<u>Parker et al.,</u> "Auditory Oddball Responses Across the Schizophrenia-Bipolar Spectrum and their Relationship to Cognitive and Clinical Features."

Supplemental Methods:

<u>Recruitment:</u> Subjects were recruited at Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP) and Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium sties: University of Georgia and Augusta University, Beth Israel Deaconess Hospital, Harvard Medical School, University of Chicago, UT Southwestern Medical School, and Institute of Living/Hartford Hospital and Yale School of Medicine, and followed previously published approaches (1). For recruitment of B-SNIP1 subjects used in the replication portion, please see (1). Clinically stable participants were recruited via community advertisements, linked community facilities and programs, and local National Alliance on Mental Illness-type organizations. All subjects provided written informed consent before participation. This study was approved by Institutional Review Boards at each data collection and analysis site.

Patients had a diagnosis of schizophrenia (SZ), schizoaffective disorder (SAD), or bipolar disorder with a history of psychosis (BDP) or no history of psychosis (BDNP) based on the Structured Clinical Interview for DSM-IV-TR (SCID) (2). Medical history, Positive and Negative Syndrome Scale (3), Young Mania Rating Scale (4), Montgomery-Asberg Depression Rating Scale (MADRS) (5), Birchwood Social Functioning Scale (6), and Global Assessment of Functioning scale (Axis V of DSM-IV) were acquired by trained Masters- or Doctoral-level clinicians. Presence of serious medical or neurological illness, mental retardation, head trauma with >30 minutes unconsciousness, current substance use ascertained by history as well as urine screens on day of testing, abuse in the past 3 months, and dependence within 6 months or extensive history of drug dependence (based on SCID) were criteria for exclusion. Healthy persons were free of any lifetime psychotic or chronic mood disorders and a family history of psychotic or BP disorders in first-degree relatives. Clinical information and diagnoses were reviewed and confirmed at diagnostic consensus meetings including senior psychiatrists/psychologists and the clinician who conducted the structured interviews at each site. All possible efforts were made to collect all clinical, cognitive, and EEG measures within 1 month after confirmation of inclusion into the study.

Clinical Rater Training and Maintenance: Clinical raters went through extensive training and certification prior to contributing ratings to the study, as well as ongoing training throughout the course of the study. Initial competency was established by on site didactic training for all clinical assessments and data collection procedures (SCID-I/P, SIDP-IV, YMRS, MADRS, PANSS, SFS, SBS, clinical history and demographics), followed by a pencil and paper competency evaluation (100% accuracy required), and finally the establishment of inter-rater reliability. Inter-rater reliability was accomplished using a train-to-criterion protocol with recorded patient interviews (for symptom scales all total scores were required to be within 2 points of the standardized score and all individual item scores were required to be within 1 point of the standardized score; for diagnostic assessments 100% agreement was required for the primary diagnosis). Remediation and additional training was provided as needed on a case-by-case basis until competency was achieved; clinical raters were not otherwise allowed to contribute data to the study. In order to maintain competency and reduce "drift," in-person didactic re-training sessions were conducted annually and inter-rater reliability established at 6 month intervals. Additionally, monthly diagnostic consensus calls (SCID-I, SIDP, SBS) were held throughout the course of the study, allowing for ongoing assessment monitoring and training (1).

<u>Comparison between B-SNIP1 and B-SNIP2 Subjects:</u> Subjects from B-SNIP1 overlap with Ethridge et al. and Clementz et al. (7; 8) and each step of quality control was completed using the exact steps as outlined in the main text. Following identical steps used in the main text, ERP PCA components

were identified for Standard (Frontal) and Target (Frontal and Parietal) trials using the combined B-SNIP1 and B-SNIP2 samples. In order to compare responses between studies, each ERP time point was standardized by using the mean and standard deviation from all subjects across all time points for each ERP component from each study. A direct comparison between of the mean ERP response of B-SNIP1 and the new subjects from B-SNIP2 as performed by group. Figure one is a straightforward illustration of the similarity of ERP morphologies by DSM diagnosis illustrating the strong replication of auditory oddball ERP findings across the psychosis spectrum. For each group in both studies (BDNP was not included since BDNP was not collected during B-SNIP1), the mean ERP response from -100 to 600 ms from B-SNIP1 was correlated with the mean ERP response from B-SNIP2.

Additionally, group by study ANOVAs were calculated on each 20 ms time bin from -100 to 600 ms. Calculations from G*power indicated the group x study ANOVAs with n=1761 are able to capture Cohens f-effect sizes in the .07-.09 range (.8-.99 power, alpha=.05). All ANOVA p-values within each component were adjusted using a false discovery rate method (9). This is identical to the procedure used in the group by sex ANOVA used in the primary text. There were no significant group by study interactions at any time-bins from any of the ERP components.

95% Confidence intervals of the effect size for the group x study interactions were calculated across time bins for each component using a bootstrapping procedure (bootstrap=5000 iterations; uncorrected for multiple comparisons) (10). The average f-effect size for the group x study interactions were Standards ERP =.044, Targets Frontal ERP=.039, Targets Parietal ERP=.045. A Cohen's f-effect size of .1 indicates a small effect size. See Figure S3.

Equivalence contrast tests were calculated on the total study samples (B-SNIP1 vs B-SNIP2), Healthy comparison groups, and all psychosis subjects for each ERP component across time bins (uncorrected for multiple comparisons). Equivalence testing demonstrates whether mean differences between groups are small enough that the differences can be considered clinically unimportant and that they can be treated as equivalent. A clinically significant threshold was set at ± .1 common language effect size. Common language effect size corresponds to the probability of that a random score from group A will be larger than a random score from group B. A value of .5 indicates that the two samples are identical. The 90% CI of each contrast was calculated using a bootstrapping procedure (bootstrap=5000 iterations) (10; 11). Consistent with the main factor of "study" from the ANOVA results, the average contrast value across time bins for the "total sample" were: Standards ERP =.52, Targets Frontal ERP=.51, Targets Parietal ERP=.49. See Figure S3.

Research Site Effects: In order to ensure consistent EEG recordings across research center sites, a number of steps were taken. Each site had identical EEG equipment and software in order to collect data. Every year, multiple pilot subjects went to each research center and completed the OB EEG task under identical conditions as the research participants. This allowed for the researchers to harmonize potential differences in EEG set-up, data collection, and presentation of the stimuli. Additionally, after the data had been pre-processed, age-adjusted, and was ready for final analysis, a group by site ANOVA was performed on each 20-ms bin from -100 to 600 ms for each ERP component. No significant group by site interactions were found. This is consistent with (12; 13) which examined other auditory paradigms using overlapping research participants.

EEG Recording: Electroencephalogram (EEG) was continuously recorded from 64 silver/silver chloride sensors (impedance <10 k Ω ; QuikCap, Compumedrics Neuroscan, El Paso, Texas), positioned according to the standard 10-10 EEG system with mastoids and CB1/2 locations to provide greater sampling below the canthomeatal line, with nose reference and forehead ground. Recordings were amplified (12,500X) and digitized (1000 Hz) using Neuroscan ACQUIRE and SynAmps2 recording systems (Compumedics Neuroscan).

EEG Processing: EEG data were pre-processed following previously published methods (7; 12–14). Raw EEG data were inspected for bad sensors and artifacts. Bad sensors were interpolated (no more than 5% for any subject) using spherical spline interpolation (BESA 5.3; MEGIS Software, Grafelfing, Germany). Data were transformed to an average reference and down-sampled to 500 Hz and digitally band pass filtered from .5 Hz to 55 Hz (zero-phase filter; roll-off: 6 and 48 dB/octave, respectively). Blink and cardiac artifacts were minimized using independent component analysis (EEGLAB 13.6) (15). EEG data on each trial were then segmented into 1250-ms epochs extending from 250 ms before to 1000 ms after trial onset. Trials containing activity ± 75 mV at any sensor were eliminated from further processing. Since our previous study (7) confirmed similar percentages of correct responses (~90%) to target trials across patient groups, all artifact-free target trials were included in subsequent analyses (7). At least 50% of trials were accepted for all included subjects with no significant difference between groups on number of usable trials. Data from included trials were averaged for each subject to create a 64-sensor grand average ERP. Each ERP was baseline adjusted using the 100 ms pre-stimulus period (see Figure 1 and 2).

Frequency principal component analysis: In order to identify frequency bands of interest we performed a frequency principal component analysis (fPCA) using the following steps: power values from each time-bin from 0 to 600 ms were averaged for standards and targets. All subjects' data were concatenated to create a matrix of 50 variables (3-52 Hz) and (t * n) x 64 observations (where t is trial type and n is the number of subjects; t=2 (standards and targets); n=1078). An fPCA was carried out on the matrix with promax (oblique) vector rotation and Kaiser normalization (16). Scree tests identified three components accounting for greater than 95% of the variance across subjects and sensors. The three resulting fPCA components were: (i) low (3-13 Hz); (ii) beta (14-29 Hz); and (iii) gamma (30-52 Hz) frequencies (see Figure S1). This result is highly consistent with previous results from B-SNIP1 (7) and captures the cortically relevant frequency bands resolvable with EEG (17). Each fPCA component weight was multiplied by each subject's grand average time-frequency data at each time bin, summed across frequencies, and divided by the plus sum of the component weights, reducing the waveform from 50 frequencies (3-52 Hz) to three frequency bands. This resulted in 6 total waveforms (three standard and three target). For each frequency component, all sensors were averaged to create one time-frequency waveform (Figure 3). Each time-frequency waveform was then standardized across all subjects, so frequency data are displayed in standardized Power values.

Multivariate Canonical and Correlational Analyses: A canonical discriminant analysis (CDA) is similar to PCA, but uses pooled within-group covariance matrices and pits group means as variables and measurements as observations (18; 19). Thus, the n^groups-1 functions are extracted, which are uncorrelated and maximize group differences. CDA creates a linear combination of the predictors that have the highest possible within-group (see figure 4a). The p-value presented in the main text is associated with the Chi-square statistic, which is testing the null hypothesis that: the function, and all functions that follow, have no discriminating ability. This is part of the standard output in SPSS. Additionally, it is possible to examine group mean differences of the function scores using traditional statistics like ANOVAs and post-hoc tests, which are included in tables S2 and s3. The correlation between each discriminant function and the 26 EEG variables are listed in table S4 so that the interested reader can see how individual EEG variables are related to the overall discriminant functions.

The canonical correlational analyses we used for comparing the EEG variables and Cognitive variables/ EEG variables and Clinical variables are similar to a CDA, but instead of creating functions that are uncorrelated and maximize group differences, it creates a linear combination latent function pairs for each data set (i.e. 1 Neural and 1 Cognitive) that are maximally correlated with each other, but uncorrelated with the any of the other latent function pairs. The number of latent pairs is based on the data set with the fewest variables (n=6 for both CCAs in the main text). The p-value statistic presented in the text is based off of the F-value from the Wilks' Lambda multivariate test with a null hypothesis that

the two sets of variables are not linearly related. In tables S5 and S6 we also have the structure matrices that list the correlation between each latent pair and the variables that went into each function so that the interested reader can see how individual variables are related to the function pairs.

Supplemental Analyses to identify restricted list of measures: Each of the 26 variables were submitted to linear discriminant analysis (LDA) with group as the dependent variable (HC, BDNP, BDP, SAD, and SZ). EEG variables that minimized overall Wilks' lambda at p < .05 were entered in a stepwise fashion, leaving a parsimonious selection of neural measures that differentiated groups. Then, to ensure that identified ERP and TF variables contributed to reliable and stable group separations, a jackknife procedure was performed by submitting 95 % of the total sample (n = 10.24, sampling without replacement) to an LDA 1000 times. EEG Components consistently identified (>50% of procedures) across iterations were then used in a canonical discriminant analysis (identical to the main analysis in the paper). The results follow an identical pattern as the CDA that used all 26 variables, although with marginally smaller effect sizes. A Pearson correlation between the CDA variates used in the main paper and the CDA variates using the reduced number of EEG variables were: Variate 1: r=.96; Variate 2: r=.79; Variate 3: r= .75. See table S12 and S13 for Jackknife results and the mean responses of each variate by group.

Supplemental Methods References:

- 1. Tamminga CA, Ivleva EI, Keshavan MS, Pearlson GD, Clementz BA, Witte B, Morris DW, Bishop J, Thaker GK, Sweeney JA: Clinical Phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry 2013; 170:1263–1274
- 2. First MB, Spitzer RL, Gibbon M, Williams JBW: Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-I-CV). 1997.
- 3. Lançon C, Auquier P, Nayt G, Reine G: Stability of the five-factor structure of the Positive and Negative Syndrome Scale (PANSS). Schizophr Res 2000;
- 4. Young RC, Biggs JT, Ziegler VE, Meyer DA: A rating scale for mania: Reliability, validity and sensitivity. Br J Psychiatry 1978;
- 5. Montgomery SA, Asberg M: A new depression scale designed to be sensitive to change. Br J Psychiatry 1979;
- 6. Birchwood MAX, Smith JO, Cochrane RAY, Wetton S, Copestake S: The Social Functioning Scale. The development and validation of a new scale of social adjustment for use in family intervention programmes with schizophrenic patients. Br J Psychiatry 1990; 853–860
- 7. Ethridge LE, Hamm JP, Pearlson GD, Tamminga CA, Sweeney JA, Keshavan MS, Clementz BA: Event-Related Potential and Time-Frequency Endophenotypes for Schizophrenia and Psychotic Bipolar Disorder. Biol Psychiatry 2015; 77:127–136
- 8. Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, Keshavan MS, Tamminga CA: Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry 2016; 173:373–384
- 9. Benjamini Y, Hochberg Y: Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;B57:289–300. J R Stat Soc B 1995;
- 10. Hentschke H, Stüttgen MC: Computation of measures of effect size for neuroscience data sets. Eur J Neurosci 2011; 34:1887–1894
- 11. Rusticus SA, Lovato CY: Applying tests of equivalence for multiple group comparisons: Demonstration of the confidence interval approach. Pract Assessment, Res Eval 2011; 16:1–6
- 12. Parker DA, Hamm JP, McDowell JE, Keedy SK, Gershon ES, Ivleva EI, Pearlson GD, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA: Auditory steady-state EEG response across the schizo-bipolar spectrum. Schizophr Res 2019; 209:218–226
- 13. Parker DA, Trotti RL, McDowell JE, Keedy SK, Gershon ES, Ivleva EI, Pearlson GD, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA: Auditory paired-stimuli responses across the psychosis and bipolar spectrum and their relationship to clinical features. Biomarkers in Neuropsychiatry 2020; 3:100014
- 14. Ethridge LE, Hamm JP, Shapiro JR, Summerfelt AT, Keedy SK, Stevens MC, Pearlson G, Tamminga CA, Boutros NN, Sweeney JA, Keshavan MS, Thaker G, Clementz BA: Neural activations during auditory oddball processing discriminating schizophrenia and psychotic bipolar disorder. Biol Psychiatry 2012; 72:766–774
- 15. Delorme A, Makeig S: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004; 134:9–21
- 16. Dien J, Khoe W, Mangun GR: Evaluation of PCA and ICA of simulated ERPs: Promax vs. infomax rotations. Hum Brain Mapp 2007; 28:742–763
- 17. Venables NC, Bernat EM, Sponheim SR: Genetic and Disorder-Specific Aspects of Resting State EEG Abnormalities in Schizophrenia. Schizophr Bull 2009; 35:826–839
- 18. Mardia KV, Kent JT, Bibby JM: Multivariate Analysis. In: Probability and Mathematical Statistics. London: Academic Press; 1979.
- 19. Lawley D: Tests of significance in canonical analysis. Biometrika 1959; 46:59–66

Supplemental Tables:

Table S1: B-SNIP1 Sample Characteristics

B-SNIP1 Characteristics

	НС	BDP	SAD	SZ	Total	t-test comparing averages of B-SNIP1 and B-SNIP2	р
Ν	223	174	134	218	749		
Mean age	37.37	35.68	36.52	34.53	36.00	+(1779)- 0.40*	0.0
Age SD	12.31	12.90	12.32	12.44	12.51	t(1758)=-2.43*	.02
Sex (% F)	57	58	58	31	50		
Illness durat	ion					t(1064)=-8.09***	<.001
Mean	N/A	16.46	15.77	13.72	15.15		
SD	N/A	12.32	10.97	12.01	11.90		
Years of Form	nal Educat	ion				t(1722)=-2.32*	.02
Mean	15.23	14.26	13.13	12.83	13.93		
SD	2.57	2.36	2.19	2.22	2.56		
Ethnicity							
(% Hispanic)	10	8	13	9	10		
Race (%)							
AA	24	18	33	44	30		
AE	0	0	0	0	0		

AS	4	2	1	2	2		
СА	67	77	60	50	63		
NH	0	0	0	0	0		
MR	2	1	5	3	3		
OT/UNK	2	2	1	2	2		
Global Asses	sment of F	unction (G	AF)			t(1626)=-1.70	.09
N	219	173	132	217	741		
М	86.89	60.99	49.24	49.34	63.14		
SD	6.37	12.47	11.96	12.16	19.36		
Birchwood S	ocial Funct	tioning Sca	lle (SFS)			t(1492)=13	.90
N	157	135	107	166	565		
М	157.18	134.04	120.00	122.76	134.50		
SD	16.51	22.64	25.27	24.24	26.70		
BACS Verba	l Memory					t(1673)=3.81***	<.001
N	216	171	130	208	725		
М	12	42	-1.08	-1.02	62		
SD	1.11	1.25	1.38	1.34	1.33		
BACS Digit S	Sequencing					t(1672)=.92	.36
М	13	51	92	-1.31	70		
SD	1.13	1.08	1.16	1.12	1.22		
BACS Token	Motor					t(1642)=5.01***	<.001
Μ	0.00	88	-1.35	-1.33	83		

SD	1.05	1.21	1.10	1.23	1.28		
BACS Verba	al Fluency					t(1669)=69	.49
М	.13	17	55	81	33		
SD	1.05	1.19	1.21	1.13	1.20		
BACS Symb	ol Coding					t(1672)=-2.33*	.02
М	.05	92	-1.41	-1.44	87		
SD	1.04	1.09	1.13	1.10	1.25		
BACS Towe	r of London	l				t(1672)=1.15	.25
М	.03	15	70	80	38		
SD	1.12	1.09	1.28	1.45	1.30		
Positive and	l Negative S	Syndrome S	Scale (PANS	SS) Positive	!	t(1045)=-2.59*	.01
N	N/A	171	132	211	514		
М	N/A	12.55	17.53	16.95	15.64		
SD	N/A	4.33	5.04	5.48	5.46		
PANSS Neg	ative					t(1044)=-2.63*	.01
N	N/A	171	132	211	514		
М	N/A	12.19	15.59	16.84	14.97		
SD	N/A	3.98	5.01	5.75	5.41		
PANSS Gen	eral					t(1046)=51	.61
N	N/A	171	132	212	515		
М	N/A	28.58	34.47	32.97	31.90		
SD	N/A	8.04	8.62	8.82	8.84		

PANSS To	otal					t(1043)=-1.97*	.049
N	N/A	171	132	210	513		
М	N/A	53.32	67.59	66.72	62.48		
SD	N/A	13.81	16.00	16.96	16.98		
Montgom	ery-Åsberg D	epression l	Rating Scale	e (MADRS))	t(1049)=-3.08**	.002
N	N/A	170	131	209	510		
М	N/A	10.59	14.08	8.66	10.69		
SD	N/A	9.60	10.18	7.92	9.35		
Young Ma	nia Rating Sc	cale (YMRS	5)			t(1050)=-9.73***	<.001
N	N/A	171	131	210	512		
М	N/A	5.11	6.55	5.71	5.73		
SD	N/A	5.75	6.22	5.64	5.85		

Note. SZ = schizophrenia, SAD = schizoaffective disorder, BDP = bipolar I disorder with psychotic features.

*p < .05, **p < .01, ***p < .001. t-tests were performed excluding the BDNP sample from B-SNIP2.

		H	С	BDI	NP	BD	P	SA	D	SZ	Z]	BDNP	BDP	SAD	SZ
	Average F-Value (4,1068)	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD			Glass	Delta	
Standards ERP P50 (60-80 ms)	3.62	089	.76	.341	.92	018	.71	.005	•74	.035	.88		.569	.095	.124	.165
Standards ERP N100 (80-140 ms)	14.23	-1.636	.91	-1.399	.96	-1.458	.97	-1.094	.93	-1.162	.93		.260	.195	•594	.519
Standards ERP Rising P200 (140-200 ms)	6.69	.842	1.14	.677	1.02	.451	1.03	.880	1.09	.893	.90		144	341	.034	.045
Standards ERP Late P200 (200-280 ms)	9.50	1.282	.97	.976	.90	1.044	.81	.882	.86	.871	.73		314	244	410	421
Standards ERP Late (520-600 ms)	3.11	.100	.44	066	.43	.034	.40	001	•37	.009	.40		379	151	230	207
Standards LOW Early/Mid (20-340 ms)	1.18	.869	.54	.818	.51	.685	.49	.585	.55	.585	.52		095	342	530	530
Standards BETA Early (20- 160 ms)	5.85	1.231	.70	1.285	.73	.993	.64	.932	.72	.967	.76		.077	341	427	377

Table S2: Group EEG Values (Age-corrected Standardized Voltage) and Effect sizes relative to the Healthy comparison group.

Standards	1			T						1		1			
GAMMA Early (20- 100 ms)	5.38	1.444	.88	1.649	1.01	1.106	.92	1.198	.95	1.227	1.03	.232	383	279	2
Standards GAMMA Mid (180- 200 ms)	3.48	257	.73	011	.75	117	.75	130	.84	085	.87	.337	.191	.174	.2
Standards GAMMA Mid-2 (220-260	3.89	331	.72	078	.80	227	.74	181	.86	125	.85	.350	.145	.208	.2
ms) Targets Frontal ERP N100 (80-140 ms)	8.60	768	.64	667	.69	578	.60	461	.65	518	.67	.158	.298	.483	
Targets Frontal ERP P2/N2 (140-240	6.18	.337	.87	.535	.83	.229	.87	.649	•77	.466	.74	.227	123	.357	•
ms) Targets Frontal ERP P3a (280-360 ms)	5.67	.629	1.17	.131	.97	.291	1.03	.335	.93	.359	.96	425	288	251	
Targets Frontal ERP Late (420-580 ms)	5.33	589	•77	702	.91	641	.79	421	.76	314	.70	146	067	.218	.:
Targets Parietal ERP N100 (60-140 ms)	4.75	846	.44	778	.43	871	.42	743	•37	712	.36	.156	058	.235	

Targets Parietal ERP N200 (140-260 ms)	13.16	866	.63	573	.59	777	.56	537	.56	499	.50	.468	3 .143	.525	.586
Targets Parietal ERP Early P300b (320-420 ms)	9.47	1.241	1.00	1.018	.97	.956	.95	.772	.81	.867	.81	22	2284	467	373
Targets Parietal ERP Late P300b (420-600 ms)	5.52	.701	.71	.633	.66	.514	.69	.450	.66	.438	.57	09	6262	352	369
Targets LOW Early (40- 160 ms)	6.22	.742	.67	.736	.70	.533	.65	.518	.68	.445	.73	00	9311	335	443
Targets LOW Mid (160- 300 ms) Targets	15.14	.928	.73	.685	.78	.627	.68	.544	.75	.437	.78	33	3414	528	675
LOW Late (300-440 ms)	12.92	.396	.73	.231	.70	.141	.63	.053	.66	003	.68	22	7350	471	548
Targets BETA Mid (140- 220 ms)	4.34	.548	.87	.621	1.02	.378	.79	.262	.83	.336	.80	.08	5196	330	244
Targets BETA Late (420- 560 ms)	4.26	609	.76	577	.82	493	.76	397	.85	379	.85	.043	3.153	.279	.303
Targets GAMMA	3.44	067	.83	.234	.99	.078	.88	.056	1.00	.131	.97	.36	5 .176	.149	.239

Mid (140- 180 ms)																
Targets GAMMA Mid-2 (240-280 ms) Targets	2.91	185	.91	.111	1.01	081	.88	029	.98	004	1.06		.324	.113	.171	
Targets GAMMA Late (340- 600 ms)	3.71	309	.82	077	.93	116	.84	118	.97	078	.98		.283	.236	.233	
CDA Variate 1:	75.48	.528	·94	.002	.76	.062	.90	572	.82	510	.83	-	556	493	-1.164	
CDA Variate 2:	18.34	.027	1.00	.846	.99	414	.97	034	.84	.048	.98		.818	440	060	
CDA Variate 3:	12.84	.129	.99	503	.99	376	1.04	.125	.98	.084	.89	-	641	512	003	

Tukey's B Homo	ogenous Subgroups
Standards ERP P50 (60-80 ms)	HC/BDP/SAD/SZ < BDNP
Standards ERP N100 (80-140 ms)	HC/BDP/BDNP < BDNP/SZ < SZ/SAD
Standards ERP Rising P200 (140-200 ms)	BDP/BDNP < BDNP/HC/SAD/SZ
Standards ERP Late P200 (200-280 ms)	SZ/SAD/BDNP/BDP < HC
Standards ERP Late (520-600 ms)	BDNP/SAD/SZ/BDP < SAD/SZ/BDP/HC
Standards LOW Early/Mid (20-340 ms)	SADSZ/BDP < BDP/BDNP < BDNP/HC
Standards BETA Early (20-160 ms)	SAD/SZ/BDP < HC/BDNP
Standards GAMMA Early (20-100 ms)	BDP/SAD/SZ < SAD/SZ/HC < HC/BDNP
Standards GAMMA Mid (180-200 ms)	HC/SAD/BDP/SZ/BDNP
Standards GAMMA Mid-2 (220-260 ms)	HC/BDP/SAD/SZ < BDP/SAD/SZ/BDNP
Targets Frontal ERP N100 (80-140 ms)	HC/BDNP < BDNP/BDP/SZ < BDP/SZ/SAD
Targets Frontal ERP P2/N2 (140-240 ms)	BDP/HC/SZ < HC/SZ/BDNP < SZ/BDNP/SAD
Targets Frontal ERP P3a (280-360 ms)	BDNP/BDP/SAD/SZ < SAD/SZ/HC
Targets Frontal ERP Late (420-580 ms)	BDNP/BDP/HC < BDP/HC/SAD < SAD/SZ
Targets Parietal ERP N100 (60-140 ms)	BDP/HC/BDNP < HC/BDNP/SAD < BDNP/SAD/SZ
Targets Parietal ERP N200 (140-260 ms)	HC/BDP < BDNP/SAD/SZ
Targets Parietal ERP Early P300b (320-420 ms)	SAD/SZ/BDP/BDNP > BDNP/HC
Targets Parietal ERP Late P300b (420-600 ms)	SZ/SAD/BDP/BDNP < BDP/BDNP/HC
Targets LOW Early (40-160 ms)	SZ/SAD/BBDP < BDNP/HC
Targets LOW Mid (160-300 ms)	SZ/SAD/BDP < SAD/BDP/BDNP < HC

 Table S3: Post-Hoc comparisons for each EEG and CDA variable:

Targets LOW Late (300-440 ms)	SZ/SAD/BDP < SAD/BDP/BDNP < BDNP/HC
Targets BETA Mid (140-220 ms)	SAD/SZ/BDP < SZ/BDP/HC < BDP/HC/BDNP
Targets BETA Late (420-560 ms)	HC/BDNP/BDP/SAD/SZ
Targets GAMMA Mid (140-180 ms)	HC/SAD/BDP/SZ < SAD/BDP/SZ/BDNP
Targets GAMMA Mid-2 (240-280 ms)	HC/BDP/SAD/SZ/BDNP
Targets GAMMA Late (340-600 ms)	HC/SAD/BDP/SZ/BDNP
CDA Variate 1:	HC < BDP/BDNP < SZ/SAD
CDA Variate 1:	BDP < SAD/HC/SZ < BDNP
CDA Variate 1:	BDNP/BDP < SZ/SAD/HC

Table S4: CDA Results and Structure Matrix:

Function	Eigenvalue	% of Vari	ance	Car	nonical Correlation
CDA-1	.288	64.5			.473
CDA-2	.078	17.4			.268
CDA-3	.051	11.5			.221
Test of Function(s)	Wilks' Lambda	Chi-square	df		Sig.
1 through 4	.666	431.339	104		<.001
2 through 4	.858	163.018	75		<.001
3 through 4	.924	83.745	48		.001
CDA St	tructure Matrix:		CDA-1	CDA-2	CDA-3
Standards ERP P50 (60	0-80 ms)		113	.311	335
Standards ERP N100 (8	80-140 ms)		452	.027	.066
Standards ERP Rising	P200 (140-200 ms)		05	.219	.569
Standards ERP Late P2	200 (200-280 ms)		.378	027	.161
Standards ERP Late (5:	20-600 ms)		.19	148	.249
Standards LOW Early/2	Mid (20-340 ms)		.44	.213	.033
Standards BETA Early	(20-160 ms)		.322	.335	.027
Standards GAMMA Ear	rly (20-100 ms)		.193	.458	.091
Standards GAMMA Mi	d (180-200 ms)		153	.076	252
Standards GAMMA Mie	d-2 (220-260 ms)		186	.125	175

Targets Frontal ERP N100 (80-140 ms)	352	139	088
Targets BETA Late (420-560 ms)	227	084	.027
Targets Frontal ERP P2/N2 (140-240 ms)	23	.27	.24
Targets Frontal ERP P3a (280-360 ms)	.213	056	.454
Targets Frontal ERP Late (420-580 ms)	245	013	.399
Targets Parietal ERP N100 (60-140 ms)	248	.193	.205
Targets Parietal ERP N200 (140-260 ms)	502	.253	007
Targets Parietal ERP Early P300 (320-420 ms)	.373	.094	.137
Targets Parietal ERP Late P300 (420-600 ms)	.313	.154	.082
Targets LOW Early (40-160 ms)	.31	.233	.064
Targets LOW Late (300-440 ms)	•437	.124	.152
Targets LOW Mid (160-300 ms)	.483	.087	.213
Targets BETA Mid (140-220 ms)	.241	.232	06
Targets GAMMA Mid (140-180 ms)	142	.107	255
Targets GAMMA Mid-2 (240-280 ms)	143	.13	177
Targets GAMMA Late (340-600 ms)	19	.006	228

Table S5: CCA Cognition Structure Matrix

COGNITION		NEURAL	
BACS: Verbal Memory	.70	Standards ERP P50 (60-80 ms)	23
BACS: Digit Sequencing	.65	Standards ERP N100 (80-140 ms)	52
BACS: Token Motor	.64	Standards ERP Rising P200 (140-200 ms)	02
BACS: Verbal Fluency	.60	Standards ERP Late P200 (200-280 ms)	.33
BACS: Symbol Coding	.89	Standards ERP Late (520-600 ms)	.16
BACS: Tower of London	.68	Standards LOW Early/Mid (20-340 ms)	•54
		Standards BETA Early (20-160 ms)	.32
		Standards GAMMA Early (20-100 ms)	.10
		Standards GAMMA Mid (180-200 ms)	29
		Standards GAMMA Mid-2 (220-260 ms)	28
		Targets Frontal ERP N100 (80-140 ms)	42
		Targets Frontal ERP P2/N2 (140-240 ms)	25
		Targets Frontal ERP P3a (280-360 ms)	.26
		Targets Frontal ERP Late (420-580 ms)	27
		Targets Parietal ERP N100 (60-140 ms)	42
		Targets Parietal ERP N200 (140-260 ms)	49
		Targets Parietal ERP Early P300 (320-420 ms)	.48
		Targets Parietal ERP Late P300 (420-600 ms)	.44
		Targets LOW Early (40-160 ms)	.46
		Targets LOW Mid (160-300 ms)	.63

Targets LOW Late (300-440 ms)	.62
Targets BETA Mid (140-220 ms)	.21
Targets BETA Late (420-560 ms)	19
Targets GAMMA Mid (140-180 ms)	26
Targets GAMMA Mid-2 (240-280 ms)	24
Targets GAMMA Late (340-600 ms)	31

Table S6: CCA Clinical Structure Matrix

CLINICAL		NEURAL	
PANSS Positive	34	Standards ERP P50 (60-80 ms)	13
PANSS Negative	34	Standards ERP N100 (80-140 ms)	.24
PANSS General	.12	Standards ERP Rising P200 (140-200 ms)	.46
MADRS	.48	Standards ERP Late P200 (200-280 ms)	05
YOUNG MANIA	.23	Standards ERP Late (520-600 ms)	.15
Social Functioning	.36	Standards LOW Early/Mid (20-340 ms)	31
		Standards BETA Early (20-160 ms)	16
		Standards GAMMA Early (20-100 ms)	.03
		Standards GAMMA Mid (180-200 ms)	.19
		Standards GAMMA Mid-2 (220-260 ms)	.14
		Targets Frontal ERP N100 (80-140 ms)	.34
		Targets Frontal ERP P2/N2 (140-240 ms)	.14
		Targets Frontal ERP P3a (280-360 ms)	.16
		Targets Frontal ERP Late (420-580 ms)	.51
		Targets Parietal ERP N100 (60-140 ms)	.36
		Targets Parietal ERP N200 (140-260 ms)	.29
		Targets Parietal ERP Early P300 (320-420 ms)	35
		Targets Parietal ERP Late P300 (420-600 ms)	32
		Targets LOW Early (40-160 ms)	16
		Targets LOW Mid (160-300 ms)	20
		Targets LOW Late (300-440 ms)	23

Targets BETA Mid (140-220 ms)	.03
Targets BETA Late (420-560 ms)	.24
Targets GAMMA Mid (140-180 ms)	.15
Targets GAMMA Mid-2 (240-280 ms)	.09
Targets GAMMA Late (340-600 ms)	.08

Table S7: Medications Associations

	Antipsychotics		s Antidepressants		Lith	Lithium		Anticonvulsants		Stimulants		Anxiolytics	
	r	р	r	р	r	р	r	р	r	р	r	р	
Standards ERP P50 (60-80 ms)	057	.148	.096*	.015	.032	.422	034	.384	001	.977	.016	.691	
Standards ERP N100 (80-140 ms)	.114**	.004	.062	.118	.072	.069	.013	.734	059	.139	.033	.405	
Standards ERP Rising P200 (140-200 ms)	.049	.213	063	.110	.055	.161	.025	.532	009	.825	024	•544	
Standards ERP Late P200 (200-280 ms)	153**	.000	067	.090	.046	.246	069	.081	.003	.940	095*	.016	
Standards ERP Late (520-600 ms)	039	.321	081*	.041	006	.886	021	.593	043	.278	074	.060	
Standards LOW Early/Mid (20-340 ms)	064	.108	.020	.606	.066	.096	.013	.751	.078*	.048	.044	.262	
Standards BETA Early (20-160 ms)	028	.475	.027	.501	.047	.237	010	.795	.092*	.020	.081*	.041	
Standards GAMMA Early (20-100 ms)	.016	.689	.027	.499	.017	.676	.002	.968	.065	.098	.037	.352	
Standards GAMMA Mid (180-200 ms)	040	.312	.008	.847	.023	.565	.004	.921	.014	.723	.004	.912	
Standards GAMMA Mid-2 (220-260 ms)	028	.475	.009	.827	.022	.570	.013	.748	023	.555	055	.167	
Targets Frontal ERP N100 (80-140 ms)	.069	.080	.046	.245	001	.972	030	.450	056	.155	022	.586	
Targets BETA Late (420-560 ms)	.069	.083	.097*	.014	.032	.413	.008	.846	009	.813	.049	.219	
Targets Frontal ERP P2/N2 (140-240 ms)	006	.888	119**	.003	.045	.260	081*	.040	013	.738	010	.791	
Targets Frontal ERP P3a (280-360 ms)	.138**	.000	044	.264	049	.213	.015	.706	003	.936	.019	.627	

Targets Frontal ERP Late (420-580 ms)	.098*	.013	051	.195	070	.076	.108**	.006	018	.658	042	.291
Targets Parietal ERP N100 (60-140 ms)	.188**	.000	016	.695	074	.061	.100*	.011	.029	.470	.085*	.031
Targets Parietal ERP N200 (140-260 ms)	026	.517	022	.570	.055	.162	062	.116	.045	.252	.018	.640
Targets Parietal ERP Early P300 (320-420 ms)	035	.381	.020	.607	.115**	.003	035	.378	.013	•747	.047	.238
Targets Parietal ERP Late P300 (420-600 ms)	044	.271	.007	.851	.062	.116	.016	.689	.121**	.002	.061	.121
Targets LOW Early (40-160 ms)	066	.097	.007	.855	.050	.205	043	.277	.077	.051	.030	.445
Targets LOW Late (300-440 ms)	075	.058	015	.696	.080*	.044	023	.567	.072	.069	.017	.671
Targets LOW Mid (160-300 ms)	051	.197	027	.499	.079*	.045	029	.465	.087*	.028	.078*	.049
Targets BETA Mid (140-220 ms)	.044	.262	045	.250	.015	.704	.024	.545	.055	.168	.056	.153
Targets GAMMA Mid (140-180 ms)	051	.200	.000	.992	.051	.200	014	.720	012	.760	047	.231
Targets GAMMA Mid- 2 (240-280 ms)	023	.569	.022	•574	.052	.191	019	.639	032	.416	019	.630
Targets GAMMA Late (340-600 ms)	041	.302	.021	.603	.036	.366	022	.572	034	.395	028	.476
Note. Uncorrected Spea	rman corre	elations wi	ith on/off s	status and	EEG meas	sures. *p<	<.05, ** p<.	01 two tai	iled			

Table S8: Medication details by group

•••	-				
	НС	SZ	SAD	BDP	BDNP
% with medication information	99	96	99	98	99
6 on any medication	48	88	93	91	91
otal medication count- mean	1.11	3.99	4.78	4.61	5.11
tal medication count- SD	1.66	2.89	3.49	3.89	4.00
chotropic count- mean	.07	2.22	2.66	2.73	2.78
chotropic count- SD	.35	1.44	1.66	1.99	1.62
n psychotropic medication	6	88	90	88	92
antipsychotic	0	84	79	65	39
n first generation AP	0	21	14	1	2
n second generation AP	0	72	71	65	39
n antidepressant	3	43	52	44	60
n tricyclic	0	1	2	2	9
on MAOI	0	0	0	0	2
n SSRI	2	32	40	26	34
n other antidepressant	1	19	22	29	35
n mood stabilizer	1	22	46	65	68

% on lithium	0	5	12	23	26
% on anticonvulsant	1	18	40	50	51
% on anxiolytic/sedative/hypnotic	2	15	21	28	37
% on anticholinergic/antiparkinsonian	0	22	16	3	2
% on stimulant	1	1	5	6	11
% on other psychotropic	0	6	6	10	15

Differences in medication status between clinical groups

	Statistic	p
Total medications	F(3) = 2.64*	.048
Total psychotropic medications	$F(3) = 4.12^{**}$.007
On antipsychotic	$x^2(3) = 6.55^{***}$	<.001
On antidepressant	$x^2(3) = 8.53^*$.04
On SSRI	$x^2(3) = 9.09^*$.03
On mood stabilizer	$x^2(3) = 85.83^{***}$	<.001
On lithium	$x^2(3) = 36.51^{***}$	<.001
On anticonvulsant	$x^2(3) = 52.87^{***}$	<.001
On anxiolytic/sedative/hypnotic	$x^2(3) = 18.58^{***}$	<.001
On anticholinergic/ antiparkinsonian	$x^2(3) = 37.93^{***}$	<.001

Lithium dosage information by clinical group

	SZ	SAD	BDP	BDNP	F(3)	р
N on lithium with data	7	18	31	13		
Mean dose	678.57	822.78	922.58	865.38	•74	.53
Dose SD	513.04	34.39	446.484	352.60		

Note. Doses are reported in mg/day.

Chlorpromazine (CPZ) dose equivalents by clinical group

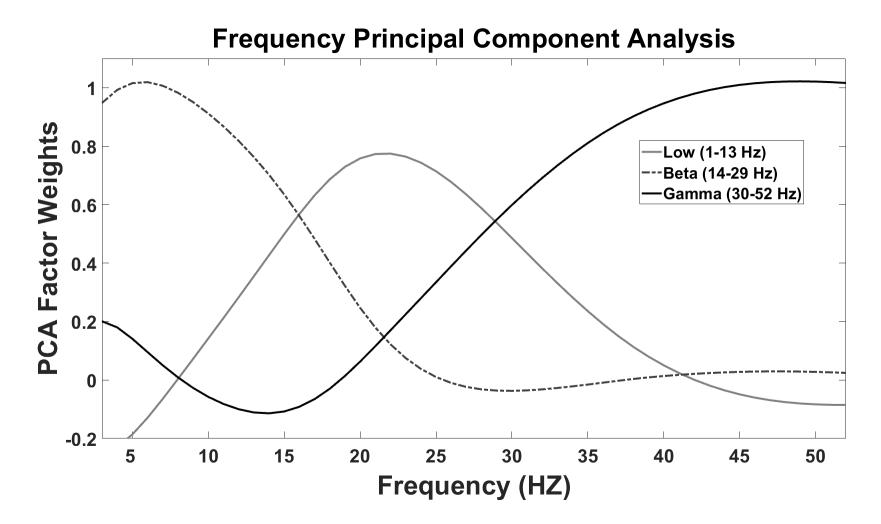
	SZ	SAD	BDP	BDNP	F(3)	р
N on antipsychotics with data	143	138	87	19		
Mean dose	725.06	595.72	298.94	264.53	3.69	.01
Dose SD	1217.15	116.95	284.18	275.14		

Note. Doses are reported in mg/day.

Jackknife Stepwise Linear Discriminant (95% of the sample)

EEG Variables	Number of times in STEPWISE (1000 Iterations: 95% of Sample)	Percentage in Stepwise Iterations	Average F- Value
Standards ERP Late P200 (200-280 ms)	1000	100	5.88
Targets Frontal ERP P2/N2 (140-240 ms)	1000	100	9.61
Targets Parietal ERP N200 (140-260 ms)	1000	100	18.59
Targets BETA Mid (140-220 ms)	1000	100	5.92
Targets BETA Late (420-560 ms)	1000	100	10.24
Targets LOW Mid (160-300 ms)	998	99.8	8.30
Standards ERP Rising P200 (140-200 ms)	991	99.1	5.31
Standards ERP P50 (60-80 ms)	760	76	3.06
Standards GAMMA Early (20-100 ms)	610	61	3.79
Standards BETA Early (20-160 ms)	582	58.2	7.76
Standards LOW Early/Mid (20-340 ms)	456	45.6	13.04
Targets Frontal ERP N100 (80-140 ms)	358	35.8	2.75
Standards ERP N100 (80-140 ms)	265	26.5	12.83
Targets Frontal ERP P3a (280-360 ms)	219	21.9	5.19
Targets Parietal ERP Early P300 (320-420 ms)	158	15.8	7.49
Targets Frontal ERP Late (420-580 ms)	152	15.2	3.05
Targets Parietal ERP N100 (60-140 ms)	29	2.9	2.53
Standards ERP Late (520-600 ms)	23	2.3	2.54
Targets LOW Early (40-160 ms)	10	1	2.65
Standards GAMMA Mid-2 (220-260 ms)	6	0.6	3.11
Targets LOW Late (300-440 ms)	6	0.6	3.37
Standards GAMMA Mid (180-200 ms)	4	0.4	2.43
Targets GAMMA Late (340-600 ms)	3	0.3	3.87

Targets Parietal ERP Late P300 (420-600 ms)	1	0.1	2.42
Targets GAMMA Mid (140-180 ms)	1	0.1	2.68
Targets GAMMA Mid-2 (240-280 ms)	0	0	N/A


Table s13:Canonical Discriminant Analysis Variate Means using Top 10 Variables from Table S11. Values are in Standardized Units.

		H	С	BDI	NP	BD	Ρ	SA	D	SZ	Z	BDNP	BDI	P SAD	SZ
	Average F-Value (4,1068)	Mean	SD		Glas	s Delta									
JK-CDA Variate 1:	69.26	0.50	0.94	0.05	0.81	0.09	0.87	-0.54	0.87	-0.51	0.86	-0.47	-0.44	-1.10	-1.06
JK-CDA Variate 2:	13.32	-0.01	1.00	0.79	1.16	-0.24	0.95	-0.04	0.83	0.01	1.02	0.80	-0.23	-0.03	0.02
JK-CDA Variate 3:	8.35	0.11	0.97	-0.23	0.94	-0.34	0.96	0.15	1.07	0.00	0.97	-0.35	-0.46	0.04	-0.11

Pearson Correlation	r-value	p-value
CDA-1 vs JK-CDA 1	.96	< .0001
CDA-2 vs JK-CDA 2	.79	< .0001
CDA-3 vs JK-CDA 3	.75	< .0001

Supplemental Figures

Figure S1: Frequency Principal Component Analysis. The PCA factor weights of each component are plotted for each frequency from 3-52 Hz. The three components accounted for >95% of the variance.

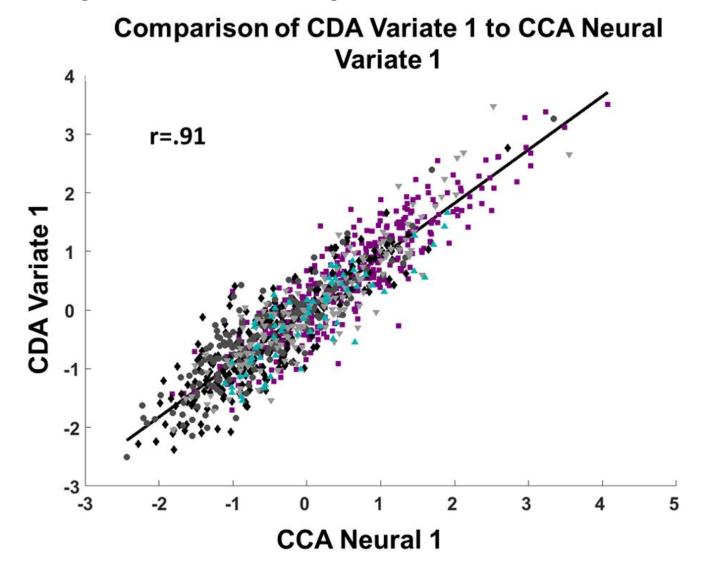


Figure S2: Scatter plot of the CDA neural values in comparison to the CCA neural values. Two-tailed Pearson correlation with a total

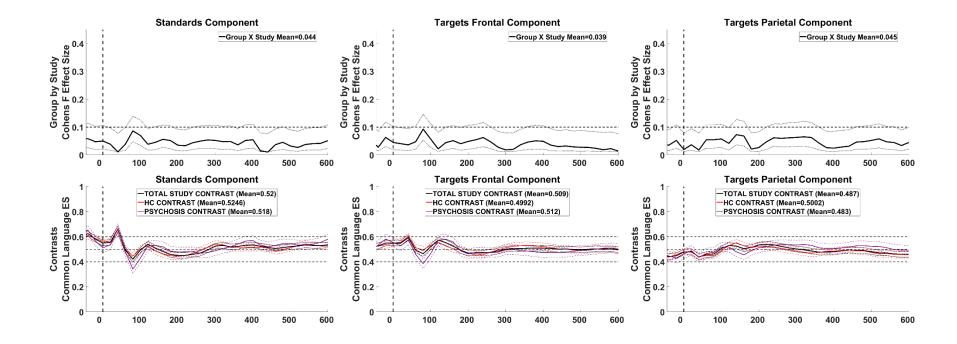


Figure S3:

Top: B-SNIP1 vs B-SNIP2 sample group x study effect sizes (95% CI) for each ERP component across each 20 ms time-bin. An F effect size of .1 indicates a small effect size. No Group x Study p-values were <.05 after FDR correction. Effect size plots are not corrected for multiple comparisons.

Bottom: Total Study, HC, and Psychosis equivalence contrasts in common language effect sizes (90% CI) for each ERP

component across each 20 ms time-bin. An effect size of .5 indicates no difference between samples. Contrast= B-SNIP1 – B-SNIP2. Contrasts effect size plots are not corrected for multiple comparisons. See supplemental methods for additional details.

