depen-
dent differences in glutamate transporter pharmacology
may reflect differences in the functional nature of a given
glutamate synapse or circuit (40, 41). The variability in ef-
fects of transporter antisense or knockout experiments is
consistent with this notion. GLT-1 (EAAT2) knockout ani-
mals develop lethal seizures, while GLAST (EAAT1) knock-
out animals have subtler defects, including difficulties with
coordination (38, 39, 42). It is not surprising that alterations
in excitatory amino acid transporter expression have been
reported in schizophrenia, Huntington’s disease, and amy-
otrophic lateral sclerosis (43–48). It is interesting to note
that variable splicing of EAAT2 in amyotrophic lateral scle-
rosis subjects has been detected, implicating alterations in
mRNA processing as a possible etiology for abnormalities
in excitatory amino acid transporter expression in human
diseases (45). Thus, we hypothesized that in schizophrenia,
an abnormality in excitatory amino acid transporter ex-
pression may contribute to glutamatergic dysfunction. The
aim of this study was to investigate thalamic expression of

members of the family of excitatory amino acid transport-
ers (EAAT1, EAAT2, EAAT3, and EAAT4) in the brain of sub-
jects with schizophrenia.

Method

Subjects

Twelve subjects with schizophrenia (five women and seven
men; mean age=70 years [SD=8], mean postmortem interval=420
minutes [SD=328]) and eight individuals with no psychiatric ill-
ness (six women and two men; mean age=77 years [SD=14], mean
postmortem interval=613 minutes [SD=425]) from the Mount Si-
nai Medical Center Brain Bank were studied. The schizophrenic
subjects in the present study are the same as those used in our
previous reports on glutamate receptor expression in the thala-
mus in schizophrenia (22, 23). Subjects were classified as having
schizophrenia if 1) the presence of schizophrenic symptoms
could be documented before age 40; 2) the medical records con-
tained evidence of psychotic symptoms and at least 10 years of
psychiatric hospitalization with a diagnosis of schizophrenia; 3)
the DSM-III-R diagnosis of schizophrenia was agreed upon by
two experienced clinicians; and 4) neuropathological examina-
tion did not reveal Alzheimer’s disease or other degenerative dis-
orders. Subjects with a history of alcoholism or substance abuse
were excluded from this cohort. Neither age (t=1.6, df=18, p>0.10),
postmortem interval (t=1.1, df=18, p=0.30), nor sex distribution
(χ2=2.15, df=1, p>0.10) were significantly different between the
two groups. At the time of death of the persons with schizophre-
nia, six were receiving antipsychotics, five had a mean drug-free
period of 5.8 weeks (SD=3.4), and one subject had been drug free
for 416 weeks.

In Situ Hybridization

Brains were obtained at autopsy, and 20-µm sections were pre-
pared as previously described (22, 23). Expression of EAAT1,
EAAT2, EAAT3, and EAAT4 mRNA was determined by using in situ
hybridization. To generate subclones from which to synthesize ri-
boprobes, we amplified unique regions of EAAT1 (National Cen-
ter for Biotechnology GenBank assession number: U03504, nu-
cleotide coding region: 526–825), EAAT2 (NM004171, 601–1026),
EAAT3 (NM004170, 156–979), and EAAT4 (NM005071, 541–900)
from a human cDNA brain library (EdgeBiosystems, Gaithers-
burg, Md.) by using polymerase chain reaction (PCR). For EAAT2,
the region selected binds to all known splice variants. Amplified
cDNA segments were extracted (QIAquick Gel Extraction Kit,
Qiagen, Valencia, Calif.), subcloned (Zero Blunt TOPO PCR clon-
ing kit, Invitrogen, Carlsbad, Calif.), and confirmed by nucleotide
sequencing (Thermo Sequenase Radiolabeled Termination Cycle
Sequencing Kit, USB, Cleveland). Riboprobes were synthesized
from linearized plasmid DNA, and in situ hybridization was per-
formed as previously described (22). Briefly, radiolabeled probes
were diluted in 50% (vol:vol) formamide hybridization buffer, ap-
plied to sections, and incubated overnight at 55°C. In situ hybrid-
ization was performed with sense and antisense probes for
EAAT1, EAAT2, EAAT3, and EAAT4 on serial sections of macaque
thalamus to confirm probe specificity.

Data Analysis

Thalamic nuclei were identified in each section on the basis of
cellular and white matter patterns, defined by cresyl violet and
gold chloride staining of adjacent sections from each subject as
previously described (22, 23). Subdivisions of thalamic nuclei
were not clearly distinguishable in all sections for all subjects, and
subdivisions were pooled for data analysis. The following nuclei
were identified for each subject: anterior, dorsal medial, lateral
dorsal, central medial, ventral, and reticular. In this study, “ven-
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tral” nucleus corresponds to a grouping of several nuclei of the
ventral tier. Images were digitized from films and analyzed with
Image 1.56 (National Institutes of Health, Bethesda, Md.). For dig-
itized images, gray-scale values of tissue background were sub-
tracted from values for each nucleus and converted to optical
densities. Values from two sections for each subject were aver-
aged and used for statistical analysis. Statistical analysis was per-
formed for each probe by two-way analysis of variance, with diag-
nosis and nuclei as the independent variables. Post hoc analyses
were by the Newman-Keuls test. We analyzed the relationship be-
tween age and excitatory amino acid transporter expression in
each nucleus with a series of correlation coefficients. For all tests,
alpha=0.05.

Results

Sense and antisense probes for EAAT1, EAAT2, EAAT3,
and EAAT4 transcripts were tested in sections of macaque

thalamus; specific labeling was only observed for sections
incubated with antisense riboprobe (data not shown).
EAAT4 mRNA expression was not distinguishable from
background in the macaque thalamus and thus was not
included in this study. EAAT1, EAAT2, and EAAT3 were ex-
pressed in all nuclei studied (Figure 1 and Table 1). As seen
in Table 1, there was a main effect of diagnosis for tha-
lamic expression of EAAT1 and EAAT2; there was no main
effect of diagnosis for thalamic expression of EAAT3 (F=
1.65, df=1, 108, p<0.21). We did not detect any significant
diagnosis-by-thalamic nucleus interactions. Post hoc
analysis revealed levels of EAAT1, EAAT2, and EAAT3
mRNA expression in the reticular nucleus and EAAT1 and
EAAT3 mRNA expression in the ventral nucleus that were
significantly lower than the levels of expression in the
other thalamic nuclei for both the schizophrenic and

FIGURE 1. Expression of Excitatory Amino Acid Transporter (EAAT) Transcripts in Thalamic Nuclei of a Subject With Schizo-
phrenia
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comparison subjects. The largest percentage difference in
EAAT mRNA expression was observed in the reticular nu-
cleus (Figure 2). We did not detect a significant relation-
ship between age and excitatory amino acid transporter
expression in any thalamic nuclei.

Discussion

In this study, we detected significantly higher levels of
EAAT1 and EAAT2 mRNA expression in the thalamus of
subjects with schizophrenia, to our knowledge the first
such demonstration in this illness. Significant changes in
excitatory amino acid transporter expression were not
specific to any of the six nuclei examined (no significant
diagnosis-by-nucleus interaction), suggesting that small
to moderate increases throughout all of the thalamic nu-
clei examined account for our finding. This result is con-
sistent with the hypothesis that glutamatergic function in
the thalamus of schizophrenic subjects is abnormal.

We have previously reported subunit- and binding site-
specific deficits in ionotropic glutamate receptor expres-
sion in the limbic thalamus in schizophrenia, limited
primarily to NMDA receptors (22, 23). One unifying inter-

pretation of our current and previous data is that an abnor-
mality of presynaptic glutamate release resulting in higher
synaptic glutamate levels might stimulate a compensatory
increase in glial EAAT1 and EAAT2 expression and decrease
expression of postsynaptic NMDA receptors. The juxtapo-
sition of lower NMDA receptor expression and higher exci-
tatory amino acid transporter expression may be further
explained by other putative homeostatic regulatory mech-
anisms (49). Cytokines, growth factors, protein kinases,
phospholipases, and cyclic lipid mediators have all been
implicated as factors regulating glutamate reuptake (50–
55). One mechanism that may directly link NMDA receptor
function with excitatory amino acid transporter expression
involves arachidonic acid release. In vitro studies indicate
that arachidonic acid is released following activation of
NMDA receptors and attenuates glutamate uptake in neu-
rons and glia (56–63). Such a mechanism might lead to
higher levels of excitatory amino acid transporter expres-
sion if lower levels of NMDA receptor expression led to less
stimulation of arachidonic acid synthesis, thereby disin-
hibiting excitatory amino acid transporter expression.

Other studies have demonstrated alterations in ex-
citatory amino acid transporter expression in subjects

TABLE 1. Levels of mRNA in Expression of Excitatory Amino Acid Transporter (EAAT) Transcripts in Thalamic Nuclei of 12
Subjects With Schizophrenia and Eight Comparison Subjects

Thalamic Nucleus

Optical Density Value

EAAT1a EAAT2b EAAT3

Schizophrenic 
Patients

Comparison 
Subjects

Schizophrenic 
Patients

Comparison 
Subjects

Schizophrenic 
Patients

Comparison 
Subjects

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Anterior 0.083 0.039 0.075 0.049 0.150 0.051 0.135 0.077 0.064 0.053 0.049 0.049
Dorsal medial 0.076 0.036 0.068 0.048 0.138 0.042 0.125 0.069 0.060 0.029 0.047 0.045
Lateral dorsal 0.068 0.028 0.060 0.040 0.177 0.053 0.140 0.078 0.046 0.027 0.055 0.052
Central medial 0.082 0.044 0.074 0.048 0.138 0.061 0.131 0.069 0.055 0.038 0.047 0.044
Ventral 0.039c 0.030 0.033c 0.025 0.167 0.061 0.149 0.080 0.033c 0.019 0.031c 0.028
Reticular 0.024c 0.017 0.012c 0.009 0.051c 0.021 0.039c 0.021 0.024c 0.021 0.015c 0.023
a Significant main effect of diagnosis (F=4.73, df=1, 108, p<0.04).
b Significant main effect of diagnosis (F=6.06, df=1, 108, p<0.02).
c Significantly lower than levels in other thalamic nuclei (p<0.05, Newman-Keuls test).

FIGURE 2. Expression of mRNA in Excitatory Amino Acid Transporter (EAAT) Transcripts in Thalamic Nuclei of 12 Subjects
With Schizophrenia, Relative to Expression in Eight Comparison Subjects
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with schizophrenia. A higher ratio of mGluR3/EAAT2 and
mGluR5/EAAT2 mRNA expression was detected in the pre-
frontal cortex of subjects with schizophrenia (48). In this
study, however, there were no significant changes in either
EAAT2 or mGluR mRNA expression when not expressed as
a ratio. In another study, lower expression of EAAT2, but not
EAAT1 or EAAT3, mRNA was detected in the superficial and
deep layers of the dorsolateral prefrontal cortex in a cohort
of subjects with schizophrenia (64, 65). Such changes sug-
gest an abnormality in a reciprocal glutamatergic cortico-
thalamic circuit in schizophrenia.

While there are no data evaluating antipsychotic effects
on excitatory amino acid transporter expression in the
thalamus, the prefrontal cortex and striatum have been
studied. In the striatum of rats treated for 30 days with ei-
ther haloperidol or clozapine, expression of EAAT2 mRNA
was lower (66). Consistent with this finding, in the striatum
of rats treated for 27 weeks with haloperidol, D-[3H]aspar-
tate uptake was significantly attenuated (67). Another
study demonstrated a decrease in EAAT2 mRNA expres-
sion in the cortex of rats following 9 weeks of treatment
with clozapine (68). These data suggest that antipsychotic
exposure decreases EAAT expression, suggesting that our
finding of elevated expression in schizophrenia is not a
drug effect.

Our results demonstrate that alterations in transporter
expression in schizophrenia are limited to the glial-based
transporters, EAAT1 and EAAT2 (24). Since EAAT3 expres-
sion is neuronal and somatodendritic, we speculate that
neuronal transporter expression is not affected in tha-
lamic glutamatergic synapses of subjects with schizophre-
nia (24, 34, 49). The dramatic effects of GLAST (EAAT1) or
GLT-1 (EAAT2) knockout mice, versus the relatively quies-
cent effects of knocking out EAAC1 (EAAT3), suggest dif-
ferential functional roles for the transporters that may be
reflected in the differential patterns of transporter expres-
sion (31–39, 42).

Previously, we reported changes in NMDA receptor (NR)
subunit and binding site expression in the thalamus of
subjects with schizophrenia (22). The specific findings of
alterations in NR1 and NR2C subunit expression and bind-
ing to the polyamine modulatory site suggested a change
in NMDA receptor stoichiometry, while decreases in ex-
pression of the requisite NR1 subunit suggested a deficit in
NMDA receptor expression on the cell surface (22). We
now extend our findings of thalamic alterations in schizo-
phrenia to the glutamate transporter family. The finding of
higher levels of EAAT1 and EAAT2 expression, taken to-
gether with deficits in NMDA receptor expression, suggest
differential abnormalities in schizophrenia within families
of related molecules. These results highlight the potential
importance of examining different components of the
glutamate synapse and directly support the notion of tha-
lamic glutamatergic dysfunction in schizophrenia.
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