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Objective: Anomalies of structure and asymmetry of the parahippocampal gyrus (origin
of the perforant path input to the hippocampal formation in the medial temporal lobe) have
been shown in some postmortem studies of schizophrenia, but previous studies have not
included the fusiform gyrus (which may have a role in facial recognition and naming), adja-
cent to the parahippocampal gyrus on the ventral occipitotemporal surface. Method: The
volumes of gray matter in the left and right parahippocampal and fusiform gyri were as-
sessed with a stereological point-counting technique in the temporal lobes from formalin-
fixed brains of 27 comparison subjects and 31 patients with schizophrenia. Age was a co-
variate and gender was a factor in the analysis. Results: In relation to the comparison sub-
jects, the schizophrenic patients (both sexes) had lower volumes of both the parahippo-
campal and fusiform gyri on the left side. For both structures a left-greater-than-right volume
asymmetry was present in the comparison subjects, but this asymmetry was reversed in the
parahippocampal and fusiform gyri of the schizophrenic patients. A sex difference was
present with respect to age at onset—degree of anomaly of asymmetry for both gyri in-
creased with age at onset in men but not in women. Conclusions: The findings add sub-
stance to the view that the sex-related dimension of symmetry/asymmetry is integral to the
disease process in schizophrenia and draw attention to the fusiform gyrus as a structure of
particular interest in relation to disturbances of identification and naming in psychosis. 

(Am J Psychiatry 2000; 157:40–47)

Anomalies of brain structure are a potential lead to
the pathophysiology of schizophrenia, but the precise
nature and distribution of such abnormalities have re-
mained obscure. A degree of ventricular enlargement
was established on the basis of radiological (1, 2) and
postmortem (3, 4) studies and has been shown to be
relatively constant across affected individuals (5–7). A

modest reduction in cortical mass appears consistent
across studies (8–10), as also does a loss of the subtle
asymmetries, reflected in ventricular structure, that are
characteristic of the human cerebral cortex (for re-
views see references 11 and 12). A parsimonious view
is that these three changes are interrelated and that
changes in subcortical structures are secondary to glo-
bal changes at the level of the cerebral cortex. How-
ever, this concept gives no direct lead to the origin and
diversity of symptoms.

Interest has focused on abnormal structures in the
medial temporal lobe, including particularly the para-
hippocampal gyrus (Brodmann’s areas 27, 28, 35, and
36). This structure receives input from heteromodal as-
sociation areas of the cortex and gives rise to the per-
forant path that projects to the hippocampus and
thereby transmits information into the limbic circuit.
Reductions in volume (3, 13, 14) and cortical thickness
(4, 15, 16) of the parahippocampal gyrus have been
shown in postmortem studies, although there have also
been reports (17, 18) of relative normality in various
structural indices. In two studies (4, 15) less asymme-

 Received March 29, 1999; revision received July 2, 1999;
accepted July 9, 1999. From the Schizophrenia Research Group,
Department of Neuropathology, Radcliffe Infirmary, Oxford, U.K.;
the Regional Neuropathology Laboratory, Royal Hospitals Trust,
Belfast, U.K.; the Department of Mental Health, The Queen’s Uni-
versity of Belfast; and the Prince of Wales International Centre,
University Department of Psychiatry, Warneford Hospital, Head-
ington, U.K. Address reprint requests to Dr. Crow, University
Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX,
U.K.; tim.crow@psychiatry.oxford.ac.uk (e-mail).

This work was supported by a Medical Research Council project
grant to Drs. Crow and Esiri, by a Medical Research Council
research studentship to Dr. Highley, and by the U.K. charity SANE.

The authors thank the late Clive Bruton and the staff of the Neu-
ropathology Department at Runwell Hospital for help in collecting
some of the material in this series and Mr. Tim Marshall and Dr.
Mario Cortina Borja for help with the Fisher’s z test.



Am J Psychiatry 157:1, January 2000 41

MCDONALD, HIGHLEY, WALKER, ET AL.

try of the cross-sectional gyral area was observed in
patients with schizophrenia than in patients with affec-
tive disorder and in groups of normal subjects.

The fusiform gyrus (Brodmann’s areas 19, 20, and
37—sometimes referred to as the medial and lateral
occipitotemporal gyri) lies immediately lateral to the
parahippocampal gyrus in the temporal lobe and the
lingual gyrus in the occipital lobe, on the ventral occip-
itotemporal surface (figure 1). The gyrus extends for
most of the length of the inferior occipitotemporal sur-
face, being bounded medially by the parahippocampal
gyrus and laterally by the inferior occipitotemporal
gyri. It has connections with striate and prestriate vi-
sual areas and projects to language-related regions,
including Wernicke’s area in the lateral and superior
aspects of the temporal lobe; this relationship is consis-
tent with a role in facial recognition, postulated on the
basis of functional magnetic resonance imaging (MRI)
(19) and positron emission tomography (20) studies.
Although such functions might be relevant to delu-
sional misinterpretation syndromes, to our knowledge
there have been no morphological or functional studies
of the fusiform gyrus in schizophrenia, perhaps in part
on account of its inaccessibility by radiological investi-
gation. According to a postmortem study (21), the
fusiform gyrus is one of the more asymmetric struc-
tures in the human brain.

The aim of the present study was to assess the struc-
ture of the parahippocampal and fusiform gyri in
schizophrenia, with particular reference to their asym-
metries. We predicted that the brains of schizophrenic
subjects would have less asymmetry than would brains
of subjects from the general population.

METHOD

Materials

Brains from patients with schizophrenia and from comparison
subjects were collected from individuals for whom the next of kin
had consented to use of tissues in medical research. The schizo-
phrenic patients were selected on the basis of assessment of clinical
notes by a psychiatrist (S.J.C. or T.J.C.) using the DSM-IV criteria
for schizophrenia and schizoaffective disorder. The comparison sub-
jects were individuals who had died without a history of neuropsy-
chiatric disorder. The age at onset of schizophrenia (defined by first
admission) was noted, and ratings were made of the quantity of neu-
roleptic medication taken during the subject’s lifetime (little, aver-
age, or much). The variable information in the case notes did not jus-
tify a more quantitative estimate of medication. The patient and
comparison brains were prospectively collected at three centers (Ox-
ford, Belfast, and Wickford, Essex) in the United Kingdom. The
brains were fixed by suspension from the basilar artery in 10% for-
malin and assigned a randomized code by a third party, so that mea-
surements could be made by persons blind to gender, diagnosis, and
age. After fixation the brains were macroscopically and microscopi-
cally assessed to exclude other pathologies (including Alzheimer’s
disease, Parkinson’s disease, and macro- and microscopic vascular
disease) by using the criteria of the Consortium to Establish a Regis-
try for Alzheimer’s Disease (22). This study included 13 female and
14 male comparison subjects and 13 female and 18 male patients
with schizophrenia or schizoaffective disorder. The female compari-
son subjects and schizophrenic patients had mean ages of 73.5 years
(range=48–90) and 74.7 years (range=44–91), respectively, and the

mean ages of the men were 66.6 years (range=40–89) and 61.9 years
(range=29–87). Four of the patients had had psychosurgery.

Stereology

Brain volumes, including volumes of gray matter in the regions of
interest, were measured by unbiased stereological techniques using
the Cavalieri principle (23–25). In order to measure the area and vol-
ume of the cortical mantle, the temporal lobes of the brains were
sliced to yield section planes separated by known distances, from
which it was then possible to determine volume, by using a test grid
of points overlaid on randomly oriented section planes of the tempo-
ral lobe slices (26).

Procedure

After fixation the brains were carefully stripped of the lepto-
meninges. The hindbrain was removed by transection through the
midbrain, and the cerebrum was bisected. The temporal and occipi-
tal lobes were separated from each cerebral hemisphere. The fusi-
form gyrus of each temporal lobe was defined by using waterproof
calligraphy ink. The occipitotemporal lobes were then coronally
sliced into 5-mm-thick slices, and the inferior surface was photo-
graphed (with a calibration rule in the field of view). The resulting
images were then projected, at a magnification of ×2.3, onto a ran-
domly positioned 1-cm-grid array of test points. For each gyrus (left
and right, fusiform and parahippocampal), the test points falling on
the gray matter on each slice were counted. The sum of these counts
multiplied by a scaling coefficient yielded estimates of the gyral vol-
ume. The parahippocampal gyrus was defined in the following man-
ner. The posterior boundary was the most posterior temporal lobe
slice in which the hippocampus was visible. The anterior-most slice
on which the gyrus was measured was at the level of the uncus,
where the hippocampus merges with amygdala. The superior bound-
ary was the interface between the hippocampus and the subiculum.

The fusiform gyrus was identified as follows: the medial margin
was defined by the collateral and rhinal sulci, i.e., the boundary of

FIGURE 1. Parahippocampal Gyrus (diagonal stripes) and
Fusiform Gyrus (vertical stripes) on the Ventral Occipitotem-
poral Surface of the Brain
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the parahippocampal gyrus, and the lateral boundary was taken as
the sulcus medial to the inferior temporal gyrus. The anterior ex-
tremity of the fusiform gyrus approached the temporal pole. The
posterior boundary, as defined for the purpose of this study, was the
most posterior temporal lobe slice in which the hippocampus was
visible.

For each gyrus, the left and right sides were measured, and the
asymmetry coefficient (δ) of the two sides was calculated as follows:
δ = (right–left)/(right+left) × 100.

As the mean age of the women in the series was higher than that
for the men, age was entered into all the analyses of variance as a co-
variate to yield a regression analysis for the effects of age.

Accuracy

An assessment of the accuracy of the estimate of the mean volume
of a structure for each comparison group (female comparison, male
comparison, female schizophrenia, male schizophrenia) is given by
the group coefficient of error (standard error of the mean divided by

the mean). The lower the value of this ratio, the more accurately the
mean value attained reflects the true population mean. For both the
parahippocampal and fusiform gyri, all groups had group coefficient
errors below 0.092.

The observed coefficient of error for the individual estimates of
volume were calculated as described by Gundersen and Jensen (23).
The mean observed coefficient of error for the different volumes
were as follows: parahippocampal gyrus, 0.087 for the left and
0.086 for the right; fusiform gyrus, 0.080 for the left and 0.081 for
the right.

From the coefficients of error for the individual volume measures,
one can estimate the percentage of observed relative variance of each
measure that is accounted for by true interindividual variance, as op-
posed to the stereological volume estimate (27, 28). True interindi-
vidual variation accounted for a minimum of 74% for each measure
for each group.

RESULTS

For each gyrus, the asymmetry data and left and
right volumes were entered into an analysis of covari-
ance (ANCOVA) with diagnosis and gender as factors
and age as covariate. This generates a statistic z, which
is assessed in terms of the normal distribution to pro-
duce a p value (i.e., without degrees of freedom). The
results of these analyses are summarized in table 1.

Parahippocampal Gyrus

For the left parahippocampal gyrus volume (table 1
and figure 2, top), the ANCOVA revealed no effect of
gender and no gender-by-diagnosis interaction. There
was a nonsignificant effect of diagnosis, which corre-
sponded to a 10.6% smaller volume of the left para-
hippocampal gyrus in the schizophrenic group. There
was no significant effect of age.

For the right parahippocampal gyrus volume (table 1
and figure 2, top), the ANCOVA revealed no effect of
diagnosis, no effect of gender, and no gender-by-diag-
nosis interaction. There was a significant effect of age
corresponding to a volume decrease in this gyrus of
14.4 mm3, on average, per year.

For the asymmetry of the parahippocampal gyrus
volume (table 1 and figure 2, top, and figure 3, top),

TABLE 1. Effects of Diagnosis, Gender, and Age on Volumes of Parahippocampal Gyrus and Fusiform Gyrus in Postmortem
Brains From 31 Schizophrenic Patients and 27 Normal Comparison Subjects

Brain Measure

ANCOVA (with age as covariate) (df=1, 53)

Diagnosis Gender
Diagnosis-by-Gender

Interaction Age

F p F p F p Ba z p

Parahippocampal gyrus
Left-side volume 3.87 0.054b 0.90 0.35 0.05 0.82 –10.82 –1.66 0.10
Right-side volume 0.01 0.950 2.29 0.14 0.21 0.65 –14.40 –2.33 0.02
Asymmetry 4.21 0.045c 0.56 0.46 0.03 0.86 –0.04 –0.33 0.74

Fusiform gyrus
Left-side volume 6.61 0.013b 5.96 0.02d 2.46 0.12 –10.86 –1.32 0.19
Right-side volume 0.12 0.735 5.20 0.03d 0.50 0.48 –20.32 –2.13 0.04
Asymmetry 5.25 0.036c 0.22 0.64 0.33 0.57 –0.06 –0.50 0.62

a Decline in volume (cubic centimeters) per year.
b Greater for comparison group than for patients.
c For comparison group, volume greater on left than on right. For patients, volume less on left than on right.
d Less for women than for men.

FIGURE 2. Volumes of Parahippocampal Gyrus and Fusiform
Gyrus in Postmortem Brains From Female and Male Patients
With Schizophrenia and Normal Comparison Subjects
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the ANCOVA revealed a significant effect of diagnosis,
such that the comparison subjects showed a left-
greater-than-right asymmetry and the schizophrenic pa-
tients showed a right-greater-than-left asymmetry.
There was no effect of gender and no gender-by-diag-
nosis interaction. There was no significant effect of age.

The analyses of the parahippocampal gyrus asymme-
try and left-side volume were repeated after exclusion
of the patients who had undergone leukotomy, to elu-
cidate whether the apparent diagnosis effects were due
to psychosurgery. The repeat analysis revealed a signif-
icant effect of diagnosis (F=4.62, df=1, 49, p=0.04) on
the left parahippocampal volume and a nonsignificant
effect of diagnosis (F=3.42, df=1, 49, p=0.07) on asym-
metry.

Fusiform Gyrus

For the left fusiform gyrus volume (table 1 and
figure 2, bottom), the ANCOVA revealed a significant
effect of diagnosis and a significant effect of gender,
such that the women had approximately 15% smaller
volumes than the men, but no gender-by-diagnosis in-
teraction. The effect of diagnosis corresponded to
13.2% smaller left fusiform gyrus volumes in the pa-
tients with schizophrenia than in the comparison sub-
jects. There was no significant effect of age.

For the right fusiform gyrus volume (table 1 and
figure 2, bottom), the ANCOVA revealed no effect of
diagnosis, a significant effect of gender, such that the
women had 19.0% smaller volumes than the men, and
no gender-by-diagnosis interaction. There was a signif-
icant effect of age, suggesting that the volume of this
structure decreased by 20.3 mm3 per year.

For the asymmetry of the fusiform gyrus volume
(table 1 and figure 2, bottom, and figure 3, bottom),
the ANCOVA revealed a significant effect of diagnosis.
There was no effect of gender and no gender-by-diag-
nosis interaction. As for the parahippocampal gyrus,
the comparison subjects showed a left-greater-than-
right asymmetry and the schizophrenic patients had a
right-greater-than-left asymmetry (figure 2, bottom,
and figure 3, bottom). There was no significant effect
of age. Again, analysis of the fusiform gyrus data was
repeated after exclusion of the patients who had un-
dergone leukotomy. The repeat ANCOVAs for the
fusiform gyrus revealed significant effects of diagnosis
on left-side volume (F=7.64, df=1, 49, p=0.008) and
on asymmetry (F=5.89, df=1, 49, p=0.02).

The similarity of the abnormalities in left (but not
right) gyrus volume in both the parahippocampal and
fusiform gyri of the schizophrenic patients raises the
question of whether they reflect the same cause. Across
the entire cohort, the fusiform and parahippocampal
gyrus asymmetries showed a statistically significant
Pearson’s correlation coefficient (r=0.50, df=58, p<
0.0005). The correlation was significant within the
schizophrenic patients (r=0.66, df=31, p<0.0005) but
not the comparison subjects (r=0.23, df=27, p=0.24).
After Fisher’s z transformation was applied, a t test

comparison revealed a significant difference (t=2.01,
df=54, p=0.05) between the correlation coefficients for
the comparison subjects and patients.

Age at Onset

Onset for the male patients (mean age=28.94, SD=
7.34) was earlier than for the female patients (mean=
32.23, SD=9.43), as is usually found, although the dif-
ference was not statistically significant (t=1.08, df=28,
p=0.29). The asymmetry scores were found to relate to
age at onset. Figure 4 (top) reveals a positive correla-
tion between the asymmetry coefficient for the para-
hippocampal gyrus and age at onset for men (r=0.67,
df=18, p=0.002) and a negative correlation between
the asymmetry coefficient and age at onset for women
(r=–0.46, df=13, p=0.12). Thus, for female schizo-
phrenic patients, age at onset was not significantly re-
lated to parahippocampal gyrus asymmetry. For male
patients, however, there was a relationship such that
patients with a left-greater-than-right asymmetry had
earlier onsets. With increasing rightward asymmetry,
later onset was seen. The correlation coefficients for
men and women were subjected to Fisher’s z transfor-
mation and compared by means of a t test. This re-

FIGURE 3. Asymmetries of Parahippocampal Gyrus and Fusi-
form Gyrus in Postmortem Brains From Female and Male Pa-
tients With Schizophrenia and Normal Comparison Subjects
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vealed the gender difference to be significant (t=3.23,
df=27, p=0.003).

Figure 4 (bottom) shows a similar relationship be-
tween asymmetry in the fusiform gyrus and age at on-
set for the two sexes. For women there was a nonsig-
nificant negative correlation between asymmetry and
age at onset (r=–0.48, df=13, p=0.09). For men there
was a significant positive correlation between the two
(r=0.50, df=18, p=0.04). The difference between these
two correlation coefficients was significant (t=2.65,

df=27, p=0.01). Thus, for the female patients, age at
onset was not significantly related to fusiform gyrus
asymmetry. For the male patients, however, those with
a left-greater-than-right asymmetry had earlier onsets.
With increasing rightward asymmetry (i.e., with in-
creasing anomaly), later onset was seen.

Neuroleptic Medication and Postmortem Delay

The mean delay between death and brain removal
for the groups was 43.38 hours (SD=25.80) for the
comparison women, 41.38 hours (SD=29.29) for the
comparison men, 39.69 hours (SD=32.89) for the fe-
male patients, and 44.65 hours (SD=32.56) for the
male patients. There were no significant intergroup
differences (diagnosis: F<0.005, df=1, 52, p=1.00; gen-
der: F=0.03, df=1, 52, p=0.86; interaction: F=0.18, df=
1, 52, p=0.67).

Finally, we performed an ANCOVA on the data
from the schizophrenic patients to ensure that the find-
ings were not an artifact of the neuroleptic medication
that the patients had taken (see Method section). Life-
time medication level (little, average, much) was en-
tered as the only factor, with age as a covariate. No ef-
fect of medication was found for parahippocampal
gyrus asymmetry (F=0.74, df=2, 27, p=0.49) or fusi-
form gyrus asymmetry (F<0.005, df=2, 27, p=1.00).

Quester and Schröder (29) demonstrated that any al-
teration due to the fixation of brains proceeds rapidly
to a stable state after a maximum of 3 weeks. As all of
our brains were fixed for much longer than this, all
would have reached their stable, postfixation configu-
rations. Thus, no differences between groups by fixa-
tion artifact would be expected.

DISCUSSION

The salient observation was the reversal in schizo-
phrenia of the asymmetries of the gray matter of the
parahippocampal and fusiform gyri that are charac-
teristic of the brains of most normal individuals
(table 1). Two previous studies (4, 15) are relevant to
our laterality findings for the parahippocampal gyrus.
Although both studies showed anomalies of laterality
in schizophrenia, single cross-sectional areas were
measured. Further, in the latter investigation (15) the
study group was small (nine male and three female pa-
tients). In contrast, the stereological volume measures
described here provide a more meaningful assessment
of the anatomy of this structure and are not influenced
by random variations in the precise region of gyrus
measured.

The findings for the fusiform gyrus extend the para-
hippocampal observations. The strategy of demarcat-
ing the fusiform gyrus with ink before sampling allows
greater accuracy in outlining this structure on coronal
slices. The abnormalities in the two gyri are similar. On
the right, there was a modest age-related loss of sub-
stance (14.4 mm3 per year for parahippocampal gyrus,

FIGURE 4. Relation of Age at Onset to Asymmetries of Para-
hippocampal Gyrus and Fusiform Gyrus for 13 Female and 18
Male Patients With Schizophreniaa

a The differences between the regression lines for the two sexes
were significant for the parahippocampal gyrus (p=0.002) and for
the fusiform gyrus (p=0.01).
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20.3 mm3 per year for fusiform gyrus). On the left
side, there was evidence of a loss of substance in
schizophrenia (consistent with the findings of the MRI
studies reviewed by Lawrie and Abukmeil [30]) that is
of the order of 10.6% (p=0.05) for the parahippocam-
pal gyrus and 13.2% (p=0.01) for the fusiform gyrus.
Most striking is the change from left-sided predomi-
nance in the comparison subjects to right-sided pre-
dominance in the patients (p<0.05 and 0.03 for the
parahippocampal and fusiform gyri, respectively; see
figure 2 and figure 3). This pattern may be the result of
either of two changes in brain configuration. The first
possibility is a purely left-sided reduction in volume.
The second corresponds to an asymmetry shift super-
imposed on a bilateral reduction in volume, as de-
scribed by Ward et al. (31).

By contrast with recent observations on surface
asymmetries in the cortex (32) and in callosal fiber
densities (33), no strong interactions with sex were ap-
parent in the raw volume assessments. However, such
interactions were uncovered when age at onset of
schizophrenia was taken into account (figure 4). For
the women, the correlations between asymmetry index
and age at onset were negative and nonsignificant. For
the men, the correlations were positive and significant.
The differences between the genders were highly signif-
icant. Thus, greater age at onset is associated with in-
creasingly atypical asymmetry in men but not in
women. This conclusion may be relevant to the general
finding of a 2–3-year earlier onset in males (34–36).

The findings can be viewed in the context of the re-
cent literature on structural brain abnormalities in
schizophrenia. In addition to larger ventricles and
somewhat smaller overall cortical mass, in relation to
normal subjects, there is evidence for a difference in
asymmetry (generally less) in postmortem and radio-
logical studies with indexes that include scan densities
(37), brain widths (38–40), segmental volumes (41,
42), cortical surface measurements (32), length of the
Sylvian fissure (43, 44), planum temporale assessments
(45–47), volume (48) and gray matter (49) assessments
of the temporal lobe, and area (50) and volume (51)
assessments of the temporal horn. Although the abnor-
malities are consistent, many are small in magnitude,
and contrary interpretations have been expressed (52–
55). If, as has been claimed (11, 12, 50), loss of asym-
metry is the most characteristic feature of the brain in
schizophrenia, and a clue to the genetic predisposition,
some explanation for the subtlety and distribution of
the asymmetries in the normal brain and their devia-
tions in schizophrenia is required. While some abnor-
malities in asymmetry, such as those in the present
study, are relatively large (on the order of 5% to 6%),
in other studies (e.g., of cerebral widths) the differ-
ences are smaller (on the order of 1% or 2%), and
sometimes no such differences are detected (e.g., in the
lateral measures reported by us [32] and Flaum et al.
[52]). A possible explanation is that the asymmetries
are local rather than global and can be detected only
when the relevant cortical structures are assessed.

Thus, it appears that there is an axis of asymmetry
from the right dorsolateral frontal to the left occipito-
temporal cortex and that this asymmetry is expressed
to a greater extent in “heteromodal association” areas
(56) than in primary sensorimotor and association cor-
tex. Such a distribution is consistent with the concept
that the areas that are latest to develop in ontogeny
carry the greatest asymmetries, and these areas are also
those that would be expected to show the greatest in-
terindividual variability. The correlation between the
two asymmetries in schizophrenia, and its absence in
the comparison subjects, could be taken as evidence
for greater connectivity between the fusiform and
parahippocampal gyri in schizophrenia. We have pre-
viously offered such an interpretation for a greater de-
gree of gyrification in the temporal lobe (57).

One can speculate on the possible functions of the
structures in which variations relating to schizophrenia
have been found. While the parahippocampal gyrus
appears to play a very general role in transmitting in-
formation from all areas of the cortex into the hippo-
campus and limbic circuit, the fusiform gyrus, at least
in its posterior extent, is more selectively related to the
visual modality. In that anteriorly it approximates to
the basal speech area in the inferior temporal gyrus
(58), it might plausibly be assigned a role in attaching
verbal labels to important visual inputs. In functional
imaging studies, activation of the fusiform gyrus has
been demonstrated during facial recognition (19) and
matching (20, 59–61), while losses of facial, gender,
and object recognition are reported after lesions in this
region, with deficits in biographical information being
greater with lesions in the nondominant hemisphere
and deficits in facial recognition greater with lesions in
the dominant hemisphere (62). A magnetoencephalo-
graphic study revealed face-specific responses in the in-
ferior occipitotemporal cortex in the right hemisphere
(61). A key component in the human use of language is
the ability to recognize, name, and attribute character-
istics to others. If the fusiform gyrus contributes to this
process, it is conceivable that a deviation could be
manifested as a delusional misidentification or other
syndrome of a paranoid type.

The sex difference in age at onset of psychosis is un-
explained (35, 36). In another study (32) on this set of
brains we observed a sex difference in the asymmetry
of the length of the frontal lobe (normal men have a
right-greater-than-left asymmetry, and normal women
have a left-greater-than-right asymmetry) that was re-
versed in patients suffering from schizophrenia. These
tendencies were differentially related to age at onset,
just as the present findings on the parahippocampal
and fusiform gyri were correlated with age at onset in
men and not in women. Although we have no detailed
explanation, these relationships are consistent with the
possibility that the sex difference in age at onset in
schizophrenia is directly related to the sex difference in
cerebral asymmetry, a difference that itself can be ex-
plained by the fact that the gene for asymmetry is in
the class that is present in homologous form on the X
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and Y chromosomes. This hypothesis is based on the
neuropsychological deficits associated with sex chro-
mosome aneuploidies (63–65) and is consistent with
observations on the transmission of handedness within
families (66).
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