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Participants 

1,601 participants completed multimodal neuroimaging as part of the PNC (1, 2), a large-

scale community-based study of brain development. Of these, 154 were excluded for: medical 

disorders that could impact brain functioning (n=81), medication use for medical conditions that 

could affect central nervous system functioning (n=64), or substantial structural brain 

abnormalities (n=20); several subjects were excluded for multiple criteria. Exclusion criteria 

based on medical history included but was not limited to: cancer, cerebral meningitis, cystic 

fibrosis, immunological conditions (e.g., lupus, common variable immunodeficiency), lead 

poisoning, severe liver or kidney problems, and sickle cell anemia. Neurological/endocrine 

disorders that were the basis of exclusion included: epilepsy, stroke, loss of consciousness for 

more than 5 min, major neurodevelopmental disorders (e.g., autism), brain tumor or injury, 

reflex neurovascular dystrophy, Marfan syndrome, thyroid problems, and Turner syndrome. 

Medications for medical conditions that were the basis of exclusion included but were not 

limited to: anticonvulsants, antiemetics, CNS stimulants, muscle relaxants, narcotic analgesics 

(pain relievers), and sedatives. In addition, 51 individuals were excluded for failing to meet 

structural image quality assurance protocols, and two participants were excluded for missing 

clinical data. The final sample consisted of 1,394 youth; demographics of the sample are 

summarized in Table 1. 

Clinical Assessment 

As described in detail in our previous work (1–3), assessment of lifetime 

psychopathology was conducted using GOASSESS, a structured screening interview 

administered to probands (age 11-21) and collateral informants of probands (age 8-17), based on 

a modified version of the Kiddie-Schedule for Affective Disorders and Schizophrenia (4) and 

Diagnostic and Statistical Manual of Mental Disorders, 4th edition, Text Revision criteria (5). 

The GOASSESS interview assesses lifetime occurrence of mood (major depressive episode, 

mania), anxiety (agoraphobia, generalized anxiety, panic, specific phobia, social phobia, 

separation anxiety, posttraumatic stress), behavioral problems (oppositional defiant, attention 

deficit/hyperactivity, conduct), psychosis, eating disorder (anorexia, bulimia), and suicidal 

symptoms. Among the GOASSESS questions, 112 screening items administered to all 

participants were used for the current investigation. Of note, due to comorbidity, participants 

may be represented in more than one category. The GOASSESS interview was administered by 

trained assessors who underwent a common training protocol (developed and implemented by 

Dr. Calkins) that included didactic sessions, assigned readings, and supervised pair-wise 

practice. Assessors were certified for independent assessments following observation by a 

certified clinical observer who rated the proficiency of the assessor on a 60-item checklist of 

interview procedures. The median interval of time between clinical assessment and 

neuroimaging was 2 months. 

Factor Analysis 

Traditional diagnostic categories are limited by inadequate reliability, as well as 

substantial heterogeneity and comorbidity found among disorders (6–10). Additionally, given 

that psychopathology symptoms are continuous and hierarchically arranged (11–13), we sought 

to quantify a dimensional measure of psychopathology across all psychiatric disorders. To do 

this, we applied an exploratory factor analysis (EFA) to 112 item-level symptom questions from 

the GOASSESS. EFA is used to find meaningful patterns of covariance and to optimally cluster 

variables by identifying a smaller number of unobserved variables, or factors, that explain said 
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covariance. For example, it is possible that covariances among our 112 symptom variables 

mainly reflect the influence of a smaller number of underlying (latent) variables. Exploratory 

factor analysis aims to identify these latent variables in an exploratory manner, in other words, 

without imposing any constraints based on a priori theories about how the variables will be 

related. As described in detail elsewhere (14), an exploratory factor analysis with the PNC 

dataset yielded four correlated dimensions of psychopathology including factors for anxious-

misery, psychosis, behavioral (externalizing), and fear (Figure 1A). This is consistent with the 

results of prior exploratory factor analyses of psychiatric symptoms (11, 12, 15). Importantly, 

these factors are highly correlated with one another and lack specificity. For example, as can be 

seen in Figure 1A, the participants with fear-based disorders (PTSD, agoraphobia, social anxiety, 

specific phobia, and separation anxiety) had the highest scores on the fear factor, but also had 

fairly high scores on the three other factors (anxious-misery, psychosis, and behavioral) as well. 

Additionally, we see that the fear factor is fairly high across all of the symptom categories (e.g., 

depression, GAD, psychosis, ADHD, conduct disorder, etc.). Thus, endorsement of any of the 

112 psychiatric symptoms increases the probability of endorsement of any other of the 

symptoms, regardless of whether the symptoms are part of the same disorder. This implies that 

there may be a “general” latent variable explaining at least some of the covariance across all 

psychiatric symptoms. However, exploratory factor analysis with a simple-structure oblique 

(oblimin) rotation does not capture this common factor.  

The common factor among psychopathology disorders has been termed “p” for 

psychopathology, akin to the overall “g” intelligence factor in cognition research (13). Like g, 

the p factor quantifies the overall level of psychopathology present across clinical domains. 

Importantly, p has been identified as an important feature of clinical symptoms that may 

contribute to the non-specificity of biomarkers found across disorders (10); thus, the p factor was 

of direct interest to the current study. To measure the p factor, we use a bifactor model, which 

requires each item to load on a primary dimension of interest and no more than one secondary 

dimension. In other words, the bifactor model identifies a common factor that is shared across all 

112 symptoms while simultaneously estimating specific symptom factors (e.g., anxious-misery, 

psychosis, behavioral, and fear); the general factor (“p”) and the group factors compete for 

explanation of variance in the item (symptom) responses. Thus, the bifactor model yields both 

the p factor and orthogonal (uncorrelated) factors for the specific dimensions of symptoms. As 

documented in full elsewhere (14), we used a confirmatory bifactor analysis (16, 17) 

implemented in Mplus (18) to model the four correlated factors found with exploratory factor 

analysis (anxious-misery, psychosis, behavioral, and fear) plus a fifth factor that was common 

across all psychiatric disorders, which we termed overall psychopathology (Figure 1B). The 

scores for each factor from the bifactor model showed excellent reliability (overall 

psychopathology: alpha = .98, anxious-misery: alpha = .82, psychosis: alpha = .80, behavioral: 

alpha = .92, fear: alpha = .85). Note that by including the general factor for overall 

psychopathology, correlations among the four specific factors were removed—i.e. all factors in 

the bifactor model are orthogonal. The use of a bifactor model is critical for increasing the 

specificity of our factors. For example, Figure 1C demonstrates how the orthogonal factors now 

relate more specifically to the relevant disorders using the bifactor model, relative to the 

exploratory factor analysis model (Figure 1A). Additionally, as can be seen in Figure 1C, overall 

psychopathology in the green bars was common across the diagnostic categories, but had the 

strongest associations with the psychosis and anxious-misery disorders followed by the 

behavioral and fear disorders. By extracting overall psychopathology (p factor) from the model, 
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the anxious-misery, psychosis, behavioral, and fear factors now represent the “pure” symptoms 

not accounted for by general psychopathology. For example, the fear factor represents the fear 

symptoms specific to the fear disorders and that are not shared across other diagnostic categories.  

Examples of some of the items with high loadings (above .60) on the overall 

psychopathology factor included: 1) Has there ever been a time when you felt so full of energy 

that you couldn't stop doing things and didn't get tired; 2) Have you ever been bothered by 

thoughts that don't make sense to you, that come over and over again and won't go away, such as 

fear that you would do something/say something bad without intending to; 3) I have had the 

experience of hearing faint or clear sounds of people or a person mumbling or talking when there 

is no one near me; 4) Has there ever been a time when you felt grouchy, irritable or in a bad 

mood most of the time, even little things would make you mad; 5) Has there ever been a time 

when all of a sudden, you felt that you were losing control, something terrible was going to 

happen, that you were going crazy, or going to die? Examples of the top items for anxious-

misery included: 1) Did you worry a lot more than most children/people your age; 2) Have you 

ever been a worrier; 3) Has there ever been a time when you felt sad or depressed most of the 

time; 4) Has there ever been a time when you cried a lot, or felt like crying? For psychosis, top 

items included: 1) I think I might feel like my mind is "playing tricks" on me; 2) I may have felt 

that there could possibly be something interrupting or controlling my thoughts, feelings, or 

actions; 3) I think I may get confused at times whether something I experience or perceive may 

be real or may be just part of my imagination or dreams; 4) I believe that I have special natural or 

supernatural gifts beyond my talents and natural strengths. For behavioral, the top items were: 1) 

Did you often have problems following instructions and often fail to finish school, work, or other 

things you meant to get done; 2) Did you often have trouble paying attention or keeping your 

mind on your school, work, chores, or other activities that you were doing; 3) Did you often have 

people tell you that you did not seem to be listening when they spoke to you or that you were 

daydreaming; 4) Did you often dislike, avoid, or put off school or homework (or any other 

activity requiring concentration)? And finally, for fear the top items included: 1) Was there ever 

a time in your life when you felt afraid or uncomfortable acting, performing, giving a 

talk/speech, playing a sport or doing a musical performance, or taking an important test or exam 

(even though you studied enough); 2) Felt afraid or uncomfortable when you had to do 

something in front of a group of people, like speaking in class; 3) Felt afraid or uncomfortable 

because you were the center of attention and were concerned something embarrassing might 

happen; 4) Felt afraid or uncomfortable or really, really shy with people, like meeting new 

people, going to parties, or eating or drinking, writing or doing homework in front of others? For 

the loadings (standardized item-trait correlations) for all items in these models, see Moore et al. 

(14). 

Cognitive Assessment 

Cognition was assessed using the University of Pennsylvania Computerized 

Neurocognitive Battery (CNB), which has been described in detail elsewhere (19). Briefly, 14 

cognitive tests evaluating aspects of cognition, including executive control, episodic memory, 

complex reasoning, social cognition, and sensorimotor speed were administered in a fixed order. 

Except for the sensorimotor tests that only measure speed, each test provides measures of both 

accuracy and speed. We used three factor scores for performance accuracy derived in a 

previously reported exploratory factor analysis with oblique rotation (19): 1) executive function 

and complex reasoning, 2) social cognition, and 3) episodic memory. These cognitive factor 

scores were included as predictors of psychopathology in the multivariate analyses. 
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Image Acquisition and Processing 

Imaging data were acquired on a Siemens TIM Trio 3 Tesla scanner (Erlangen, Germany) 

with a 32-channel head coil. Structural brain imaging was completed using a magnetization‐
prepared, rapid acquisition gradient‐echo (MPRAGE) T1‐weighted image with the following 

parameters: TR 1810 ms; TE 3.51 ms; FOV 180x240 mm; matrix 192x256; 160 slices; slice 

thickness/gap 1/0 mm; TI 1100 ms; flip angle 9 degrees; effective voxel resolution of 0.93 x 0.93 

x 1.00 mm; total acquisition time 3:28 minutes. Structural image processing utilized Advanced 

Normalization Tools (ANTs) (20). This pipeline includes N4 bias field correction, brain 

extraction, Atropos probabilistic tissue segmentation (21), and direct estimation of cortical 

thickness in volumetric space (22). Structural images were registered to a custom adolescent 

template in local space using the top-performing SyN diffeomorphic registration method (23). 

Prior to analysis, cortical thickness images were down-sampled to 2 mm voxels and smoothed 

with a 4 mm full-width, half maximum Gaussian kernel. After statistical testing, images were 

registered to the Montreal Neurologic Institute (MNI) 152 1-mm template space for reporting of 

standard coordinates and display. 

Image Quality Assurance 

Three highly trained image analysts independently assessed structural image quality; for 

full details of this procedure see Rosen et al. (24). Briefly, three raters were trained prior to rating 

images on an independent training sample of 100 images. All three raters were trained to >85% 

concordance with faculty consensus ratings. T1 images were rated on a 0-2 Likert scale (0 = 

unusable images (3.1% of the sample), 1 = usable images with some artifact (16.9%), and 2 = 

images with none or almost no artifact (80.0%)). All images with an average rating of 0 were 

excluded from analyses. We included average quality rating across the three raters as a covariate 

in all models in order to control for the confounding influence of subtle variation in image 

quality.  

All processed data underwent rigorous quality control as well. Specifically, the volume 

and thickness of anatomically-defined regions of interest (defined using multi-atlas labeling with 

joint label fusion (25); see below) were evaluated for outliers. Outliers were defined as values 

greater or less than 2.5 standard deviations (S.D.) from the mean regional value. Participants 

with an elevated (+2.5 S.D.) number of regions with outlying volume or cortical thickness values 

were flagged for manual review. Similarly, a regional laterality index was calculated for both 

cortical thickness and volume, and participants with an elevated number of regional laterality 

outliers (+2.5 S.D.) were flagged for review. Flagged images were then manually viewed by two 

independent data analysts. A total of 61 individuals were excluded for failing to meet these 

image processing quality assurance procedures. 

Jacobian Volume  

Volume images were created from the log transformed determinant of the Jacobian of the 

deformation field. Specifically, displacement vectors created during spatial normalization were 

composed with the corresponding 12-DOF affine transformation to produce total displacements 

from the subject brain to the template brain in millimeters. These displacement vectors were used 

to calculate Jacobian matrices in each voxel, on which we calculated the log of the determinant 

to quantify local expansion or contraction (26, 27). Our method differs from prior approaches in 
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that displacement vectors are usually evaluated after the affine transform has been applied, which 

obscures overall larger-scale changes in brain size. 

 

Non-negative Matrix Factorization 

Non-negative matrix factorization (NMF) provides several advantages over prior 

methods such as principal component analysis (PCA). Notably, PCA and other techniques 

produce widely-dispersed components with both positive and negative directions, often limiting 

straightforward interpretation. In contrast, NMF produces compact, positively-signed 

components that are more interpretable and reproducible (28, 29). 

We used the same procedures for deriving networks with NMF as done previously (28, 

30–32). To derive NMF networks, first the NMF algorithm takes an input matrix X containing 

voxel-wise cortical thickness estimates (dimensions: 128,155 voxels x 1,394 participants), and 

the algorithm then approximates that matrix as a product of two matrices with non-negative 

elements: X ≅ BC (Figure S1). The first matrix, B, is of size V x K and contains the estimated 

non-negative networks and their respective loadings on each of the V voxels, where K is the 

user-specified number of networks. The B matrix, or loadings matrix, is composed of 

coefficients that denote the relative contribution of each voxel to a given network. These non-

negative coefficients of the decomposition represent the entirety of the brain as a subject-specific 

addition of various parts. The second matrix, C, is of size K x N and contains subject-specific 

weights for each network. These subject-specific weights indicate the contribution of each 

network in reconstructing the original cortical thickness map and were evaluated for associations 

with psychopathology.  

Consistent with studies using this technique (28, 32), we performed multiple NMF 

solutions requesting 2 to 30 networks (in steps of two) in order to obtain a range of possible 

solutions. We selected the optimal dimensionality of these networks using two criteria. First, we 

calculated the reconstruction error for each solution as the Frobenius norm between the structural 

data matrix and the NMF approximation and plotted the reconstruction error for all solutions. 

Second, we conducted a split-half reliability analysis to describe the stability of the NMF 

solution at each resolution, quantified using the Adjusted Rand Index (ARI). As expected, 

reconstruction error generally declined as the number of networks increased. The final 18-

network solution was chosen based on the gradient of reconstruction error (Figure S2), which 

shows only nominal decrements in error beyond 14 networks. Additionally, we checked the split-

half reliability at this resolution, which revealed an ARI of .93 for the 18-network solution, 

suggesting that this solution is highly reproducible. This resolution is also consistent with 

previous reports (32). Accordingly, the 18-network solution was used for all subsequent 

analyses. As in prior work using NMF (28, 32), the structural covariance networks identified 

were highly symmetric bilaterally (Figure 2). Cortical thickness NMF networks were then 

applied to volume images in order to obtain comparable networks for volume analyses. NMF 

networks were visualized on the inflated Population-Average, Landmark-, and Surface-based 

(PALS) cortical surfaces using Caret software (33, 34). Images were converted to the Montreal 

Neurologic Institute (MNI) 152 1-mm template space for display. 
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TABLE S1. Structural covariance networks of cortical thickness in relation to anxious-misery, psychosis, behavioral, 

fear, and overall pathology (n=1394, df=1385) 
Cortical Thickness Anxious-misery Psychosis Behavioral 

NMF Network B SE t pfdr B SE t pfdr B SE t pfdr 

1: Cingulate cortex -0.01 0.02 -0.38 .910 -0.01 0.02 -0.52 .725 -0.04 0.02 -1.77 .191 

2: Medial temporal cortex 0.02 0.03 0.81 .629 -0.05 0.02 -1.99 .139 0.00 0.02 0.09 .928 

3: Temporal pole 0.04 0.02 1.80 .216 -0.04 0.02 -1.82 .162 -0.03 0.02 -1.59 .222 

4: Frontal cortex -0.04 0.02 -1.84 .216 -0.02 0.02 -0.97 .500 -0.01 0.02 -0.55 .619 

5: Posterior cingulate cortex 0.06 0.02 2.40 .098 -0.06 0.02 -3.04 .043 -0.04 0.02 -2.01 .191 

6: Superior parietal cortex 0.02 0.02 0.81 .629 -0.02 0.02 -0.81 .537 -0.03 0.02 -1.24 .323 

7: Superior temporal cortex 0.01 0.03 0.19 .931 -0.05 0.02 -2.10 .129 -0.04 0.02 -1.72 .191 

8: Dorsomedial prefrontal cortex -0.03 0.02 -1.40 .412 0.00 0.02 -0.13 .897 -0.02 0.02 -0.98 .394 

9: Insular cortex 0.01 0.02 0.30 .920 -0.03 0.02 -1.44 .246 -0.04 0.02 -1.89 .191 

10: Fusiform cortex 0.03 0.03 1.03 .609 -0.04 0.02 -1.47 .246 -0.05 0.03 -1.80 .191 

11: Inferior temporal cortex 0.00 0.02 0.15 .931 -0.01 0.02 -0.32 .789 -0.03 0.02 -1.25 .323 

12: Right lateral occipital cortex 0.05 0.03 2.03 .189 -0.04 0.02 -1.54 .246 -0.05 0.02 -1.90 .191 

13: Subgenual cingulate, anterior cingulate, and anterior insula 0.01 0.02 0.53 .821 -0.04 0.02 -1.80 .162 -0.02 0.02 -0.91 .407 

14: Inferior prefrontal cortex 0.00 0.02 -0.09 .931 -0.01 0.02 -0.46 .728 -0.03 0.02 -1.17 .328 

15: Intraparietal 0.06 0.02 2.57 .093 -0.05 0.02 -2.12 .129 -0.05 0.02 -2.15 .191 

16: Posterior cingulate (a) and TPJ (b) 0.07 0.02 2.94 .060 -0.05 0.02 -2.25 .129 -0.05 0.02 -2.42 .191 

17: Parahippocampal 0.02 0.03 0.85 .629 -0.02 0.02 -0.83 .537 -0.04 0.03 -1.39 .296 

18: Medial occipital cortex 0.03 0.03 1.26 .470 -0.05 0.02 -2.32 .129 -0.03 0.02 -1.14 .328 

Cortical Thickness Fear Overall Psychopathology     

NMF Network B SE t pfdr B SE t pfdr R2*    

1: Cingulate cortex -0.05 0.02 -2.22 .040 -0.03 0.02 -1.54 .249 0.35    

2: Medial temporal cortex -0.07 0.02 -2.85 .009 -0.03 0.02 -1.06 .399 0.17    

3: Temporal pole -0.06 0.02 -2.86 .009 -0.02 0.02 -1.09 .399 0.37    

4: Frontal cortex -0.03 0.02 -1.49 .153 0.05 0.02 2.21 .123 0.38    

5: Posterior cingulate cortex -0.08 0.02 -3.69 .001 -0.04 0.02 -1.90 .149 0.34    

6: Superior parietal cortex -0.03 0.02 -1.30 .204 0.01 0.02 0.38 .748 0.38    

7: Superior temporal cortex -0.05 0.02 -2.14 .045 0.00 0.02 0.00 .997 0.17    

8: Dorsomedial prefrontal cortex -0.01 0.02 -0.43 .665 0.04 0.02 1.74 .186 0.35    

9: Insular cortex -0.05 0.02 -2.23 .040 -0.03 0.02 -1.48 .249 0.29    

10: Fusiform cortex -0.09 0.03 -3.41 .002 -0.06 0.03 -2.28 .123 0.10    

11: Inferior temporal cortex -0.08 0.02 -3.47 .002 -0.01 0.02 -0.50 .694 0.25    

12: Right lateral occipital cortex -0.07 0.02 -3.08 .005 -0.03 0.02 -1.10 .399 0.22    

13: Subgenual cingulate, anterior cingulate, and anterior insula -0.08 0.02 -3.42 .002 -0.06 0.02 -2.71 .061 0.25    

14: Inferior prefrontal cortex -0.05 0.02 -2.39 .031 0.04 0.02 2.03 .128 0.38    

15: Intraparietal -0.04 0.02 -1.70 .107 -0.02 0.02 -0.89 .483 0.33    

16: Posterior cingulate (a) and TPJ (b) -0.09 0.02 -4.38 <.001 -0.09 0.02 -4.25 <.001 0.37    

17: Parahippocampal -0.05 0.03 -2.03 .055 -0.05 0.03 -2.08 .128 0.11    

18: Medial occipital cortex -0.09 0.02 -3.75 .001 -0.02 0.02 -0.69 .589 0.23    

  * R2 values are for the full-model.  
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TABLE S2. Structural covariance networks of volume in relation to anxious-misery, psychosis, behavioral, fear, 

and overall pathology (n=1394, df=1385) 
Volume Anxious-misery Psychosis Behavioral 

NMF Network B SE t pfdr B SE t pfdr B SE t pfdr 

1: Cingulate cortex 0.06 0.02 2.23 .029 -0.03 0.02 -1.16 .277 -0.06 0.02 -2.56 .053 

2: Medial temporal cortex 0.09 0.02 3.96 <.001 -0.05 0.02 -2.13 .185 -0.05 0.02 -1.99 .072 

3: Temporal pole 0.10 0.02 4.28 <.001 -0.02 0.02 -1.12 .277 -0.06 0.02 -2.38 .054 

4: Frontal cortex 0.06 0.02 2.31 .025 -0.03 0.02 -1.34 .253 -0.05 0.02 -2.14 .064 

5: Posterior cingulate cortex 0.08 0.02 3.35 .002 -0.04 0.02 -1.63 .207 -0.05 0.02 -2.06 .072 

6: Superior parietal cortex 0.07 0.03 2.75 .008 -0.04 0.02 -1.92 .185 -0.08 0.02 -3.25 .011 

7: Superior temporal cortex 0.04 0.02 1.69 .092 -0.01 0.02 -0.62 .533 -0.02 0.02 -0.65 .516 

8: Dorsomedial prefrontal cortex 0.07 0.02 3.02 .005 -0.03 0.02 -1.41 .253 -0.03 0.02 -1.47 .160 

9: Insular cortex 0.08 0.03 3.10 .004 -0.03 0.02 -1.41 .253 -0.05 0.02 -2.22 .060 

10: Fusiform cortex 0.09 0.02 3.86 <.001 -0.05 0.02 -2.05 .185 -0.08 0.02 -3.28 .011 

11: Inferior temporal cortex 0.10 0.02 4.37 <.001 -0.05 0.02 -2.15 .185 -0.03 0.02 -1.44 .160 

12: Right lateral occipital cortex 0.08 0.02 3.20 .003 -0.04 0.02 -1.75 .185 -0.04 0.02 -1.56 .144 

13: Subgenual cingulate, anterior cingulate, and anterior insula 0.05 0.02 2.06 .042 -0.03 0.02 -1.28 .258 -0.06 0.02 -2.37 .054 

14: Inferior prefrontal cortex 0.07 0.02 2.77 .008 -0.04 0.02 -1.74 .185 -0.05 0.02 -1.94 .072 

15: Intraparietal 0.06 0.02 2.63 .011 -0.03 0.02 -1.18 .277 -0.05 0.02 -1.95 .072 

16: Posterior cingulate (a) and TPJ (b) 0.10 0.02 4.12 <.001 -0.04 0.02 -1.77 .185 -0.04 0.02 -1.83 .088 

17: Parahippocampal 0.07 0.02 2.80 .008 -0.04 0.02 -1.74 .185 -0.05 0.02 -2.30 .056 

18: Medial occipital cortex 0.09 0.02 3.52 .001 -0.03 0.02 -1.33 .253 -0.06 0.02 -2.52 .053 

Volume Fear Overall Psychopathology     

NMF Network B SE t pfdr B SE t pfdr R2*    

1: Cingulate cortex -0.05 0.02 -2.11 .061 -0.09 0.02 -3.62 <.001 0.25    

2: Medial temporal cortex -0.07 0.02 -3.19 .008 -0.11 0.02 -4.91 <.001 0.31    

3: Temporal pole -0.07 0.02 -2.80 .015 -0.10 0.02 -4.47 <.001 0.27    

4: Frontal cortex -0.04 0.02 -1.92 .071 -0.11 0.02 -4.93 <.001 0.28    

5: Posterior cingulate cortex -0.04 0.02 -1.77 .092 -0.11 0.02 -4.69 <.001 0.25    

6: Superior parietal cortex -0.02 0.02 -0.84 .423 -0.12 0.02 -4.87 <.001 0.24    

7: Superior temporal cortex -0.01 0.02 -0.57 .567 -0.07 0.02 -3.15 .002 0.26    

8: Dorsomedial prefrontal cortex -0.06 0.02 -2.61 .023 -0.10 0.02 -4.19 <.001 0.30    

9: Insular cortex -0.05 0.02 -1.92 .071 -0.10 0.02 -4.27 <.001 0.22    

10: Fusiform cortex -0.06 0.02 -2.51 .027 -0.12 0.02 -5.13 <.001 0.28    

11: Inferior temporal cortex -0.08 0.02 -3.51 .004 -0.11 0.02 -4.73 <.001 0.33    

12: Right lateral occipital cortex -0.07 0.02 -3.15 .008 -0.11 0.02 -4.76 <.001 0.32    

13: Subgenual cingulate, anterior cingulate, and anterior insula -0.02 0.02 -0.97 .372 -0.10 0.02 -4.19 <.001 0.28    

14: Inferior prefrontal cortex -0.05 0.02 -2.07 .061 -0.10 0.02 -4.31 <.001 0.28    

15: Intraparietal -0.05 0.02 -2.22 .054 -0.09 0.02 -3.85 <.001 0.27    

16: Posterior cingulate (a) and TPJ (b) -0.09 0.02 -3.64 .004 -0.11 0.02 -4.71 <.001 0.26    

17: Parahippocampal -0.05 0.02 -2.05 .061 -0.10 0.02 -4.11 <.001 0.26    

18: Medial occipital cortex -0.07 0.02 -3.00 .010 -0.08 0.02 -3.58 <.001 0.24    

* R2 values are for the full-model. 
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TABLE S3. Sensitivity analysis that includes maternal level of education as an additional covariate and excludes 11% of the 

sample on psychiatric psychotropic medications (n=1226, df=1215) 

 CT and Fear Volume and Overall Volume and Anxious-misery 

NMF Network B SE t p pfdr R2* B SE t p pfdr B SE t p pfdr R2* 

1: Cingulate cortex -0.05 0.02 -2.14 .033 .056 0.36 -0.07 0.03 -2.79 .005 .007 0.03 0.03 1.15 .250 .300 0.28 

2: Medial temporal cortex -0.06 0.03 -2.19 .029 .056 0.18 -0.08 0.02 -3.42 .001 .001 0.07 0.03 2.59 .010 .035 0.34 

3: Temporal pole -0.05 0.02 -2.12 .034 .056 0.38 -0.09 0.03 -3.43 .001 .001 0.07 0.03 2.83 .005 .028 0.30 

4: Frontal cortex -0.04 0.02 -1.77 .077 .098 0.38 -0.10 0.02 -4.08 <.001 <.001 0.02 0.03 0.85 .395 .418 0.29 

5: Posterior cingulate cortex -0.10 0.02 -3.97 <.001 .001 0.36 -0.09 0.03 -3.60 <.001 .001 0.05 0.03 1.78 .075 .138 0.29 

6: Superior parietal cortex -0.04 0.02 -1.93 .054 .075 0.40 -0.09 0.03 -3.60 <.001 .001 0.05 0.03 1.77 .076 .138 0.27 

7: Superior temporal cortex -0.04 0.03 -1.59 .112 .125 0.17 -0.06 0.02 -2.52 .012 .013 0.00 0.03 0.16 .872 .872 0.28 

8: Dorsomedial prefrontal cortex -0.02 0.02 -0.82 .411 .411 0.35 -0.08 0.02 -3.13 .002 .002 0.05 0.03 1.83 .068 .138 0.32 

9: Insular cortex -0.02 0.02 -1.00 .318 .337 0.30 -0.09 0.03 -3.31 .001 .002 0.07 0.03 2.42 .016 .047 0.25 

10: Fusiform cortex -0.08 0.03 -3.00 .003 .008 0.11 -0.10 0.02 -4.20 <.001 <.001 0.08 0.03 2.90 .004 .028 0.31 

11: Inferior temporal cortex -0.08 0.03 -3.00 .003 .008 0.26 -0.08 0.02 -3.44 .001 .001 0.07 0.03 2.74 .006 .028 0.37 

12: Right lateral occipital cortex -0.08 0.03 -3.09 .002 .008 0.24 -0.08 0.02 -3.49 .001 .001 0.05 0.03 1.77 .077 .138 0.36 

13: Subgenual cingulate, anterior 

cingulate, and anterior insula 
-0.06 0.03 -2.38 .017 .045 0.25 -0.08 0.02 -3.21 .001 .002 0.03 0.03 1.28 .199 .256 0.31 

14: Inferior prefrontal cortex -0.05 0.02 -2.15 .032 .056 0.38 -0.09 0.03 -3.55 <.001 .001 0.04 0.03 1.42 .157 .217 0.30 

15: Intraparietal -0.04 0.02 -1.66 .097 .117 0.34 -0.06 0.02 -2.27 .024 .024 0.02 0.03 0.87 .384 .418 0.30 

16: Precuneus (a) and TPJ (b) -0.08 0.02 -3.46 .001 .003 0.40 -0.09 0.03 -3.52 <.001 .001 0.08 0.03 2.86 .004 .028 0.31 

17: Parahippocampal -0.06 0.03 -2.06 .040 .060 0.12 -0.07 0.03 -2.78 .005 .007 0.04 0.03 1.46 .146 .217 0.29 

18: Medial occipital cortex -0.09 0.03 -3.54 <.001 .003 0.24 -0.06 0.03 -2.49 .013 .014 0.04 0.03 1.64 .102 .167 0.26 

* R2 values are for the full-model. 
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TABLE S4. Structural covariance networks of cortical thickness and volume 

in relation to traditional diagnostic categories 
  Average CT Total Gray Matter Volume 

Diagnostic Category N B SE t p B SE t p 

ADHD 230 -1.83 0.80 -2.43 .015 -15.50 4.66 -3.33 <.001 

Agoraphobia 81 -3.54 1.17 -3.03 .003 -24.20 7.01 -3.45 <.001 

Conduct disorder 121 -3.44 0.94 -3.67 <.001 -34.22 5.86 -5.85 <.001 

Generalized anxiety disorder 27 0.59 1.81 0.33 .744 -1.40 11.03 -0.13 .899 

Major depressive disorder 193 -1.84 0.83 -2.22 .027 -18.49 5.10 -3.63 <.001 

Obsessive-compulsive disorder 43 -4.05 1.49 -2.71 .007 -27.35 8.82 -3.10 .002 

Oppositional defiant disorder 458 -2.20 0.63 -3.52 <.001 -22.10 3.89 -5.69 <.001 

Psychosis 399 -2.10 0.66 -3.19 .001 -22.88 3.95 -5.79 <.001 

Posttraumatic stress disorder 172 -2.65 0.85 -3.11 .002 -26.57 5.30 -5.02 <.001 

Separation anxiety disorder 63 -1.30 1.22 -1.07 .287 -9.72 7.47 -1.30 .194 

Social anxiety disorder 328 -2.61 0.70 -3.74 <.001 -18.99 4.09 -4.65 <.001 

Specific phobia 426 -0.83 0.65 -1.28 .200 -11.24 3.84 -2.93 .003 
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FIGURE S1. Schematic representing network derivation using non-negative matrix factorization 

 

 

 
 

In this schematic, X represents the original data matrix as the product of two matrices, B and C. X contains the 

whole-brain structural data for each voxel (rows) and for all subjects (columns). Above the X matrix is an 

example of the whole-brain cortical thickness data for one subject. B is a matrix which contains the reduced 

number of K networks derived from NMF, and the loadings for each voxel on each of these networks. Above B is 

one example of NMF network loadings. C is a matrix that contains the subject-specific coefficients for cortical 

thickness in each network. The histogram above shows a sample row of the C matrix with scores for all subjects 

in one network. Importantly, both B and C are greater than or equal to 0, thus elements of the factorization are 

non-negative. Matrices are shown with following dimensions: V = number of voxels, N = number of participants; 

K = number of networks. 
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FIGURE S2. Gradient of reconstruction error for multiple NMF solutions 

 

 
Reconstruction error is plotted for multiple NMF resolutions; the gradient is the difference in 

reconstruction error as the NMF solution increases by 2 networks. As expected, reconstruction 

error plateaued as the number of networks increased. The differences in reconstruction error 

for the solutions between 14 and 30 networks were fairly similar and the final chosen solution 

of 18 networks is shown with a dotted line. The 18-network solution is consistent with prior 

work (32). Further, a split-half reliability analysis was also conducted and showed an Adjusted 

Rand Index of .93, suggesting the 18-network solution is highly reproducible. 
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FIGURE S3. NMF results are consistent with ROIs derived from JLF 
 

 

 
 
As a sensitivity analysis, structural ROIs were derived from the top performing regional parcellation using a multi-atlas labeling 

system with joint label fusion (JLF) as implemented in ANTs. The results show highly similar significant regions compared to 

non-negative matrix factorization (NMF) for A) cortical thickness and fear, B) volume and overall psychopathology, and C) 

volume and anxious-misery.  
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FIGURE S4. Structural networks are associated with symptoms above and beyond age, sex, 

and cognition 

 

 

We tested whether structure (cortical thickness or volume) provided information about 

psychopathology symptoms (fear, overall psychopathology, or anxious-misery) above and 

beyond demographics (age, sex) and cognitive factors. We compared a null model with 

only age, sex, and the three cognitive factors of 1) executive function and complex 

reasoning, 2) social cognition, and 3) episodic memory to a full model with age, sex, the 

three cognitive factors, and the 18 structural networks. A) For cortical thickness, we found 

that the proportion of variance in fear explained by the predictors improved in the full 

model compared to the null model. The correlation between the actual fear scores and the 

predicted fear scores in the full model was .28. B) For volume, the proportion of variance 

in overall psychopathology explained by the predictors also improved in the full model 

compared to the null model, and showed a correlation of .35 between the actual and 

predicted overall psychopathology scores. 


