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Objective: Aberrant synaptic connectiv-
ity may underlie the involvement of the
hippocampus in schizophrenia. There is
reasonable neuropathological evidence
for a presynaptic pathology but few stud-
ies of the postsynaptic component. This
study tested the hypothesis that hippo-
campal dendrit ic pathology is  a lso
present in schizophrenia.

Method: Using in situ hybridization in sec-
tions of hippocampal formation from 10
patients with schizophrenia, 10 patients
with mood disorders (three with bipolar
disorder and seven with major depression),
and 10 healthy comparison subjects, the
authors examined the expression of two
important dendritic genes: spinophilin,
which serves as a marker of dendritic spines,
and microtubule-associated protein 2
(MAP2), an overall dendritic marker.

Results: The patients with schizophrenia
had lower levels of spinophilin mRNA in
CA4 (hilus), CA3, the subiculum, and the
entorhinal cortex than did the normal
comparison subjects. The mood disorder
group showed similar differences from the
comparison group. MAP2 and cyclophilin
mRNA did not differ between the groups
in any subfield.

Conclusions: Decreased spinophilin but
unchanged MAP2 expression provides
molecular evidence for a hippocampal
dendritic pathology in schizophrenia that
preferentially affects the spines. As spines
are the target of most glutamatergic syn-
apses, the data extend the evidence that
excitatory synapses are particularly af-
fected. Similar dendritic spine pathology
may also occur in mood disorders.

(Am J Psychiatry 2004; 161:1848–1855)

Synaptic pathology has received increasing interest as
a key feature of schizophrenia’s neuropathology (1–3) and
possibly its pathogenesis (4–10) and genetic etiology (11).
Most investigations of synaptic pathology in schizophre-
nia have used presynaptic proteins and their mRNAs as
molecular markers, respectively providing information
about the synaptic terminals and the neurons that give
rise to them (12). Particularly in the hippocampal forma-
tion, there is relatively consistent evidence for low expres-
sion of genes for presynaptic proteins, such as synapto-
physin (13–17). The precise anatomical distribution and
neurochemical phenotype of the affected synapses re-
main largely unknown, although glutamatergic synapses
may be preferentially involved (18–20), and the CA1 sub-
field may be spared more than the rest of Ammon’s horn
and the subiculum (13, 15, 16).

The preceding data suggest that aberrant synaptic con-
nectivity may contribute to hippocampal dysfunction in
schizophrenia (21, 22). However, such inferences are pre-
mature without information about the status of the post-
synaptic elements of the synapses. Hence, evaluation of
hippocampal dendrites and dendritic spines (the pro-
tuberances on which most excitatory synapses are ap-

posed) is necessary. To date, the only data of which we are
aware are reports of decreased dendritic arborization and
spine density in subicular pyramidal neurons (23) and re-
duced immunoreactivity of microtubule-associated pro-
tein 2 (MAP2), a dendritic protein, in some (24, 25) but not
all (26, 27) studies. Thus, we examined the expression of
genes for two dendritic proteins: MAP2 and spinophilin
(neurabin II), a marker of the dendritic spine (28, 29). We
used in situ hybridization, to allow the neurons expressing
these genes to be studied and to be able to relate the sub-
field distribution of abnormalities to the reported presyn-
aptic protein findings. We included a group of subjects with
mood disorders, for which there is preliminary evidence of
presynaptic (16, 30, 31) and dendritic (23) pathology.

Method

Subjects Studied

The cohort comprised 10 subjects with schizophrenia, 10 mood
disorder patients (three with bipolar disorder and seven with
major depression), and 10 normal comparison subjects. Charac-
teristics are presented in Table 1, and the subjects have been de-
scribed in detail previously (16). All brain tissue used in this study
was obtained with informed consent from the legal next of kin.
Briefly, diagnoses were determined through independent reviews
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of clinical records by two psychiatrists using DSM-IV criteria. Of
the 10 patients with mood disorders, three had had bipolar disor-
der and had received neuroleptics; the other seven had had major
depression and were neuroleptic naive. Their antidepressant and
mood stabilizer histories were not available. All of the subjects
with mood disorders died by suicide. All subjects had negative
results on a toxicological screen for recent use of illicit drugs.
Routine neuropathological examination excluded gross and mi-
croscopic evidence of neurodegenerative changes. From each
subject a block of hippocampal formation was collected and fro-
zen as described previously (32). Coronal cryostat sections were
cut at 14 µm, thaw-mounted on gelatin-coated slides, and stored
at –80°C.

Riboprobes and Oligonucleotides

Spinophilin riboprobe templates tagged with T7/T3 promoter
were generated by reverse transcriptase polymerase chain reaction
(PCR). To avoid nonspecific amplification, a longer spinophilin
cDNA was amplified first and used as a template for a second PCR
amplification (nested PCR). From the human brain cDNA, a single
spinophilin/neurabin II product with an expected size of 608 base
pairs (bp) was amplified by using outer primer 5′CCTGGAGAAT-
GG CAGC AC3 ′  (bp  978–994,  for ward )  a nd  outer  primer
5′CGGTCTTGACGAAGATACCC3′ (bp 1566–1585, reverse). In the
next round of amplification, we used the first cDNA fragment as a
t e m p l a te  a n d  T 7 / T 3 - p r o m o te r-t a g g e d  p r i m e r s
5′CAGAGATGCATAATACGACTCACTATAGGGAGAGGTAGATGAATC
C AAG A AG G A 3 ′  ( se n s e,  a r t i f i c i a l  T 7  p r o m o t e r )  a n d
5′CCAAGCCTTCATTAACCCTCACTAAAGGGAGACAGGGAACAGC
TCCAACCT3′ (antisense, artificial T3 promoter). A single band with
an expected size of 421 bp (including promoters) was amplified
and sequenced (identical to GenBank number AJ401189, bp 1128–
1483). Antisense and sense riboprobes were generated by using ei-
ther T7 or T3 polymerase, [35S]dUTP, and an in vitro transcription
kit. The 35S-labeled riboprobes were labeled to a specific activity of
1.4×109 counts/minute per microgram and purified by ethanol
precipitation.

For detection of MAP2 mRNA, an oligodeoxynucleotide probe
was designed to be specific for bases 251–292 of human cDNA
(33; GenBank accession number HSU89330) and targeted the 5′
region, which is conserved between transcript variants. Cyclophi-
lin mRNA was also measured, as a housekeeping gene control, as
described previously (34).

In Situ Hybridization Histochemistry

Six adjacent human brain sections were pretreated for in situ
hybridization (35). In situ hybridization for MAP2 was performed
as described previously (36). The sections were incubated over-
night at 33°C, and postincubation washes were carried out at 55°C.
The experimental controls for MAP2 in situ hybridization com-
prised the following: concurrent hybridization with sense strand
probes, hybridization in the presence of 50-fold excess unlabeled
probe, and pretreatment of sections with ribonuclease (20 µg/ml
of RNase A at 37°C for 20 minutes). Riboprobe in situ hybridization
for spinophilin and cyclophilin was conducted as previously de-
scribed (34), with sense strand hybridization as the experimental
control. After in situ hybridization, the sections were exposed to
autoradiographic film (Biomax, Kodak, Rochester, N.Y.) for 18 days
(MAP2), 5 days (spinophilin), or 40 hours (cyclophilin) along with
carbon-14 microscales. Subsequently, the sections were coated in
photographic emulsion, stored for 4 weeks at 4°C, developed, and
lightly counterstained with cresyl violet.

Image Analysis

The abundance of each mRNA was measured, by an investiga-
tor blind to subject group, from densitometric analysis of autorad-
iographs by using Kontron KS400 software (Imaging Associates,
Bicester, U.K.). The cytoarchitectonic boundaries of the hippo-
campal formation were delineated according to the method of
Duvernoy (37). Measurements were taken over the dentate gyrus
(granule cell and molecular layers), CA4 (hilus), the pyramidal cell
layer of CA3, CA2, and CA1, the subiculum, and the gray matter of
the entorhinal cortex. Twenty randomly selected areas were sam-
pled over each hippocampal subfield from two sections per probe
per subject. The mean value of the duplicate sections was used for
statistical analysis. Optical densities were converted to radioactiv-
ity values (nanocuries per gram) by using carbon-14 microscales.

Statistical Analyses

Comparisons of diagnostic groups were made by using one-way
analysis of variance for each subfield. Significant (p<0.05) group
differences were followed up with post hoc least significant differ-
ence tests. Because of the small number of subjects with bipolar
disorder, they were combined with those having major depression
to form a single mood disorder group for the statistical analyses.
Correlations of the mRNA levels with values for demographic vari-
ables, including age, tissue pH, and postmortem interval, were
performed for all subjects with Spearman’s correlations. Correla-
tions of mRNA levels with lifetime neuroleptic exposure and final
neuroleptic dose (Table 1) were investigated in the schizophrenia

TABLE 1. Characteristics of Subjects in Postmortem Study of Hippocampal Postsynaptic Pathology in Schizophrenia and
Mood Disorders

Characteristic
Healthy Comparison 

Subjects (N=10)
Patients With 

Schizophrenia (N=10)
Patients With 

Major Depression (N=7)
Patients With 

Bipolar Disorder (N=3)
N N N N

Sexa

Female 5 5 2 0
Male 5 5 5 3

Mean SD Range Mean SD Range Mean SD Range Mean SD Range

Age (years)a 49 13 24–66 52 20 23–81 43 12 25–62 32 12 21–46
Brain pHa 6.5 0.2 6.14–6.87 6.4 0.2 6.08–6.78 6.4 0.2 6.14–6.69 6.0 0.3 5.77–6.46
Postmortem interval (hours)a 24 11 10–40 37 17 11–52 34 15 23–68 42 28 24–75
Chlorpromazine-equivalent 

dose of neuroleptics
Lifetime dose (mg×106) 3.38 2.13 0.00 —b

Last recorded dose (mg/day) 483 710 0.00 —b

a No statistical difference between groups.
b Not known.
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cohort. Finally, correlations between the presynaptic marker syn-
aptophysin (measured previously in this cohort; see reference 16)
and spinophilin mRNA were investigated in all groups.

Results

Distributions of Spinophilin and MAP2 mRNA

The distributions of MAP2, spinophilin, and cyclophilin
mRNAs in the human hippocampal formation are shown
in parts A, B, and C, respectively, of Figure 1. The three
transcripts were detectable in all subfields examined, in all
subjects, with prominent expression over the granule cell
layer of the dentate gyrus and the pyramidal neuron layer
of the hippocampus.

Unlike most mRNAs, which remain in the cell body,
MAP2 mRNA in the rat hippocampus is transported into
proximal dendrites (38, 39). This also appears to occur in
the human hippocampus, giving a fuzzy appearance in
the inner molecular layer of the dentate gyrus and the
stratum lucidum/radiatum of Ammon’s horn (part D in

Figure 1), contrasting with the sharp edges of the stratum
granulosum and stratum pyramidale seen for nondendrit-
ically transported mRNAs, such as cyclophilin mRNA (part
F in Figure 1). The signal for spinophilin mRNA (part E in
Figure 1) is also suggestive of dendritic localization; in-
deed, as in the rat (36), it is more extensive than that for
MAP2 mRNA, with labeling throughout the molecular
layer and over the strata lucidum, radiatum, lacunosum,
and moleculare of Ammon’s horn. None of the experimen-
tal controls produced any detectable signal (part G in Fig-
ure 1 and data not shown). Inspection of the dipped sec-
tions confirmed the preceding assessments of mRNA
distribution (data not shown).

Spinophilin mRNA in Schizophrenia 
and Mood Disorders

There was a significant effect of diagnosis on spinophi-
lin mRNA abundance in CA4 (F=5.88, df=2, 29, p=0.008),
CA3 (F=5.24, df=2, 29, p=0.01), the subiculum (F=3.66, df=
2, 30, p=0.04), and the entorhinal cortex (F=5.13, df=2, 30,

FIGURE 1. Autoradiographic Images Showing the Distributions of Microtubule-Associated Protein 2 (MAP2), Spinophilin,
and Cyclophilin mRNAs in the Human Hippocampal Formationa

a Part C identifies the subfields of the hippocampal formation. Parts D–F are enlarged images of the dentate gyrus and adjacent hippocampus
and illustrate dendritic localization of MAP2 and spinophilin mRNAs (see text). Part D: SP, stratum pyramidale; SLR, stratum lucidum/radia-
tum; SM, stratum moleculare; ML, molecular layer; SG, stratum granulosum (granule cell layer). Part D shows MAP2 mRNA labeling in the in-
ner part of the molecular layer of the dentate gyrus (dotted line) and in the stratum lucidum/radiatum of Ammon’s horn (dotted line), below
the stratum pyramidale. The solid line shows the position of the hippocampal fissure. Part E shows spinophilin mRNA labeling throughout
the molecular layer and stratum lucidum/radiatum and extending into the stratum moleculare of Ammon’s horn. Part F shows no cyclophilin
mRNA labeling over the molecular layer, stratum lucidum/radiatum, or stratum moleculare.
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p=0.01). Compared to the healthy subjects, spinophilin
mRNA was significantly lower in the patients with schizo-
phrenia (CA4, –45%; CA3, –44%; subiculum, –24%; and en-
torhinal cortex, –27%) and in those with mood disorders
(CA4, –39%; CA3, –32%; subiculum, –25%; and entorhinal
cortex, –36%) (Figure 2). The schizophrenia and mood dis-
order groups did not differ from each other. Within the
mood disorder group, the percentage differences from the
healthy comparison subjects were similar in the group
with bipolar disorder and the group with major depres-
sion (for CA4: bipolar, –43%; depressed, –37%; for CA3:
bipolar, –37%; depressed, –30%; for the subiculum: bipo-
lar, –23%; depressed, –26%; for the entorhinal cortex: bi-
polar, –45%; depressed, –32%).

Significant correlations between spinophilin mRNA and
pH were observed in all subfields (r>0.49, N=30, p≤0.03)
except CA1 (r=0.17, N=30, p=0.4). Postmortem interval
correlated negatively with spinophilin mRNA in the gran-
ule cell layer (r=–0.38, N=30, p=0.03) and CA4 (r=–0.36, N=
30, p=0.05). There were no correlations between spinophi-
lin mRNA and lifetime neuroleptic exposure in the schizo-
phrenia cohort (0.04<r<0.45, N=10, all p>0.2) or last re-
corded daily neuroleptic dose (range, –0.49<r<–0.03, N=
10, all p>0.2).

Significant positive correlations between synapto-
physin mRNA (data from reference 16) and spinophilin
mRNA were observed in the whole group (r=0.65–0.75, p=
0.01 to p=0.001), in the schizophrenia cohort (r=0.50–0.94,

p=0.02 to p=0.005), and in the mood disorder group (r=
0.70–0.90, p=0.04 to p=0.002).

MAP2 and Cyclophilin mRNAs in Schizophrenia 
and Mood Disorders

There was no significant diagnostic effect on MAP2
mRNA (Figure 2) (F<2.01, p>0.2) or cyclophilin mRNA
(Figure 3) (F<1.27, p>0.3) in any hippocampal subfield,
and there was no correlation of mRNA levels with neuro-
leptic medication exposure, in the schizophrenia group, or
with age, pH, or postmortem interval, in the total group.

Discussion

Hypotheses that aberrant synaptic development and
plasticity are important in schizophrenia (4–6, 9) are in-
creasingly being supported by convergent empirical data
from molecular and neuropathological studies (1, 3, 8, 17).
However, most of the existing data regarding the hippo-
campal formation pertain to the presynaptic side of the
synapse, and little is known about the key postsynaptic el-
ements: dendrites and their spines. This study provides
molecular evidence that the latter are also affected in
schizophrenia, with a lower level of the mRNA encoding
the dendritic spine protein spinophilin. This deficit was
molecularly specific, in that no abnormality occurred in
transcripts encoding the dendritic marker MAP2 and the
housekeeping gene cyclophilin.

FIGURE 2. Spinophilin mRNA and Microtubule-Associated Protein 2 (MAP2) mRNA in the Hippocampal Formation of
Healthy Comparison Subjects, Patients With Schizophrenia, and Patients With Mood Disordersa

a Of the patients with mood disorders, seven had major depression and three had bipolar disorder.
b Significantly different from level of comparison subjects (p<0.01, least significant difference test).
c Significantly different from level of comparison subjects (p<0.05, least significant difference test).
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The simplest interpretation of the spinophilin reduction
is that it reflects a loss of dendritic spines. This morpho-
logical interpretation is consistent with the findings of
Rosoklija et al. (23) in the subiculum and suggests that
similar changes occur in several other hippocampal sub-
fields. It is also in keeping with experimental studies show-
ing that alterations in dendritic spine number are accom-
panied by parallel changes in spinophilin expression (28,
40). A similar relationship pertains between MAP2 expres-
sion and overall dendritic extent (41–43); hence, our nega-
tive results for MAP2 suggest that the total dendritic tree of
hippocampal neurons is not markedly altered in schizo-
phrenia. An alternative interpretation of the reduced
spinophilin gene expression in schizophrenia is that it re-
flects a decreased activity or plasticity of dendritic spines,
rather than (or as well as) morphological change per se (7).
This interpretation is plausible since spines are dynamic
structures central to synaptic plasticity and affected by
synaptic activity (44, 45) and spinophilin is implicated in
these processes (26, 46, 47).

The deficits in hippocampal expression of genes for pre-
synaptic proteins in this (16) and other (13, 15, 17, 30)
groups of schizophrenia patients and the positive correla-
tions between synaptophysin mRNA and spinophilin
mRNA, in our total study group and in the disease groups
separately, raise the question of how these facets of synap-
tic pathology are related. Regarding the direction of cau-
sality, precedents suggest that dendritic pathology is likely
to be secondary to abnormal afferent innervation, rather
than the other way around (48–51). However, consider-
ation of the anatomical correspondence between pre- and
postsynaptic abnormalities suggests that the relationship
may be indirect: the synaptophysin mRNA studies (13, 15,
16) all show substantially lower levels in CA3, which pro-
vides the primary input to CA1 neurons via the Schaffer
collaterals, but no difference in CA1. Hence, if there were a
direct relationship between pre- and postsynaptic changes,

spinophilin mRNA would likely be decreased in CA1 to ac-
company the loss of synaptophysin mRNA in CA3. In fact,
spinophilin mRNA showed a subfield profile of abnormal-
ities similar to that of synaptophysin mRNA, with CA1
again unaffected. Thus, an alternative explanation is that
there are intrinsic differences in the vulnerability of CA3
and CA1 neurons to synaptic pathology, with those in CA1
being resistant to both presynaptic and dendritic involve-
ment. One determinant of this differential vulnerability
may be genetic, in that three of the putative schizophrenia
susceptibility genes, neuregulin, dysbindin, and calci-
neurin gamma, show much lower expression in CA1 than
in the rest of the hippocampal formation (unpublished
observations). It may also be that, in schizophrenia, other
CA1 afferents (e.g., commissural or monoaminergic) are
unusually high and compensate for the low input from
CA3 or that CA3 neurons are intrinsically more sensitive to
fluctuations in gene expression.

Most glutamatergic (excitatory) synapses terminate on
dendritic spines, and most axospinous synapses are gluta-
matergic. Hence, the present results support the view that,
at least within the hippocampal formation, glutamatergic
neurotransmission is particularly affected in schizophre-
nia (19, 52, 53). An interesting development is the recent
report that the abundance of GluR2, a key non-N-methyl-
D-aspartate receptor subunit, regulates dendritic spine
formation in hippocampal neurons (54). Since GluR2 ex-
pression is reduced in hippocampal neurons of schizo-
phrenia patients (55, 56), GluR2 may be part of the molec-
ular cascade that leads to the dendritic spine pathology of
schizophrenia. This correspondence of findings also em-
phasizes that, at the molecular level, there is a continuum,
not a distinction, between structural and functional (neuro-
chemical) aspects of neuropathology.

Reductions in spinophilin mRNA were also observed in
the mood disorder group, consistent with initial morpho-
logical evidence for reduced dendritic spine density (23).

FIGURE 3. Cyclophilin mRNA in the Hippocampal Formation of Healthy Comparison Subjects, Patients With Schizophrenia,
and Patients With Mood Disordersa

a Of the patients with mood disorders, seven had major depression and three had bipolar disorder.
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This suggests considerable overlap between schizophre-
nia and mood disorders regarding involvement of dendritic
spines. Whether this similarity of pathology reflects simi-
lar pathogenic processes, such as those already outlined,
remains to be determined.

Several potential limitations of this study should be
noted. First, the small number of subjects with bipolar dis-
order required us to group them with the subjects who had
major depression in a single mood disorder group for the
analyses. The possibility of different abnormalities of den-
dritic gene expression among mood disorder subtypes
thus requires further study; however, inspection of our
data did not provide any indication of this.

Second, autoradiographic film analyses can be con-
founded by differences in the packing density of neurons
between the groups being compared. Although there is no
good evidence that this occurs in the hippocampus in
schizophrenia (1) or mood disorders (31), we investigated
the possibility directly by doing a “per cell” analysis of
spinophilin mRNA in CA4 and CA1 neurons, using the
emulsion-dipped sections. This showed that spinophilin
mRNA is lower in CA4 neurons but not in CA1 neurons in
schizophrenia (data not shown), confirming the film
results.

Third, medication might have contributed to, or masked,
differences between diagnostic groups. However, there
were no correlations of the mRNAs with either lifetime or
recent neuroleptic exposure, and chronic haloperidol and
chlorpromazine treatment have no effect on spinophilin
mRNA in the rat hippocampus (36). It also seems unlikely
that occult substance misuse among the patients con-
founded the results, since the patients had negative toxi-
cology results and since psychostimulants increase, not
decrease, dendritic spines (57). A similar argument per-
tains to the possible effect of antidepressants and mood
stabilizers, which increase spine densities in antidepres-
sant-treated animals (31, 58).

Fourth, we found correlations of spinophilin mRNA
with brain pH and, less clearly, with postmortem interval.
However, these variables did not differ significantly be-
tween groups, and all the positive results remained signif-
icant when pH and postmortem interval were included as
covariates in an analysis of covariance (data not shown).

Finally, a different limitation comes from the fact that
we measured only the mRNAs and not the proteins. This
decision was made because of the existence of multiple
isoforms and phosphorylation states, which complicates
quantitative antibody-based methods (26, 27), because
the proteins may be sensitive to perimortem degradation
(59), and also because of limited tissue availability. It is
reassuring that prior studies have shown a good corre-
spondence between protein and mRNA levels for several
dendritic proteins (42, 60, 61). Nevertheless, evaluation of
both types of gene product will be desirable in future work,
which is also needed to confirm our observations and ex-

tend them to other brain regions wherein dendritic pa-
thology has been reported in schizophrenia (62–64).

In conclusion, our results provide molecular evidence
for a postsynaptic component of glutamatergic synaptic
pathology in the hippocampal formation in schizophrenia
and mood disorders. Decreased spinophilin expression
suggests that the structural and functional integrity of
dendritic spines is compromised. The combination of pre-
synaptic and postsynaptic abnormalities may represent
an important component of these disorders.
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