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Elevated Striatal Dopamine Transporters During Acute Cocaine
Abstinence as Measured by [123I]β-CIT SPECT

Robert T. Malison, M.D., Susan E. Best, M.D., Ph.D., Christopher H. van Dyck, M.D.,
Elinore F. McCance, M.D., Ph.D., Elizabeth A. Wallace, M.D., Marc Laruelle, M.D., 

R.M. Baldwin, Ph.D., John P. Seibyl, M.D., Lawrence H. Price, M.D.,
Thomas R. Kosten, M.D., and Robert B. Innis, M.D., Ph.D.

Objective: The authors examined whether striatal dopamine transporters were altered in
acutely (96 hours or less) abstinent cocaine-abusing subjects, as suggested by postmortem
studies. Method: [123I]β-CIT and single photon emission computed tomography were used to
assess striatal dopamine transporter levels in 28 cocaine-abusing subjects and 24 comparison
subjects matched as a group for age and gender. Results: Results showed a significant (ap-
proximately 20%) elevation in striatal V3″ values in acutely abstinent cocaine-abusing subjects
relative to comparison subjects. An inverse correlation between dopamine transporter level
and Hamilton Depression Rating Scale score was also observed. Conclusions: These findings
indicate more modest elevations in striatal dopamine transporters in cocaine-abusing subjects
than noted in previous postmortem reports and suggest a possible relationship between co-
caine-related depression and dopamine transporter binding.
 (Am J Psychiatry 1998; 155:832–834)

C ocaine’s binding to the dopamine transporter is the
mechanism most widely implicated in its addictive

potential (1, 2). Less clearly understood, however, is the
degree to which altered dopamine transporter regulation
is a factor in the pathophysiology of cocaine abuse. A
view of dopamine transporter regulation in human co-
caine-abusing subjects may improve our understanding

of clinical aspects of cocaine dependence, including drug-
induced craving, dysphoria, and relapse.

A considerable, albeit inconsistent, body of research
has examined the effects of cocaine administration on
dopamine transporter regulation. Homogenate binding
studies have documented increased, decreased, and un-
changed brain densities (Bmax) of dopamine trans-
porters in laboratory animals exposed to cocaine (3, 4).
In contrast, several (5, 6), but not all (7), postmortem
studies of human cocaine-related deaths have noted
dramatic increases (50%–500%) in dopamine trans-
porter binding sites as measured by cocaine analogues.
On the basis of its structural similarity to cocaine, we
have used the iodinated radioligand [123I]β-carbo-
methoxy-3β-(4-iodophenyl)tropane ([123I]β-CIT; also
known as [123I]RTI-55) to image striatal dopamine
transporters in cocaine-abusing subjects with single
photon emission computed tomography (SPECT).

METHOD

Twenty-eight cocaine-dependent (by DSM-III-R criteria) and 24
healthy comparison subjects, matched as a group for age (mean=32
years, SD=6, versus mean=33, SD=9, respectively) (t=0.20, df=51,
p=0.84, two-tailed unpaired t test) and gender (10 women and 18
men versus nine women and 15 men) (χ2=0.02, df=1, p=0.89), were
studied. Cocaine-dependent subjects were frequent (mean=25
days/month, SD=8) and heavy (mean=30 g/month, SD=23) intrave-
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nous or freebase (N=27) users of the drug and were free of other
primary psychiatric or substance use disorders. Subjects had physi-
cal and neurological examinations, ECG, and routine blood and
urine laboratory tests to rule out concurrent medical illness and
pregnancy, as well as exclude or verify illicit drug use. All provided
voluntary written informed consent for study procedures.

Cocaine-abusing subjects were studied during a period of acute (96
hours or less) drug abstinence and remained hospitalized on a locked
inpatient research unit for the entire study. Subject assessments in-
cluded the Cocaine Craving Scale (8), the Hamilton Depression Rat-
ing Scale (9), and the Hamilton Anxiety Rating Scale (10). Healthy
comparison subjects were studied as outpatients.

Subjects received an injection of [123I]β-CIT (dose mean=355
MBq, SD=44, or mean=9.6 mCi, SD=1.2; radiochemical purity
mean=97.4%, SD=1.9%; specific activity >185 GBq/mmol or >5,000
Ci/mmol) followed approximately 24 hours later by SPECT scanning
on the brain-dedicated CERASPECT camera (Digital Scintigraphics,
Waltham, Mass.) (11). Studies in healthy human subjects have dem-
onstrated that [123I]β-CIT reaches equilibrium binding in the brain by
24 hours (12), so that a simple unitless ratio of regional radioactivities
(V3″=Bmax/Kd/V2=specific/nondisplaceable binding=[striatum–oc-
cipital]/occipital) can be used to estimate dopamine transporter num-
ber (i.e., Bmax), by assuming comparable dopamine transporter affini-
ties (1/Kd) and nondisplaceable distribution volumes (V2) in both
study populations. Equilibrium assumptions were directly tested by
obtaining three SPECT scans in the first 12 cocaine-abusing subjects
and comparison subjects at 24, 27, and 30 hours. Before imaging,
four Na99mTcO4-filled fiducial markers (6–10 µCi) were glued bilat-
erally along the canthomeatal line to permit identification of this
plane during image analysis.

Images were reconstructed from photopeak counts (mean=159
keV, SD=16) by filtered (Butterworth; cutoff=1 cm, power factor=10)
back-projection, displayed as a 64×64×32 matrix (voxel size=
3.3×3.3×3.3 mm) and reoriented to the canthomeatal plane. The four
slices with the highest striatal uptake were summed and attenuation
corrected (µ=0.15 cm–1) to yield a final transaxial slice 13.3 mm
thick. Standardized region of interest templates for left and right cau-
date/putamen and occipital lobe (13) were visually applied to obtain
measures of regional radioactive density, decay corrected to the time
of injection.

Statistical differences between groups were assessed by two-tailed
unpaired t tests; comparisons of [123I]β-CIT binding and clinical rat-
ings employed Pearson’s product-moment correlation. Statistical sig-
nificance was assumed at the p<0.05 level.

RESULTS

Results revealed modest (approximately 20%), albeit
statistically robust (p=0.008), increases in V3″ in cocaine-
abusing subjects as compared to comparison subjects
(mean=9.5, SD=2.1, versus mean=8.1, SD=1.5) (figure
1). Elevations in V3″ did not derive from differences in
nondisplaceable (i.e., occipital) binding between groups
(cocaine versus comparison: mean=0.16, SD=0.05×10–2,
versus mean=0.15, SD=0.05×10–2% ID ⋅ ml–1) (t=–1.07,
df=51, p=0.29). Clearance rates for specific (mean=
0.17%/hour, SD=0.6, versus mean=0.00%/hour, SD=0.6)
(t=0.58, df=23, p=0.58) and nondisplaceable (mean=
–1.91%/ hour, SD=2.1, versus mean=–0.53%/hour, SD=
2.3) (t=–1.73, df=23, p=0.11) binding were comparable for
the addicted and nonaddicted groups and were consistent
with equilibrium assumptions (12). Among severity of
use and behavioral ratings, only levels of depression
(Hamilton depression scale score) were significantly cor-
related (r=–0.50, df=26, p=0.02) with [123I]β-CIT bind-
ing in cocaine-abusing subjects.

DISCUSSION

The present study provides the first in vivo evidence
of increased cocaine binding sites (i.e., striatal dopa-
mine transporters) in cocaine-abusing subjects as mea-
sured by [123I]β-CIT SPECT. Our findings of increased
V3″ in the addicted group are most likely explained by
an increased density of dopamine transporters, as sug-
gested by two previous postmortem reports. Little et al.
(5), reporting on seven cocaine-related deaths, found [3H]-
WIN 35,428 binding to be 50%–200% higher than in
seven comparison subjects as measured by quantitative
autoradiography. Staley et al. (6) independently con-
firmed these findings in six cocaine overdose victims,
demonstrating selective increases (approximately 500%)
in Bmax for the high- but not the low-affinity binding
site. In contrast to these postmortem studies, we ob-
served more modest (approximately 20%) and overlap-
ping degrees of dopamine transporter elevation in our
cocaine-abusing subjects (5, 6), results that may explain
negative findings in other postmortem (7, 14, 15) and
positron emission tomography (PET) (16) studies.

The pathophysiological significance, if any, of in-
creased dopamine transporters in cocaine-abusing sub-
jects is currently unknown. Specifically, it remains to be
established whether increases in cocaine binding sites
reflect a premorbid, perhaps predisposing, trait in sus-
ceptible individuals, or whether dopamine transporter
elevations are a secondary, potentially homeostatic, re-
sponse to chronic dopamine reuptake blockade by co-
caine. Future SPECT studies of individuals at high risk
for cocaine addiction or previously addicted individuals
during periods of sustained drug abstinence may ulti-

FIGURE 1. Dopamine Transporter Availability, as Measured by V3″,
in 24 Healthy Comparison Subjects and 28 Cocaine-Abusing Sub-
jects, Matched as a Group for Age and Gendera

at=–2.79, df=51, p=0.008, two-tailed unpaired t test.
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mately help to answer this question. In favor of the for-
mer possibility, we found no evidence of a relationship
between a variety of severity of use measures and dopa-
mine transporter binding. Conversely, our observation
of an association between depressed mood and low do-
pamine transporter levels provides indirect support for
an adaptive response. In the absence of a more detailed
understanding of the molecular basis of elevations in
[123I]β-CIT binding, such inferences remain highly
speculative. However, our Hamilton depression scale
finding is corroborated by previous PET findings of an
inverse correlation between depressed mood and
striatal D2 receptors (17). Such abnormalities in de-
pressed cocaine-abusing subjects are consistent with
preclinical research suggesting an important role for
dopaminergic dysfunction in postcocaine anhedonia
(18). Thus, prospective replication of this preliminary
finding by future investigations will be critical and may
ultimately improve our understanding of the neurobi-
ological basis of cocaine-related dysphoria and relapse.
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