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Analysing plasma samples of TRS patients to obtain clozapine metabolite data 

Plasma from the CLOZUK2 individuals was initially separated from whole blood by centrifugation, and the 

top plasma layer (minimum 200µL of plasma) was removed for analysis. Samples were prepared in 96-

well batches with duplicate calibrators and multiple quality control materials, including samples of known 

concentration. Chromatography was performed on a Waters CSH Phenyl-Hexyl, 50mm x 3mm, reverse 

phase HPLC column. After mass spectrometry, total abundance of each of the product ions was monitored 

and plotted to produce a chromatogram, and the area of each peak was divided by the area of the 

corresponding internal standard. This ratio was used to determine the concentration when compared to 

that of the calibrators. Calibration curves had a range of 0.05mg/L to 3mg/L for both clozapine and 

norclozapine. 

Combining data from multiple metabolite assays into a single phenotype per individual 

We first assessed the distribution of clozapine and norclozapine concentrations, using the “fitdistrplus” 

v1.09 R package (1). This is necessary as pharmacokinetic variables often do not conform to normal 

distributions (2), which has been shown specifically for clozapine (3). We examined the set of distributions 

highlighted by Lindsey et al. 2001 (2); which included the normal, log-normal, gamma, Weibull, log-Laplace 

and log-Cauchy. For both clozapine and norclozapine plasma concentrations, the best fitting distribution 

was the gamma, chosen as that with the minimal Anderson-Darling distance (4). Testing the above 

distributions, as well as the beta prime (ratio of two gamma variables) identified the log-normal 

distribution as best fitting for the metabolic ratio. 

A generalised linear model was fitted on the assay data for each outcome variable (clozapine, norclozapine 

and the metabolic ratio) using the “gamlss” v5.02 R package (5). The appropriate distribution as 

determined above was considered. The fixed effect covariates incorporated were dose of clozapine, time 

between dose and assay, age (at the time of each assay) and (age)2. A random effect was added to model 

the distribution of the outcome in each individual, controlled for the covariates. For each outcome 

variable, the coefficients of this random effect for each individual were extracted, and considered as the 

GWAS phenotype.  

Assessing the variance explained by a mixed linear model 

As has been extensively discussed before (6), estimating a coefficient of determination (R2) that captures 

the proportion of variance explained by a mixed model is a non-trivial issue, since the presence of random 
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effect factors complicates most variance decomposition procedures. Our reported values are based in the 

approach of Nakagawa et al. (7, 8), since its formulae are valid for both log-normal and gamma-distributed 

outcome variables, such as those described in the main text. Specifically, reported R2 values correspond 

to the R2
GLMM(m) approach, which captures the proportion of variance explained by the fixed effect factors 

in a mixed model design, also termed as “marginal effects”. Reported variances explained by the random 

effect factors correspond to the ICCadjusted approach, which in our case estimates the proportion of the 

total variance explained by grouping the repeated measures in individuals. Note that this is equivalent to 

the statistic termed “intra-class correlation coefficient” or “repeatability R2” in other publications (9). All 

these statistics were computed using the “sjstats” v 0.14 R package (10) and the code provided in (8).  

Assessing the variance explained by a single SNP 

In order to calculate the variance explained by the SNPs highlighted by our GWAS, we used the “PVE” 

method of Shim et al. (11), based on the effect sizes computed in the full regression model (which include 

the target SNP, genotype principal components, and other fixed-effect covariates). While this method 

does not explicitly account for the particularities of mixed model regression, as the procedure described 

above, it avoids the known problems of partitioning R2 metrics between individual predictors (12). It also 

has the desirable property of accounting for the minor allele frequency of the SNP, thus avoiding 

overestimation of uncommon variants with larger effects. 

Prioritising SNPs to be incorporated into the full regression model 

The GWAS of norclozapine plasma concentrations and the clozapine/norclozapine metabolic ratio 

implicated several loci with complex association signals (Results). From the lists of credible SNPs 

generated by FINEMAP, we extracted the most credible missense SNP of each locus to incorporate into 

our full regression models (SNP + PCs + covariates). While in one of the cases this missense SNP was also 

the most credible SNP of the locus (norclozapine: rs2011425, Supplementary Table S3), SNPs with higher 

posterior probability existed in the other loci, though all were in high LD (r2 > 0.9). We justify the selection 

of missense SNPs in these situations on the basis of their higher prior probability of driving GWAS 

associations, which has been well-stablished by other studies (13, 14). The parsimony of this procedure is 

also demonstrated by the fact that it results in the same UGT2B10 missense SNP being used in the models 

of both norclozapine and the metabolic ratio, where it shows the expected effect in opposite directions 

(Table 2). Finally, every missense SNPs incorporated in our regression models has been shown to impact 

protein functionality in direct experimental in vitro assays (15-17). Despite the convergence of these lines 
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of evidence, we caution that the confirmation of these SNPs as truly causal requires experimental 

validation and functional follow-up (18). 

Polygenic score-based analysis of environmental predictors 

Both smoking and weight have been shown to influence clozapine plasma concentrations (19). However, 

we cannot directly measure their relevance in our sample, as we lack the required clinical or self-report 

data. In order to assess the possibility of confounding effects from these exposures on our genetic 

associations, we carried out secondary GWAS controlling for polygenic risk scores for these variables. In 

order to generate the scores, we used the latest publicly available GWAS results for body mass index (BMI) 

(20) and cigarettes-per-day (21), as genetic markers associated to these traits have been shown to be 

predictive of related conditions, such as obesity (22) or nicotine dependence (23). The GWAS results were 

restricted to nominally significant LD-independent SNPs (P < 0.05; r2 < 0.1), and the scores were calculated 

using PLINK v.1.9.  

All the secondary GWAS carried out controlling for the smoking and BMI polygenic scores gave very similar 

results to those reported in the main text, with no gain or loss of genome-wide significant signals. Also, 

adding these polygenic scores to each of the models used to calculate genetic effects did not result in 

statistically different model fits, based on likelihood-ratio tests. Finally, presence of the scores in these 

models did not significantly change the effect size estimates of any of the GWAS-identified SNPs, which 

remained within one standard deviation of the original model. However, we found nominally significant 

associations of the scores with some of our outcomes, and thus we report their detailed statistics 

(Supplementary Table S5). 

Given that our results showed similarities between clozapine and caffeine metabolism, we generated a 

polygenic score for the most likely environmental source of this xenobiotic, daily cups of coffee, based on 

recent GWAS results (24). For this we followed the approach of (25), which used only genome-wide 

significant SNPs, as such a score has been found to be correlated with coffee and tea consumption in UK 

Biobank data. However, since one of the SNPs used (rs2470893) is in strong LD (r2=0.728) with our main 

GWAS signal for clozapine plasma concentration (rs2472297), we removed it from the computation to 

avoid collinearity. The resulting coffee polygenic score was found to be significantly associated with all of 

the plasma concentrations we assessed, even after including all other possible covariates (Supplementary 

Table S5). A regression model including all three polygenic scores described (BMI, tobacco and coffee) 

was shown, via likelihood-ratio tests, to fit the clozapine plasma levels data better than the model without 
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them (P = 0.001), though the effect size estimates of the rs2472297 SNP in the two models were within 

one standard deviation. 

Analysis of gene expression data 

In order to pinpoint putatively causal genes in the multigenic loci identified in the GWAS, we first assessed 

the gene expression pattern of the genes overlapping genome-wide-significant loci using the 

“GENE2FUNC” enrichment test implemented in FUMA v1.33 (26), with reference data from 53 tissue types 

from the GTEx project v7 (27). Within the clozapine levels analysis, the only significant result after 

multiple-testing correction was an under-expression in musculo-skeletal tissue (pCORR=0.047). For 

norclozapine, we found significant over-expression of its associated genes in liver (pCORR=1.35x10-6), 

followed by salivary gland (pCORR=9.75x10-6) and esophagus mucosa (pCORR=0.014). For the metabolic ratio, 

again we found significant over-expression in liver (pCORR=8.41x10-9) followed by terminal ileum 

(pCORR=0.003) and stomach (pCORR=0.007). Given the convergent evidence towards liver, and the fact that 

clozapine is known to be metabolised by liver enzymes, we focused the rest of our analysis on this tissue 

(28, 29). Using the TWAS approach implemented in FUSION (30) we queried the GTEx v7 liver data for 

association between our plasma concentration data and liver-specific  gene expression. After Bonferroni 

correction for the number of hepatic cis-heritable genes detected  (730), none of these analyses identified 

any significant genes in which the GWAS signal for any phenotype could be traced back to an alteration 

of gene expression.  
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FIGURE S1. Number of plasma concentration assays (time points) per individual in CLOZUK2 

 

 

  



Page 7 of 15 

FIGURE S2. Plasma concentration distribution of clozapine (A) and norclozapine (B) in the CLOZUK2 

sample 
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FIGURE S3. QQ plot of the clozapine plasma concentration GWAS 
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FIGURE S4. QQ plot of the norclozapine plasma concentration GWAS 
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FIGURE S5. QQ plot of the clozapine/norclozapine metabolic ratio GWAS 
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FIGURE S6. Manhattan plots from the analyses of mean clozapine (A), norclozapine (B) and metabolic 

ratio (C); and maximum clozapine (D), norclozapine (E) and metabolic ratio (F). Note the similarity with 

the results shown in Figure 1, albeit not all of the genome-wide significant loci can be observed as such. 
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FIGURE S7. Distribution of effect sizes of independent SNPs tentatively associated (p < 10-5) to clozapine 

metabolite plasma concentrations, across the minor allele frequency range. Bars are proportional to 

the standard error of the effect size estimate 
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FIGURE S8. Effect of the norclozapine-associated genotypes on norclozapine plasma levels, at different 
daily clozapine doses. For this analysis, only the last time point of each CLOZUK2 individual was used. 
For each interval of daily clozapine dose, average norclozapine plasma concentrations and their 
standard deviations are shown. Values inside the central point represent the number of individuals 
within each genotype/interval category. 
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