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Objective: Previous research has noted
functional and structural temporal lobe
abnormalities in schizophrenia that relate
to symptoms such as auditory hallucina-
tions and thought disorder. The goal of
the study was to determine whether the
functional abnormalities are present in
schizophrenia at early stages of auditory
processing.

Method: Functional magnetic resonance
imaging activity was examined during the
presentation of the mismatch stimuli,
which are deviant tones embedded in a
series of standard tones. The mismatch

stimuli are used to elicit the mismatch
negativity, an early auditory event-related
potential. Ten patients with schizophrenia
and 10 comparison subjects were pre-
sented the mismatch stimuli condition
and a control condition in which only one
tone was presented repeatedly.

Results: The superior temporal gyrus
showed the most prevalent and consis-
tent activation. The superior temporal gy-
rus showed less activation in the schizo-
phrenic subjects than in the comparison
subjects only during the mismatch stimuli
condition.

Conclusions: This result is consistent with
those of mismatch negativity event-re-
lated potential studies and suggests that
early auditory processing is abnormal in
chronic schizophrenia.

(Am J Psychiatry 2001; 158:938–943)

The mismatch negativity is a negative-going brain po-
tential elicited between 150 and 250 msec after the presen-
tation of a deviant stimulus within a repetitive pattern (1)
and is usually measured by subtracting the level of activity
elicited by the standard stimuli from the level of activity
elicited by the deviant stimuli. Naatanen and Gaillard (2)
proposed that the mismatch negativity was evoked pre-
attentively and that it indexed an echoic memory compar-
ison of a stimulus to the neural trace of previous stimuli (3,
4). Thus, the mismatch negativity is the earliest identified
cortical event-related potential that is elicited by deviant,
infrequent auditory stimuli and that occurs inde-
pendently of whether or not the stimuli are consciously
attended (5).

Our laboratory recently used high-density event-related
potential recording during a mismatch negativity para-
digm and found an event-related potential scalp topogra-
phy abnormality in schizophrenic subjects that was local-
ized to the parietotemporal junction (6) and that was
slightly more pronounced on the left. Mismatch negativity
amplitude also correlated with several measures of psy-
chopathology in that study, including the severity of audi-
tory hallucinations. In two studies, no mismatch negativ-
ity event-related potential abnormalities were found in
patients with schizophrenia at their first hospitalization,

indicating a functional abnormality that may develop with

disease chronicity (7, 8).

The current study used functional magnetic resonance

imaging (fMRI) to examine brain activity during presenta-

tion of the mismatch stimuli to schizophrenic and com-

parison subjects. Several fMRI studies involving schizo-

phrenic subjects (9) have found abnormal activity in the

temporal lobe (as well as other regions) (10–12). The mis-

match stimuli and tone repetition conditions were chosen

for the fMRI studies because the related event-related po-

tential response can occur without attention and does not

require a response from the subject, thus minimizing ef-

fects due to attentional, motivational, performance, or

motor differences that might exist between schizophrenic

and comparison subjects. This study used the same pa-

rameters that were used in the previous event-related po-

tential study from our laboratory (6) and used a block de-

sign similar to one used in a combined event-related

potential fMRI study of mismatch negativity (13, 14). We

predicted that the fMRI results would confirm the lower

neural signal previously demonstrated by event-related

potential mismatch negativity studies in schizophrenia.

The results should also provide spatial source information

that event-related potential measures cannot.
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Method

Subjects

Ten patients with chronic schizophrenia who received medica-
tions and 10 comparison subjects were included in the study; all
were right-handed men. The schizophrenic subjects were recruited
from a pool of subjects that had previously received MRI scans for
morphometric studies conducted by the Brockton Veterans Affairs
Medical Center. The comparison subjects were recruited through
newspaper advertisements. The patients’ diagnoses were made ac-
cording to the DSM-III-R criteria with information obtained from
chart reviews and from assessment with the Structured Clinical In-
terview for DSM-III-R (15, 16). Parental socioeconomic status was
measured with the Hollingshead Two-Factor Index of Social Posi-
tion. The comparison subjects were required to be 20–55 years of
age with no history of electroconvulsive shock treatment, neuro-
logic illness, or steroid use and no lifetime history of DSM-III-R
drug or alcohol addiction or abuse within the last 5 years. They
were also excluded if they had a history of psychiatric illness in
themselves or in their first-degree relatives. The subject groups did
not significantly differ (by a two-tailed t test) in age, education, or
parental socioeconomic status. Table 1 summarizes the subjects’
characteristics, including doses of antipsychotic medications re-
ceived by the patients, in mean mg/day of chlorpromazine equiva-
lents. Written informed consent for the procedures was obtained
for all subjects before MRI scanning.

MR Image Acquisition Parameters

All images were acquired at the Brigham and Women’s Hospital
with a 1.5-T GE Horizon system (General Electric Medical Sys-
tems, Milwaukee). Low-resolution anatomical images were ac-
quired after initial sagittal localizer scans. Twenty-one 7-mm
thick contiguous coronal oblique spoiled-gradient-recalled im-
ages were taken by using the same slice thickness and in the same
location and plane as the functional images. The protocol used
the following parameters: TE=5 msec, TR=35 msec, one repeti-
tion, nutation angle=45°, field of view=24 cm, matrix=256 × 192.
Note that low-resolution refers to the slice thickness, not the in-
plane resolution of the images. The images were acquired per-
pendicular to the line of the superior temporal sulcus and cov-
ered the majority of the brain for most subjects.

The functional images were acquired in a continuous manner,
with 102 whole brain acquisitions (the first two acquisitions are
discarded, and the remaining 100 are used in analyses) taken in
306 seconds. Each set of 102 images is referred to as a functional
experiment. The functional images were acquired by using the
Epibold pulse sequence (General Electric Medical Systems, Mil-
waukee). This gradient-echo echo-planar sequence was used to
acquire 21 contiguous 7-mm coronal slices of the whole brain
with the following parameters: TE=40 msec, TR=3 seconds, field
of view=24 cm, image resolution=64 × 64, in-plane voxel edge=
3.75 mm. The functional images were reconstructed off-line.

High-resolution spoiled-gradient-recalled anatomical images
with 124 1.5-mm thick coronal slices were acquired in a separate
session and were used for anatomical localization and three-di-
mensional visualization of activation. The acquisition consisted

of the following parameters: TE=5 msec, TR=35 msec, field of
view=24 cm, acquisition matrix=256 × 256, voxel dimensions=
0.975 mm  ×  0.975 mm  ×  1.5 mm.

The high-resolution spoiled-gradient-recalled images were
then registered into the lattice of the low-resolution spoiled-gra-
dient-recalled images by using the Mutual Information algorithm
that was implemented within an image viewing/editing program
(3D Slicer) developed at our site (17).

Procedures for an fMRI Session

General procedures. Before being placed into the MRI device,
subjects received the following instructions: “Several images will
be taken of your brain; each acquisition will last approximately 5
minutes. It is extremely important not to move while the magnet
is acquiring images. I will tell you, through the headphones, when
we are about to take images, and then you will hear the magnet
sounds as the images are taken. You may also hear tones. Please
just ignore them.”

Subjects were placed in the MRI device with the head held
within an air-filled Vac-Fix cushion (S&S X-Ray Products, Brook-
lyn, N.Y.) that was inflated to conform to head shape to secure the
head against movement. Tape was then placed across the fore-
head and the chin. A personal computer equipped with a digital
input/output board (model AT-MIO-16E-10, National Instru-
ments, Austin, Tex.) was used to control sound presentation. A
signal indicating the application of radio frequency pulses by the
functional pulse sequence was also fed into the computer and
was used to trigger the sound presentation programs. This input/
output hardware was used in conjunction with stimulus control
programs written with the Labview software package (National
Instruments, Austin, Tex.).

The sound tasks were produced and stored on the computer
with the Sound Forge sound editor (Sonic Foundry, Inc., Madison,
Wis.). During an fMRI session, the sound tasks were presented
through sound-insulated earphones (Silent Scan, Avotec, Jensen
Beach, Fla.) that were connected to the computer audio output.
The dB level of the tones as heard from the earphones was checked
before each session and was approximately 80 dB for each session.

Tasks during functional imaging. Each fMRI experiment con-
tained 30-second epochs (10 scans) of rest alternated with 30-sec-
ond epochs of tones (either control or mismatch stimuli) that
were repeated five times during the continuous acquisition.
Tones of 1,000 Hz and 1,200 Hz were presented. All tones were of
a 100-msec duration with equally spaced delays between tones of
300 msec, resulting in a presentation rate of three tones per sec-
ond. Both the 1,000-Hz tone and the 1,200-Hz tone contained a
10-msec rise at the beginning of the tone and 10-msec fall at the
end of the tone. During the mismatch stimuli condition, a 1,000-
Hz tone was presented as the frequent tone (probability=0.95)
and a 1,200-Hz tone as the infrequent tone (probability=0.05); the
task was presented for 30 seconds in each epoch. Presentation of
the mismatch stimuli condition alternated with 30-second peri-
ods of silence. During the control condition, only the dominant or
frequent tone (1,000 Hz) was presented for 30 seconds in each ep-
och, alternated by 30-second periods of silence.

TABLE 1. Characteristics of 10 Schizophrenic and 10 Comparison Subjects in an fMRI Study of Auditory Processing

Characteristic

Schizophrenic Subjects Comparison Subjects Analysis

Mean SD Mean SD t df p
Age (years) 44.3 8.1 45.1 7.9 0.22 18 0.83
Parental socioeconomic statusa 4.7 0.5 3.0 1.2 –0.05 17 0.96
Education (years) 12.5 2.0 14.3 2.3 1.90 18 0.07
Illness duration (years) 24.8 7.0
Antipsychotic medication dose (mg/day chlorpromazine equivalents) 702.7 353.5
a Measured with the Hollingshead Two-Factor Index of Social Position. Data not available for one comparison subject.
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Four fMRI experiments were conducted in one scanning ses-
sion with each subject as follows: 1) presentation of the mismatch
stimuli condition, 2) presentation of the mismatch stimuli condi-
tion with a different random mix of frequent and infrequent
tones, 3) presentation of the control condition that used a 1,000-
Hz tone, and 4) repeat of the control condition. The task order
was counterbalanced between subjects.

Data Analysis

Any movement of a subject’s head was detected by viewing the
images through a cine loop and by using a low-threshold t test
analysis to detect activated regions that followed brain edges (18).
Since each subject data set had two fMRI runs per experimental
condition, each run was examined for movement and only those
that were free of movement were used in the analyses. The data
for two comparison subjects and one schizophrenic subject were
excluded from further analyses because of movement. It is impor-
tant to note that a recent study showed that head movement dur-
ing fMRI procedures does not occur more frequently with schizo-
phrenic patients than with normal subjects (19). Even with a
stringent criterion of exclusion for head movement, only 15% of
this study’s subjects (roughly equal numbers in the patient and
comparison groups) had to be excluded from the study.

The fMRI data analyses were done with the Matlab software pro-
grams (Math-works, Inc., Natick, Mass.) that have been developed
at our site. Pixels from the fMRI images were subjected to linear de-
trending and then analyzed by using cross-correlation with a box-
car function that was delayed by 6 seconds (two acquisitions) (20).
Pixels were considered to be significantly activated if they showed a
correlation of 0.55 or above, which was still significant at p<0.0001
after being conservatively corrected for the number of correlations
by using the number of voxels in the entire temporal lobe of one
randomly chosen comparison subject. The data were analyzed by
using several cross-correlation thresholds; it is important to note
that the same pattern of significant results was obtained by using
thresholds ranging from r=0.45 to the one presented here, r=0.55.
Single activated pixels were excluded from the analyses.

We used a region-of-interest approach to classify the region to
which active voxels belonged in each subject (21). The regions
and methods used in this approach were based on previously
published data from morphometric studies in our laboratory (22–
24). The regions of interest were the superior temporal gyrus (the
anterior and posterior portions were combined); the remaining
temporal lobe (regions of the cortex of the temporal lobe that are
not in the superior temporal gyrus); the temporal-parietal junc-
tion and the inferior parietal lobule; the inferior, middle, and su-
perior frontal gyrus; and the cingulate gyrus.

The activated pixels for each subject were viewed in relation-
ship to both the high- and low-resolution anatomical images
within the 3D Slicer program (image editor and viewing program)
developed in our laboratory (17, 25). The activated pixels were
then reclassified with a preassigned pixel value according to the
anatomical region to which they belonged. This was done by a
neuroscientist (C.G.W.) who had previously classified structural
MRI regions of interest according to our group’s criteria. The
number of pixels for these regions were then counted by using a
histogram program.

It was evident that the superior temporal gyrus was the only re-
gion that consistently showed activation. A subsequent subdivi-
sion of the superior temporal gyrus was done to further charac-
terize this activation. Pixels (or voxels) on coronal slices that were
in the superior temporal plane were classified as being from ei-
ther the anterior, posterior, or middle portions of that region.
These pixels roughly corresponded to those that were anterior to,
or posterior to, or part of/adjacent to Heschl’s gyrus (the middle
portion). It is noteworthy that the relatively large voxel size of the
fMRI data did not allow for as precise a determination of location

as can be found in structural volumetric studies. There were also
a few subjects for whom pixels were found on the ventral gray
matter of the superior temporal gyrus, and these were classified
as ventral superior temporal gyrus activations. The anterior supe-
rior temporal gyrus plane designation included voxels found in
any coronal slices anterior to those containing the transverse gyri
or gyrus (Heschl’s gyrus). The middle superior temporal gyrus
plane designation was given to voxels that were on any coronal
slice that also contained a portion of the transverse gyrus. The
posterior superior temporal gyrus plane designation was given to
voxels that were on any coronal slice that was posterior to the last
slice containing the transverse gyrus.

A repeated measures analysis of variance (ANOVA) was then
performed by using the number of active pixels in the left and
right superior temporal gyrus for each subject. The ANOVA used
the factors group, task, and hemisphere; all significance tests
were two-tailed. The percentages of total activation accounted for
by the right and left anterior, middle, posterior, and ventral supe-
rior temporal gyrus subdivisions were also computed. Correla-
tions were performed between activation measures and the z
score of the relative volume of the left and right posterior superior
temporal gyrus (roughly encompassing the middle and posterior
subdivisions as described here; the regions of interest are defined
in reference 23). These volumetric measures were obtained from
ongoing volumetric projects in the laboratory.

Results

The superior temporal gyrus was the most active region
in all subjects and was the only region that was consis-
tently activated across subjects. Significant effects of task
(F=6.98, df=1, 18, p<0.02), side (F=6.14, df=1, 18, p=0.02),
and the interaction of group and task (F=7.12, df=1, 18,
p<0.02) were found. As illustrated in Figure 1, activation
was generally larger during the mismatch stimuli condi-
tion than during the control condition, especially for com-
parison subjects. The mean activation for schizophrenic
subjects was similar for all of the tasks. Individual follow-
up t tests showed that comparison and schizophrenic sub-
jects differed in the number of activated voxels in the su-
perior temporal gyrus during the mismatch (t=2.52, df=18,
p<0.03) but not during the control condition (t=–0.92, df=
18, p=0.37). The mean activation for schizophrenic sub-
jects during the control condition was slightly larger than
the mean for comparison subjects, although this differ-
ence was not statistically significant. Figure 2 shows a slice
through the superior temporal plane containing the active
voxels for a comparison subject during the control and
mismatch stimuli conditions.

Most of the superior temporal gyrus activation (70% bi-
laterally; 68% on the left and 71% on the right side) was lo-
cated in the middle of the superior temporal plane (near
Heschl’s gyrus) and in the posterior portion of this gyrus
(21% bilaterally; 30% on the left and 13% on the right side).
A few pixels were found in the anterior superior temporal
gyrus only on the left (1% of the total left superior temporal
gyrus activation). Also, in two subjects, one schizophrenic
patient and one comparison subject, the right ventral gray
matter of the superior temporal gyrus showed activation.
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The z score for the absolute volume of the posterior su-
perior temporal gyrus volume correlated with activation
during the mismatch stimuli condition only in schizo-
phrenic subjects and only on the right side (r=0.67, df=9,
p<0.03), but this value was not significant after Bonferroni
correction for the number of tests.

Discussion

The fMRI activation during the mismatch stimuli condi-
tion was predominately located in the middle (70% of the
total superior temporal gyrus activation) and posterior
portion of the superior plane of the superior temporal gy-
rus. The superior temporal plane contains auditory and
verbal language processing regions, including the primary
auditory cortex (Heschl’s gyrus), which receives input
from both ears and contains several distinct tonotopically
organized regions (26). The control condition, repeated
presentation of one tone, also activated these regions but
produced less overall activation (likely from habituation)
than the mismatch stimuli condition, especially in com-
parison subjects (Figure 1). The activation during both
tasks was generally larger in the left hemisphere for both
groups of subjects. This is consistent with other fMRI re-
ports showing that tones and white noise, respectively, ac-
tivated the superior temporal gyrus and produced a more
pronounced response in the left hemisphere (27, 28).

The schizophrenic subjects showed significantly less ac-
tivation in both the left and right superior temporal gyrus
during the mismatch stimuli condition than did the com-
parison subjects. The two groups did not differ signifi-
cantly in terms of activation during the control condition.
The schizophrenic subjects did show a greater mean acti-
vation to presentation of the repeated tones than the com-
parison subjects, but this difference was not statistically
significant. Further studies of stimulus repetition will be
needed to determine whether schizophrenic subjects have
abnormal habituation to tones. Exploratory correlations
showed a positive correlation between right superior tem-
poral gyrus activity during the mismatch negativity condi-
tion and the relative volume of the middle/posterior right
superior temporal gyrus in schizophrenic subjects only.

The finding of decreased activation of the superior tem-
poral gyrus in schizophrenic subjects during the mis-
match stimuli condition is consistent with the findings of

FIGURE 1. Number of Activated Voxels in the Left and Right
Superior Temporal Gyrus of 10 Comparison Subjects and
10 Subjects With Schizophrenia During the Mismatch Stim-
uli and Control Conditions of an fMRI Study of Auditory
Processinga

a Each epoch of the mismatch condition consisted of presentation of
a 1,200-Hz tone embedded in a series of 1,000-Hz tones at a rate of
three tones per second over 30 seconds such that 5% of the tones
were 1,200 Hz and 95% were 1,000 Hz. Each epoch of the control
condition consisted of repetition of 1,000-Hz tones at a rate of three
tones per second over 30 seconds.
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a number of studies. Using a high-density 64-channel
event-related potential recording montage, investigators
in our laboratory found a reduced mismatch negativity
potential in subjects with chronic schizophrenia that was
present bilaterally but more pronounced in the left hemi-
sphere (6). This result replicated those found previously in
both medicated and unmedicated schizophrenic subjects
(29–33). The current study did not find a lateralized abnor-
mality, which, although found previously in our labora-
tory, has not been found in all studies.

Because of differences in temporal resolution between
fMRI and event-related potential, the superior temporal gy-
rus activation abnormality that was found cannot be defini-
tively identified as the source of mismatch negativity event-
related potential abnormalities in schizophrenia, although it
is compatible with that interpretation. In a combined event-
related potential and fMRI study of the mismatch negativity
task that used inverse source analyses to localize the mis-
match negativity signal, the superior temporal gyrus was
found to be the most dominant contributor to the event-re-
lated potential signal within the 100–160-msec time window
(13, 14). Magnetoencephalographic event-related potential
source analysis (34–36) and depth recordings in humans
(37, 38) and animals (39, 40) also suggest that mismatch
negativity is generated in the primary auditory cortex and
adjacent regions of the superior temporal gyrus.

Additional evidence of superior temporal gyrus abnor-
malities in schizophrenic subjects comes from fMRI and
positron emission tomography (PET) studies that have
used auditory stimulation. A recent study found that fMRI
activity in Heschl’s gyrus was significantly increased dur-
ing auditory hallucinations, providing a strong link be-
tween superior temporal gyrus activity and schizophrenic
symptoms (41). Another fMRI study found decreased acti-
vation in schizophrenic subjects in the superior temporal
gyrus (and some frontal regions) during both a tone work-
ing-memory task and a verbal working-memory task (10,
42). A PET study of auditory attention in schizophrenia
found that superior temporal gyrus activation in schizo-
phrenic subjects showed an abnormal asymmetry (under-
active on the right and overactive on the left), compared to
activation in comparison subjects (43).

Volumetric MRI studies have also shown that the left su-
perior temporal gyrus and the planum temporale are ab-
normal in chronic (23, 44) and first-episode schizophrenic
subjects (45, 46) and that the abnormalities are correlated
with clinical symptoms such as thought disorder (23) and
auditory hallucinations (47).

In summary, several studies now provide converging ev-
idence that the superior temporal gyrus in schizophrenic
subjects shows functional and structural abnormalities
and that these abnormalities may underlie some of the
hallmark symptoms of schizophrenia. In addition, these
abnormalities are present at early stages of the auditory
processing of relatively simple stimuli and not just at stages
involving higher-order semantic or language processes.
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