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OFFICIAL ACTIONS

SECTION I. INTRODUCTION

Overview of Applications of Neuroimaging in Psychiatric 
Disorders
The application of neuroimaging technology in psychiatric 
research has revolutionized clinical neuroscience perspec-
tives on the pathophysiology of the major psychiatric disor-
ders. Research using a variety of types of neuroimaging 
techniques has shown that these conditions are associated 
with abnormalities of brain function, structure and receptor 
pharmacology. These data also corroborate the conclusions 
reached from genetic, endocrine, and clinical pharmacology 
research involving these disorders to suggest that under the 
current nosology the major psychiatric disorders likely re-
flect heterogenous groups of disorders with respect to 
pathophysiology and etiology.

Despite the invaluable leads that the neuroimaging stud-
ies have provided regarding the neurobiological bases for 
psychiatric disorders, they have yet to impact significantly 
the diagnosis or treatment of individual patients. In clinical 
medicine, considerable interest exists in developing objec-
tive, biologically-based tests for psychiatric illnesses. From 
a clinical perspective such advances could yield important 
benefits such as predicting treatment response, differentiat-

ing between related diagnostic categories, and potentially 
treating at-risk patients prophylactically to prevent the de-
velopment of neuropathology and clinical deterioration. 
Nevertheless, the effect size of neuroimaging and other 
noninvasive biological abnormalities identified to date in 
psychiatric disorders has been relatively small, and the im-
aging measures established by replication across laborato-
ries do not provide sufficient specificity and sensitivity to 
accurately classify individual cases with respect to the pres-
ence of a psychiatric illness. This review focuses specifically 
on the potential clinical utility of biomarkers assessed using 
modern neuroimaging technologies, and the approach re-
quired to validate imaging biomarkers for use as clinical di-
agnostics.

The Quest for Biomarkers in Psychiatry

Both the clinical practice of psychiatry and the development 
of novel therapeutics have been hindered by the lack of bio-
markers that can serve as accessible, objective indices of the 
complex biological phenomena that underpin psychiatric 
illness. The inaccessibility of brain tissue, the lack of knowl-
edge about pathophysiology, and the uncertain link between 
abnormal measurements on any biological test and patho-
genesis all have impeded the development of biomarkers for 

In response to claims being made that brain imaging tech-
nology had already reached the point at which it could be 
useful for making a clinical diagnosis and for helping in treat-
ment selection in individual patients, the APA Assembly 
passed an action paper calling for the development of an APA 
Position Paper on the Clinical Application of Brain Imaging in 
Psychiatry. Given the APA’s mission to educate both its mem-
bers and the public-at-large about the science and clinical 
practice of psychiatry, a workgroup was appointed under the 
auspices of the APA Council on Research to develop an evi-
denced-based review of the current state of the art of the 
clinical utility of brain imaging for psychiatric diagnosis and 
for predicting treatment response in the following diagnostic 
areas: adult mood and anxiety disorders, psychotic disorders, 
cognitive disorders, substance use disorders, and childhood 

disorders including ADHD, bipolar disorder, depression/anxi-
ety, and autism spectrum disorder. This paper begins with a 
general introduction about the challenges in developing valid 
and reliable biomarkers for psychiatric disorders and then 
provides a comprehensive review of the current research on 
brain imaging biomarkers across the various diagnostic cate-
gories. Although there are a number of promising results pre-
sented, by the standards proposed in the introduction to this 
paper, except in the case of neurocognitive disorders, there 
are currently no brain imaging biomarkers that are clinically 
useful for any diagnostic category in psychiatry.
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other areas of clinical medicine to establish the validity and 
reliability of imaging diagnostics, with the aim of providing 
principles to guide the evaluation of neuroimaging applica-
tions in clinical psychiatry. 

Biomarker Definition, Validation and Qualification
The NIH has defined a biomarker (i.e., biological marker) as: 
“A characteristic that is objectively measured and evaluated 
as an indicator of normal biologic processes, pathogenic 
processes, or pharmacologic responses to a therapeutic in-
tervention.” (De Gruttola et al. 2001). A biomarker thus can 
define a physiological, pathological, or anatomical charac-
teristic or measurement that putatively relates to some as-
pect of either normal or abnormal biological function or 
structure. Biomarkers thus may assess many different types 
of biological characteristics, including receptor or protein 
binding, hemodynamic parameters, MRI or radiographic 
images of structure composition, other imaging-based mea-
sures, or electrophysiological parameters.

The term “biomarker” connotes different meanings in 
different contexts, based upon the intended application of 
the information a biomarker provides. Within clinical medi-
cine, biomarkers include measures that suggest the etiology 
of, susceptibility to, activity levels of, or progress of a dis-
ease. In addition, alterations in patient-associated biomark-
ers related to an intervention may be used to predict the 
likelihood of experiencing a robust clinical outcome or an 
adverse reaction to a treatment. Finally, in drug develop-
ment a biomarker can be any measure of drug action that is 
proximal to its clinical effect, including biomarkers that cor-
relate with drug response or quantify the extent to which a 
drug occupies the molecular target.

Notably, the U.S. Food and Drug Administration (FDA) 
recently has developed guidance that addresses multiple 
types of biomarkers which are applicable to drug develop-
ment, including prognostic, predictive, pharmacodynamic, 
and surrogate biomarkers. A prognostic biomarker is a base-
line patient or disease characteristic that categorizes pa-
tients by degree of risk for disease occurrence or progres-
sion. A predictive biomarker is a baseline characteristic that 
categorizes patients by their likelihood for response to a 
particular treatment. A pharmacodynamic biomarker is an 
assessment of physiological or structural change that shows 
that a biological response has occurred in a patient after 
having received a therapeutic intervention. A surrogate end-
point is defined as a biomarker intended to substitute for a 
clinical efficacy endpoint. Conceivably each of these bio-
marker types holds the potential to be clinically useful in 
psychiatric research or practice. Nevertheless, in its guid-
ance the FDA identified the most valuable role for biomark-
ers as their use in clinical diagnostics. 

In considering the development of neuroimaging bio-
markers as clinical diagnostics, the FDA guidance on bio-
markers for drug development merits comment. Generally, 
the requirements of biomarkers for quantification of drug 

psychiatric disorders. As a result progress toward improving 
diagnostic capabilities and defining or predicting treatment 
outcome in psychiatry has lagged that achieved in other ar-
eas of medicine. Thus it frequently remains difficult to es-
tablish whether individual patients suffer from a particular 
disease, how individual patients can best be treated, and 
whether experimental treatments are effective in general. 

The need for clinical biomarkers has become acute, as 
their absence particularly has hindered research aimed at 
developing novel therapeutics. Due at least partly to the lack 
of well-established pathophysiological targets for new 
drugs, relatively large numbers of experimental compounds 
are failing in increasingly expensive late-stage clinical trials. 
As a result, drug development pipelines contain few com-
pounds that offer clinically meaningful differentiation from 
currently available treatments, and many companies have 
discontinued their research and development of pharma-
ceuticals for psychiatric conditions. The ramifications of 
these limitations for clinical practice also are significant, as 
psychiatric nosology and diagnosis largely have remained at 
a standstill since the development of DSM-III, the clinical 
approach to treatment decisions for individual patients re-
mains empirical (“trial and error”), and many patients re-
main inadequately helped by extant treatments. 

Current Application of Neuroimaging Biomarkers in 
Psychiatric Diagnosis

For over two decades imaging has maintained a well-estab-
lished but narrow place in the diagnostic evaluation of pa-
tients with psychiatric disease, largely because of the 
usefulness of neuromorphological MRI in detecting and 
characterizing structural brain abnormalities such as le-
sions and atrophy. Thus the role of imaging in patients with 
psychopathology historically has been limited to one of ex-
clusion of potentially etiological medical conditions: namely 
to rule out neoplasm, hematoma, hydrocephalus, or other 
neurological causes of psychiatric symptoms that are treat-
able with neurosurgery or medications, or to detect the 
presence of cerebrovascular disease or gross atrophy. Al-
though clinically important, these conditions appear to play 
a role in the pathogenesis of psychiatric symptoms in only a 
small proportion of cases presenting for the evaluation of 
mood, anxiety or psychotic disorders. 

Increasingly a major quest of researchers has been to 
identify neuroimaging results that offer diagnostic capabili-
ties for major psychiatric diseases as well as for their rele-
vant differential diagnoses. Currently neuroimaging is not 
recommended within either the U.S. or the European prac-
tice guidelines for positively defining diagnosis of any pri-
mary psychiatric disorder. Nevertheless, advances in re-
search applications of neuroimaging technology have 
provided leads that may foreshadow future clinical applica-
tions of imaging biomarkers for establishing diagnosis and 
predicting illness course or treatment outcome. The ensuing 
review discusses issues that have been addressed within 
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effects in research and development, which depend upon 
population means with variance estimates, converge with 
the requirements of diagnostics in clinical practice, which 
are assessed on a per patient basis. The common element in 
both is longitudinal quantification; both analyses require 
baseline and follow-up effects of treatments. For example, 
clinical evidence from the National Oncologic PET Registry 
motivated the expanded coverage by Medicare for FDG-
PET/CT in the detection and staging of cancer and in the 
monitoring of cancer treatment response. Therefore as diag-
nostics, biomarkers are of interest to health care providers 
and consumers for parallel applications, since earlier detec-
tion of disease facilitates earlier intervention, which when 
followed by effective, individualized treatment, can improve 
patient outcomes.

With respect to establishing the utility of a biomarker, it is 
useful to distinguish between the terms “validation” and 
“qualification”. Validation generally refers to the determina-
tion of the performance characteristics of a measurement—
for example, the measurement’s reliability, sensitivity and 
specificity—in measuring a discrete biological construct. The 
validation process is particularly relevant for securing regula-
tory approval to market techniques for commercial use as 
clinical diagnostics, as described in the subsequent section. 

The term qualification refers to establishing the credibili-
ty of a biomarker in its application to questions specifically 
relevant to drug development. In drug development the ulti-
mate use of a biomarker is as a surrogate end point, which 
requires that the biomarker has been qualified to substitute 
for a clinical standard of truth (i.e., the biomarker reasonably 
predicts the clinical outcome and therefore can serve as a 
surrogate). After a biomarker is “qualified” by the FDA, in-
dustry can use the markers in a similar context in multiple 
drug trials, drug classes, or clinical disorders, without having 
to repeatedly seek the agency’s approval [“Qualification Pro-
cess for Drug Development Tools,” (https://www.fda.gov/
downloads/drugs/guidances/ucm230597.pdf )]. The FDA 
qualification process for biomarkers also encompasses guid-
ance on drug-development tools, including radiographic or 
other imaging-based measurements. Qualification of a 
drug-development tool is based on a conclusion that within 
the stated context of use, the results of assessment with the 
tool can be relied upon to have a specific interpretation and 
application under regulatory review. The FDA guidance indi-
cates, “While a biomarker cannot become qualified without a 
reliable means to measure the biomarker, FDA clearance of a 
measurement device does not imply that the biomarker has 
been demonstrated to have a qualified use in drug develop-
ment and evaluation.” Instead the qualification process is lim-
ited to specific patient populations and a specific therapeutic 
intervention. In addition to the biomarker assay validation 
data, clinical data are required to support the biomarker qual-
ification. A corollary of this regulatory principle is that the 
FDA qualification of a drug-development tool for one applica-
tion does not extend to its use in other applications. 

Evaluating the Validity of Diagnostic Biomarkers in 
Clinical Medicine
The validity of a diagnostic biomarker for any medical disor-
der generally is established via evaluation of its sensitivity, 
specificity, prior probability, positive predictive value, and 
negative predictive value (Mayeux 1998). Diagnostic sensi-
tivity refers to the capacity of a biomarker to identify a sub-
stantial percentage of patients with the disease-of-interest; 
sensitivity is expressed as: true positive cases divided by 
[true positive cases plus false negative cases] × 100. A sensi-
tivity of 100% thus corresponds to a marker that identifies 
100% of patients with the target condition. Diagnostic spec-
ificity refers to the capacity of a test to distinguish the target 
condition from normative conditions (e.g., aging) and other 
pathological conditions (e.g., other diseases) or related, non-
specific effects related to the illness (e.g., effects of drugs 
used to treat symptoms of the illness in question); specificity 
is expressed as: true negatives divided by [true negative cas-
es plus false positive cases] × 100. A test with 100% specific-
ity would differentiate the target condition from other con-
ditions in every case. Prior probability is defined as the 
frequency of occurrence of a disease in a particular popula-
tion (true positives plus false negatives divided by the total 
population). A perfect biomarker would detect only true 
positives and no false negatives and thus would reflect accu-
rately the prevalence of the disease in the population. 

Positive predictive value (PPV) is the percentage of peo-
ple who have a positive test who can be shown by a defini-
tive examination (e.g., subsequent biopsy or autopsy) to 
have the disease, calculated as the number of true positives 
divided by the sum of true positives plus false positives. A 
positive predictive value of 100% indicates that all patients 
with a positive test actually have the disease. For a biomark-
er to be considered useful clinically, it generally is expected 
to show a positive predictive value of approximately 80% or 
more (e.g., Consensus Report…1998). The PPV is heavily in-
fluenced by the prior probability, however, such that the 
PPV becomes smaller for increasingly rare events or condi-
tions; as the frequency of the disease in the test population 
becomes smaller, the proportion of positive test results 
which reflect false positive results becomes larger. 

Negative predictive value represents the percentage of 
people with a negative test that subsequently proves not to 
have the disease on definitive examination, calculated as the 
number of true negatives divided by the sum of true negatives 
plus false negatives. A negative predictive value of 100% indi-
cates that the test completely rules out the possibility that the 
individual has the disease, at least at the time the individual is 
tested. A reliable marker with a high negative predictive val-
ue is extremely useful in clinical medicine, although a test 
with low negative predictive value can in some cases still be 
useful if it also has high positive predictive value.

In the development of medical laboratory tests or imag-
ing assessment, the threshold for distinguishing abnormal 
from normal alters the sensitivity and specificity in opposite 
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forming the test). Ultimately, two FDA advisory committees 
endorsed the implicit clinical value of information obtained 
from brain b-amyloid imaging, and the florbetapir approval 
was based on this endorsement along with clinical data 
showing sufficient scan reliability and performance charac-
teristics. 

The FDA approved label (https://pi.lilly.com/us/
amyvid-uspi.pdf ) states that [F-18]florbetapir is indicated “to 
estimate b-amyloid neuritic plaque density in adult patients 
with cognitive impairment who are being evaluated for AD 
and other causes of cognitive decline. A negative Amyvid 
[florbetapir] scan indicates sparse to no neuritic plaques, and 
is inconsistent with a neuropathological diagnosis of AD at 
the time of image acquisition; a negative scan result reduces 
the likelihood that a patient’s cognitive impairment is due to 
AD. A positive Amyvid scan indicates moderate to frequent 
amyloid neuritic plaques; neuropathological examination 
has shown this amount of amyloid neuritic plaque is present 
in patients with AD, but may also be present in patients with 
other types of neurologic conditions as well as older people 
with normal cognition.” Based upon the limitations of the ex-
tant clinical data using this biomarker, the FDA also required 
a “Limitations of Use” section stating that, “A positive Amyvid 
scan does not establish a diagnosis of AD or other cognitive 
disorder”, and that its “effectiveness has not been established 
for predicting development of dementia or other neurologic 
condition”. Finally, under “Warnings and Precautions”, the 
label states, “Image interpretation errors (especially false 
negatives) have been observed.” 

In regards to the latter concern, the outcome of the initial 
FDA evaluation of [F-18]florbetapir-PET illustrates another 
central principle in the validation of an imaging biomarker, 
namely that the reliability of ratings across radiologists must 
be relatively high. In January 2011, the Peripheral and Cen-
tral Nervous System Drugs Advisory Committee of the FDA 
recommended against approval of the new drug application 
for [F-18]florbetapir injection, based largely on concerns 
about the variability of ratings across readers. The Advisory 
Committee chair said during an interview after the meeting, 
“We would like to see some structured training and evidence 
of consistency among readers” (http://www.medscape.com/
viewarticle/739297). In the pivotal trial described in the 
previous paragraph, Clark et al. (2011) used the median of 
three readers’ visual ratings on a five-point scale to assign 
the extent to which the PET scan was positive for amyloid 
protein binding. Since inspection of the data from individual 
readers raised questions about inter-rater reliability, the 
FDA response focused on the need to establish a read-
er-training program for market implementation that would 
ensure accuracy and consistency of interpretation of [F-18]
florbetapir scans. To evaluate scan reliability a clinical study 
had new readers examine images acquired in individuals 
with presumptive AD or mild cognitive impairment, as well 
as persons with normal cognition. The previously obtained 
images from autopsied patients were also included in the 
study (NCT01550549). Among five readers who interpreted 

ways. If the threshold is set further from the distribution of 
normative values then the test becomes less sensitive for de-
tecting true positives, but more specific for rejecting true 
negatives. The convention in establishing diagnostic tests 
for medical conditions has been to select an intermediate 
choice that minimizes the total error from both false posi-
tives and false negatives (Lilienfeld et al. 1994).

The Consensus Report of the Working Group on Molecular 
and Biochemical Markers of Alzheimer’s Disease affords a 
meritorious example of balancing clinical utility and scien-
tific rigor in developing guidelines for diagnostic biomark-
ers in neuropsychiatric disorders (Consensus Report….1998). 
This Report recommended that to qualify as a biomarker, 
the measurement in question should detect a fundamental 
feature of neuropathology and be validated in neuropatho-
logically-confirmed cases, and in such cases the test should 
show a sensitivity >80% for detecting AD and a specificity of 
>80% for distinguishing AD from other dementias. 

These guidelines were applied generally to the validation 
of PET biomarkers developed to estimate the density of 
b-amyloid neuritic plaque in the brain. While the neuro-
pathological identification of amyloid plaques, typically at 
autopsy, has been recognized as essential to confirming the 
diagnosis of AD, PET radioligands for b-amyloid were devel-
oped simply to estimate the density of b-amyloid neuritic 
plaque in the brain (such plaques also have been detected in 
patients with some other neurologic disorders, as well as in 
elderly individuals with normal cognition; Yang et al. 2012). 
The validation of the first FDA-approved neuroimaging bio-
marker for b-amyloid pathology in AD, [F-18]florbetapir, 
thus depended on the correlation of florbetapir-PET data 
acquired antemortem in terminally ill patients, with evi-
dence of b-amyloid in the same subjects post mortem (Clark 
et al. 2011). The results rated as positive or negative for 
b-amyloid agreed in 96% of 29 individuals assessed in the 
primary analysis cohort. As a secondary analysis in a non-au-
topsy cohort, florbetapir-PET images were rated as amyloid 
negative in 100% of 74 younger individuals who were cogni-
tively normal, suggesting that negative results on this test 
hold high negative predictive value. However, a subsequent 
study found that in healthy elderly individuals showing no 
evidence of cognitive decline (mean age =69.4 ± 11.1 years) 
the florbetapir PET image was classified as amyloid positive 
in 14% via visual inspection and 23% using a quantitative 
threshold (Johnson et al. 2013).

The FDA code of regulations (in 21 CFR 315.5[a]) man-
dates that the effectiveness of a diagnostic radiopharmaceu-
tical agent should be determined by an evaluation of the 
ability of the agent to provide useful clinical information re-
lated to the proposed indications for use (reviewed in Yang 
et al. 2012). Since current clinical criteria for returning a di-
agnosis of “probable AD” provide a sensitivity of about 85% 
when compared subsequently to autopsy-confirmed cases of 
AD, to be clinically useful an imaging biomarker ideally 
would show sensitivity exceeding this value when correlat-
ed to neuropathology (otherwise there is no benefit to per-
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Kordan, 1966). The study radiologists showed 65.1% agree-
ment when they were required to place the film results into 
one of five categories (suspected neoplasm, other significant 
pulmonary abnormality, cardiovascular abnormality, non-
significant abnormality, and negative), compared to 89.4% 
agreement if they were instead required to place the results 
into only two categories (positive or negative for significant 
pulmonary abnormality). Presumably, a diagnostic biomark-
er assessment aimed at informing the differential diagnosis 
of psychiatric disorders would need to address more than 
two categories, however, increasing the variability of image 
interpretations across readers.

In psychiatry, the need to differentiate various conditions 
from each other depends partly on the clinical imperative to 
return distinct treatment recommendations for different 
disorders. It might be argued, for example, that for a neuro-
imaging procedure to add clinical value in the evaluation of 
an adult patient with impaired attention, differentiation is 
needed between at least four categories, namely major de-
pressive disorder, bipolar disorder, attention deficit disor-
der, and anxiety disorders (American Psychiatric Associa-
tion, 2000), since the standard of care differs between these 
categories. Thus, the variability across raters will be rela-
tively higher (i.e., lower inter-rater reliability) for a diagnos-
tic imaging study that must differentiate among several psy-
chiatric disorders that share symptomatology but require 
distinct treatment approaches, as compared to the case de-
scribed above for [F-18]florbetapir-PET, which hinged on 
only two categories (b-amyloid positive versus negative). 

A more challenging problem for the development of diag-
nostic biomarkers in psychiatry has been that the absence of 
certain knowledge about the pathophysiology of psychiatric 
disorders precludes the identification and validation of such 
biomarkers. For example, the determinations of positive and 
negative predictive value are limited by the absence of an 
established objective standard for establishing diagnosis in 
psychiatric disease (e.g., analogous to the neuropathologi-
cally verified diagnosis of AD). In contrast, greater optimism 
has been associated with establishing predictive biomarkers 
of treatment response and surrogate biomarkers of treat-
ment outcome. Moreover, many examples pharmacodynam-
ic biomarkers of the effect of pharmacological probes exist, 
and have proven useful to establish central target engage-
ment for multiple classes of psychiatric treatment. 

Nevertheless, it may be argued that the Consensus Re-
port of the Working Group on Molecular and Biochemical 
Markers of Alzheimer’s Disease (1998) reviewed above of-
fers a potential template for developing clinically-meaning-
ful, diagnostic biomarkers of psychiatric disease as well. Al-
though the fundamental recommendation that “… to qualify 
as a biomarker the measurement in question should detect a 
fundamental feature of neuropathology and be validated in 
neuropathologically-confirmed cases” cannot yet be applied 
directly to psychiatric disorders, the neuroimaging field may 
nevertheless move forward using criteria based conventions 
(APA, 2013) as “gold-standard” diagnoses. If this approach 

images from 151 subjects, the kappa score for interrater reli-
ability was 0.83 (95% confidence interval, 0.78 to 0.88). For 
the autopsy subgroup of 59 subjects, the median scan sensi-
tivity was 82% (range, 69 to 92), and the median scan speci-
ficity was 95% (range, 90 to 95) for the five new readers. 
Nevertheless, the FDA required the sponsoring company to 
institute a dedicated training program and mandated that 
the success of the reader-training process be further evalu-
ated in a post-marketing study.

The need to ensure that readers consistently can detect 
clear positive or negative results extends to the clinical ap-
plication of any imaging procedure for which the results de-
pend on the subjective interpretation of a reader. For biolog-
ical assays that can be objectively quantified, the accuracy 
often is characterized by comparing the assay results ob-
tained for a known standard (e.g., a test sample with known 
concentration for the target compound) and the reliability 
or reproducibility is statistically expressed with respect to 
the variability in the quantitative results obtained after re-
peated testing on the same sample. In contrast, many types 
of clinical imaging assessments depend upon subjective in-
terpretation, such as a radiologist’s reading of a radiographic 
or nuclear medicine (e.g., PET, SPECT) image based upon 
gross visual inspection of the image. In this case, the vari-
ability of such interpretations is evaluated by characterizing 
the reliability and variability of the results obtained within 
and across raters. 

Thus, intra-rater reliability can be established by assessing 
the extent to which readings performed under blind condi-
tions by the same reader on the same image on different days 
are in agreement, as well as the extent to which the same 
reader returns the same results when comparing multiple 
images obtained from the same patient across different days. 
Similarly, inter-rater reliability is assessed by having multiple 
radiologists read the same set of images while blind to the 
evaluations returned by the other readers. These intra-rater 
and inter-rater reliability assessments thus evaluate, respec-
tively, the intra-individual variability (reflecting the failure of 
a reader to be consistent with himself or herself ) and the 
across-rater variability of interpretations (reflecting incon-
sistency of interpretation among different readers). 

Challenges in Establishing the Validity of Diagnostic 
Biomarkers in Psychiatry
A critical challenge in the application of neuroimaging to 
psychiatric diagnosis is that the clinical utility of such tests 
depends partly upon their ability to distinguish multiple 
conditions from one other. Generally both the intra-individ-
ual and inter-individual variability of interpretation increas-
es in proportion to the number of diagnostic categories that 
are considered clinically relevant. Thus the fewer the cate-
gories into which readers are assigning results, the greater 
the degree of agreement between readers. This tendency 
was illustrated historically by the results of a landmark 
study that evaluated the variability in interpreting chest 
X-ray films during lung cancer screening (Lilienfeld and 
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der. Similarly, there has not yet been an independently repli-
cated neuroimaging measure that has shown both >80% sen-
sitivity for predicting the therapeutic response to a specific 
treatment and >80% selectivity for identifying individuals 
who will not benefit from the treatment. 

Nevertheless, the future appears bright as neuroimaging 
technologies and image analysis methodologies continue to 
improve, and the ensuing sections review progress toward 
developing biomarkers using state-of-the-art neuroimaging 
technologies. This literature contains several noteworthy 
examples of individual studies for which sensitivity and/or 
specificity approach or exceed 80%, and in which specificity 
relative to both healthy controls and patients with distinct 
diseases has been explored. It thus remains conceivable that 
some of these findings ultimately may prove reproducible 
and clinically useful in independent studies. 

SECTION II. PROGRESS TOWARD DIAGNOSTIC 
IMAGING BIOMARKERS OF MOOD DISORDERS

Section authors: Jonathan Savitz, Scott Rauch, Ziad Saad, 
and Wayne C. Drevets

While statistically significant group differences in various 
neuroimaging measures are commonly observed in patients 
with mood disorders, translating these findings into diag-
nostic tests for the individual patient has proven difficult. In 
general, the conventional path to validating a diagnostic test 
is first to generate a potential discriminant function from a 
training cohort of affected participants and controls, and 
then to test this discriminant function in an independent co-
hort. Currently, no such tests have been validated through 
replication in an independent laboratory and subject sam-
ple, subject to peer-review.

for establishing the “actual” diagnosis is accepted, then the 
remainder of this Consensus Report can be meaningfully 
adapted to biomarker validation in psychiatric disorders. 

This approach would require that a diagnostic biomarker 
would have a sensitivity >80% for detecting a particular psy-
chiatric disorder and a specificity of >80% for distinguishing 
this disorder from other clinically relevant psychiatric or 
medical disorders (Box 1). The biomarker also should be re-
liable, reproducible, non-invasive, simple to perform, and 
(ideally) inexpensive. The validating data used to establish a 
biomarker must include confirmation by at least two inde-
pendent sets of qualified investigators (i.e., with at least one 
constituting replication in an independent clinical sample 
studied using the same methodology) with the results pub-
lished in peer-reviewed journals. Finally, to be clinically 
useful the biomarker should show a clear improvement over 
the current standard-of-care in accurately establishing a di-
agnosis based on corroborating evidence (e.g., obtained via 
prospective assessment of the longitudinal disease course).

According to this standard, the psychiatric imaging liter-
ature currently does not support the application of any diag-
nostic biomarker to positively establish the presence of any 
primary psychiatric disorder. Although assessments of in-
tra-rater and inter-rater reliabilities commonly are reported 
for quantitative neuroimaging measures, these have been 
limited to establishing measurement reliability (e.g., cerebral 
volumes or neuroreceptor binding potential), but not to the 
reliability of diagnostic classification. 

Similarly, the literature does not yet establish a predictive 
biomarker for therapeutic response to a specific treatment 
within psychiatric disorders. In the ensuing chapters, how-
ever, the results of some individual studies that used neuro-
imaging biomarkers to predict outcome to a specific treat-
ment are reviewed to exemplify preliminary findings that 
ultimately could be validated as biomarkers, if they prove 
reproducible in an independent study conducted by an inde-
pendent laboratory using the same methods in an indepen-
dent participant sample, and if the biomarker measure 
proves sufficiently reliable, sensitive and specific to an ex-
tent that exceeds the current standard-of-care (i.e., psychi-
atric interview).

Summary
According to the conventions reviewed herein, the peer-re-
viewed, scientific literature does not yet establish the validi-
ty and clinical utility of an imaging biomarker or group of 
imaging biomarkers (“biomarker signature”) for use in de-
termining the diagnosis of a particular psychiatric disorder 
or predicting the therapeutic response to a particular treat-
ment. For example, there is not yet an independently repli-
cated finding in the literature of a neuroimaging measure 
obtained from a specific region(s)-of-interest that has shown 
a sensitivity >80% for classifying individual patients as hav-
ing a particular psychiatric disorder along with a specificity 
>80% for ruling out individuals who do not have the disor-

BOX 1. Recommended Steps in the Process of 
Establishing a Biomarker

1. There should be at least two independent studies that 

specify the biomarker’s sensitivity, specificity, and positive 

and negative predictive values. 

2. The sensitivity and specificity of the biomarker should be 

no less than 80%; positive predictive value should exceed 

80%.

3. These validation studies should be well powered, con-

ducted by investigators with expertise to conduct such 

studies, and the results published in peer-reviewed journals.

4. The studies should specify the type of control subjects, 

and include healthy subjects as well as those with related 

but distinct illnesses. 

5. Once a biomarker is accepted, follow-up data should be 

collected and disseminated to monitor its accuracy and 

diagnostic value within the relevant clinical population. 

Adapted from (Consensus Report, 1998)
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sample sizes. These requirements reflect the limitation of 
machine-learning that iterative training and cross-valida-
tion on the same data overestimate the classifier perfor-
mance (9), and that classifiers trained on one data set at a 
single site may not generalize to data collected at multiple 
sites (10, 11). However, as discussed below, most of the pa-
pers published to date have relied exclusively upon less 
stringent validation methods (e.g., the “leave out one” ap-
proach), motivated largely by the relatively modest number 
of subjects included in each study (e.g., in most MRI-based 
studies that classified single subjects with MDD, the sample 
size of the depressed subject group has ranged from 18 to 57 
[8]). That is, all subjects except one are initially chosen to 
comprise the training set and a model that best separates the 
diagnostic groups from each other is applied to the omitted 
participant to predict their diagnostic status or treatment 
response. The process then is iteratively applied to each par-
ticipant to test the ability of the algorithm to distinguish be-
tween categories. That is, each omitted participant compris-
es one testing sample. This ‘leave one out’ approach provides 
an estimate of how well the particular modeling approach is 
expected to perform on independent data. To determine 
how well a particular model’s performance would general-
ize, however, it must be tested on an independent set of data 
that were not part of the training set. 

The accuracy of the classifier model is best represented 
by its sensitivity and specificity values. Sensitivity refers to 
the percentage of patients correctly classified as having the 
diagnosis while specificity refers to the percentage of 
healthy controls or controls with a different disorder who 
are correctly identified as not having the target condition. 

A laudatory example of developing machine learning al-
gorithms to classify depressed subjects as well as to predict 
treatment response was reported by Drysdale et al. (12). 
These investigators used resting-state fMRI (rsfMRI), 
which measures spontaneous regional fluctuations in the 
BOLD signal, to identify MDD subtypes according to dis-
tinct patterns of functional connectivity (correlation of fluc-
tuations) between brain regions. Their analyses revealed 
four “biotypes” defined by homogeneous patterns of dys-
functional connectivity in frontostriatal and limbic net-
works. They then showed that these biotypes were prognos-
tically informative for predicting the antidepressant 
response to repeated transcranial magnetic stimulation 
(rTMS). Finally, they tested the sensitivity and specificity of 
the model for classifying participants as depressed or 
healthy in an independent data set acquired across multiple 
MRI centers. 

The approach followed in this study are instructive for 
their study design, attention to technical considerations for 
noise reduction, and combination of both clinical symptom 
ratings and rsfMRI data. First, they included only scans that 
were of sufficient technical quality to provide interpretable 
information. They then implemented standardized, state-
of-the-art, preprocessing procedures to control for nonspe-
cific motion-, scanner- and age-related effects in rsfMRI 

The challenges to developing diagnostic imaging bio-
markers for mood disorders are numerous. Mood disorders 
are thought to comprise groups of disorders that are heter-
ogenous with respect to etiology and pathophysiology. Con-
sistent with this expectation considerable overlap exists in 
the statistical distributions of measurements obtained from 
individuals with mood disorders and those from healthy 
controls with respect to regional brain volumes, receptor 
binding potentials, metabolic and hemodynamic activity, 
and other neuroimaging measures. Secondly, functional 
neuroimaging measures—especially fMRI data—are highly 
sensitive to nonspecific alterations in patient physiology 
that may have little to do with mood symptoms (e.g. associ-
ated with caffeine consumption and nicotine exposure) (1, 
2), and to physiological changes produced by medications 
used to treat psychiatric symptoms (e.g. benzodiazepines 
and antipsychotic drugs) or medical conditions that com-
monly occur comorbidly with mood disorders (e.g. diabetes 
mellitus and hypertension) (3, 4). The development of imag-
ing-based diagnostic algorithms that are robust enough to 
be applied across cohorts and sites thus has proven chal-
lenging. Thirdly, in some cases psychotropic medication can 
alter the physical properties of the imaging signals (lithi-
um’s effects on the T1 signal in MRI) used to discriminate 
white matter and gray matter boundaries using structural 
MRI or to assess hemodynamic changes during fMRI (e.g., 
some antipsychotic drugs alter the magnitude of the BOLD 
signal), potentially confounding measures of brain structure 
and function, and biasing classification algorithms (5-7). 
The resultant models thus may distinguish patients from 
controls based on the impact of different classes of medica-
tion rather than diagnosis-specific neurophysiology. A cor-
ollary to this problem is that a model developed and trained 
on an unmedicated subject sample with a disorder may not 
sensitively classify individuals with the same disorder if 
they are medicated.

The challenge in neuroimaging studies is to determine 
how best to identify the key prediction signals in the mass of 
data produced by state-of-the-art scanners for each partici-
pant. One approach is to apply machine learning, a group of 
algorithms that are used to derive models for predicting 
classes or outcomes from high-dimensional data (8). Ma-
chine learning approaches typically require a model building 
step using a training dataset, followed by a model testing step 
using an independent dataset. For example, an empirical 
fMRI training dataset from one group of participants with a 
specific DSM-IV-diagnosis plus a healthy control group - is 
used to develop a model that optimally distinguishes be-
tween these groups. The resultant model then is tested on an 
independent dataset to assign class memberships to the new 
cases based on the patterns established from the training set. 
That is, the program “learns” from experience.

Once a classification model has been developed, the gold 
standard is to validate it on an independent cohort of sub-
jects obtained at a different study site, with the accuracy of 
each step dependent on including relatively large subject 
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the depression biotypes with most (59.3%) being assigned to 
the anxiety-associated biotype. In contrast, only 9.8% of 41 
patients with schizophrenia were classified into a depres-
sion biotype.

While the Drysdale et al. (12) algorithm for classifying 
MDD appears promising, future studies are needed to repli-
cate these results in an independent laboratory and subject 
sample. The authors published the list of coordinate-based 
ROIs, but also would need to provide the model parameters 
for identifying subtypes as well as those for predicting rTMS 
response in order to enable replication attempts. A replica-
tion study should include a sufficiently large sample size to 
provide confidence about the subtyping approach. Ideally, 
future research also is needed to ensure that one or more of 
the biotypes is not simply driven by nonspecific effects (e.g., 
medications or co-morbidities). Finally, the reliability of the 
classifiers needs characterization using fMRI data acquired 
at varying spatial resolutions and from different MRI scan-
ner types. 

Other researchers have explored the development of sin-
gle-subject prediction/classification models using task-based 
fMRI, diffusion MRI, or structural MRI-based measures of 
brain tissue composition. These studies have included small-
er samples and their results were subjected to fewer validat-
ing comparisons than those reported by Drysdale et al. (12). 
Moreover, their results also await replication in independent 
laboratories and subject samples. While these studies are re-
viewed elsewhere (8), some examples are described below to 
illustrate different types of imaging parameters that can be 
fruitfully studied for their potential as biomarkers.

 Sun et al. (13) created cortical density maps for 36 healthy 
controls and 36 patients with recent onset schizophre-
nia-spectrum or affective psychosis. On a group level, the 
patients displayed reduced gray matter density in regions 
such as the anterior cingulate and lateral surfaces of the pre-
frontal and temporal cortices compared to the control group. 
Machine learning methods then were applied to the data to 
test whether these findings could be applied at the individu-
al subject level. Using a sparse multinomial logistic regres-
sion classifier, 129 surface voxels were linearly combined for 
classification allowing for 86% accuracy in distinguishing 
between patients and controls. Clusters with the highest 
weightings included the frontal pole, superior and middle 
temporal regions of the left hemisphere, and the superior 
temporal, somatomotor, and subgenual anterior cingulate 
cortex regions of the right hemisphere. 

In another structural MRI approach, Redlich et al. (14) 
compared gray and white matter volumes between unipolar 
and bipolar depressives using voxel-based morphometry, 
and then developed a novel pattern classification approach 
to discriminate between groups. The study sample consisted 
of 58 currently depressed subjects with bipolar I disorder, 
58 age- and sex-matched unipolar depressed patients, and 
58 matched healthy controls, with half of each subgroup im-
aged at one of two imaging sites. Using machine learning the 
classifier was trained at one imaging site and the model was 

data, and co-registered the functional volumes to a common 
stereotaxic array to allow comparisons across individuals. 
They then applied a previously validated parcellation sys-
tem to delineate 258 functional network nodes across the 
brain, from which they extracted BOLD signal time series. 
The correlation matrices calculated between each node pro-
vided an unbiased estimate of the whole-brain architecture 
of functional connectivity in each subject. They additionally 
used subject level clinical rating scale information both to 
identify anhedonia- and anxiety-weighted components in 
the rsfMRI subtypes, and to define a common functional an-
atomical “core of pathology” (encompassing insula, orbitof-
rontal cortex, ventromedial prefrontal cortex and subcorti-
cal areas implicated in previous studies of depression), 
which predicted the severity of three ‘core’ symptoms from 
the Hamilton Rating Scale for Depression present in almost 
all patients. Superimposed on this shared pathological core 
were distinct patterns of abnormal functional connectivity 
that differentiated four biotypes, which were further char-
acterized by specific clinical-symptom profiles. 

The clustering analysis was performed in a “cluster-dis-
covery” sample (n=220), in which classification of depressed 
versus healthy subjects was optimized in the full training 
data set (n=333 MDD participants; n=378 heathy controls), 
and leave-one-out cross-validation and permutation testing 
were used to assess performance and significance. Sup-
port-vector machine (SVM; a type of supervised learning 
model) classifiers yielded overall accuracy rates of up to 
89.2% for accurately classifying subjects into depressed ver-
sus control categories based on the regional connectivity 
features. In cross-validation (leave-one-out), individual pa-
tients and healthy controls were diagnosed correctly with 
sensitivities of 84.1–90.9% and specificities of 84.1–92.5%. 
The investigators then tested the most successful classifier 
for each depression biotype in an independent replication 
data set consisting of 125 depressed participants and 352 
healthy controls imaged across13 study sites. Overall, 86.2% 
of subjects in this independent replication data set were cor-
rectly diagnosed as having MDD.

Finally, to further validate the four MDD biotypes, 
Drysdale et al. assessed their temporal stability, prediction 
of treatment outcome, and specificity for classifying partici-
pants with other psychiatric disorders. In a subset of 50 de-
pressed subjects who underwent a second rsfMRI scan 4–6 
weeks after the first scan, 90% of subjects were assigned to 
the same biotype in both scans. In 124 subjects who received 
high-frequency rTMS of the dorsomedial prefrontal cortex 
for 5 weeks, rTMS proved effective for 82.5% (n=33/40), 
25.0% (n=4/16), 61.0% (n=25/41) and 29.6% (n=8/27) for bio-
types 1, 2, 3 and 4 respectively. Classification of treatment 
response according to connectivity features plus biotype di-
agnosis yielded a predictive accuracy of 89.6%, compared to 
only 62.6% when clinical symptoms alone were used to pre-
dict treatment outcome. Finally, among 39 patients diag-
nosed with generalized anxiety disorder, which is closely 
related to MDD, 69.2% were classified as belonging to one of 
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cingulate cortex, left middle frontal gyrus, and right occipi-
tal cortex at baseline (19). 

Gong et al. (20) used structural MRI to predict antide-
pressant efficacy in 61 treatment naïve patients with depres-
sion. Patients who failed to respond to 2 adequate trials of an 
antidepressant were distinguished from treatment respond-
ers with 70% sensitivity and 70% specificity based on gray 
and white matter volumes. The treatment responders had 
both greater and lower baseline volumes of different regions 
in the frontal, temporal, parietal and occipital cortices, as 
well lower baseline volume of the putamen (20). 

Using task-based fMRI, Costafreda and colleagues (21) 
reported that in 16 unmedicated patients who met criteria 
for a major depressive episode, pretreatment response to 
implicitly-presented sad faces in regions such as the dorsal 
anterior cingulate cortex, midcingulate gyrus, superior fron-
tal gyrus, and posterior cingulate cortex predicted subse-
quent response to cognitive behavioral therapy with a sensi-
tivity of 71% and a specificity of 86%.

Other attempts at predicting response to treatment have 
been less successful. The functional imaging correlates of a 
verbal working memory task only predicted response to flu-
oxetine with 52% specificity, although sensitivity was 85% 
(16). Conversely, 62% of patients who achieved clinical re-
mission and 75% of patients who did not remit following 8 
weeks of antidepressant treatment, were correctly identi-
fied as responders and non-responders, respectively, with a 
sad face processing task (15).

In sum, many of the published diagnostic classification 
and treatment prediction methods have yielded sensitivities 
and specificities that range from 80-90%. Nevertheless, 
none of the above-mentioned studies has achieved this de-
gree of success in an independent cohort, and this will be a 
crucial test for the field. Ultimately, the patient burden and/
or risk of the scan, together with its financial cost, will have 
to be balanced against the potential benefits of testing in 
terms of improved outcomes and greater cost and time effi-
ciencies. The extent to which diagnostic and treatment mis-
classification will be tolerated by clinicians and the health 
care industry may ultimately be determined by this cost-ben-
efit ratio.

Independent of the technical challenges involved in de-
veloping diagnostic algorithms, we raise the issue of wheth-
er the current approach to developing neuroimaging-based 
tests for the diagnosis of psychiatric disorders is philosophi-
cally flawed. The claim that the machine learning approach 
will lead to objective biomarkers of psychiatric illness that 
will supplant the clinical interview is circular because the 
algorithms are trained to categorize patients based on clini-
cal (i.e. DSM-IV) diagnoses. Yet the raison d’etre of the bio-
marker is the future supersession of the subjective diagnosis 
as the gold standard. Our current diagnostic categories may 
subsume multiple distinct disorders and thus attempting to 
forcibly align neurobiology with DSM diagnoses is arguably 
regressive. In contrast, research that aims to identify neuro-
imaging biomarkers of treatment response should be en-

tested in the independent sample from the other site. At 
both sites, individuals with BD showed reduced gray matter 
volumes in the hippocampus and amygdala relative to indi-
viduals with MDD, whereas individuals with MDD showed 
reduced gray matter volume in the subgenual anterior cin-
gulate cortex compared with individuals with BD. Pattern 
classification yielded up to 79.3% accuracy for differentiat-
ing the two depressed groups by training and testing the 
classifier at one site, and up to 69.0% accuracy when this 
classifier was tested in the independent sample at the other 
site. Notably when individual subjects were instead classi-
fied into three categories, namely MDD, BD or healthy con-
trol, the best accuracy was reduced to 48.3% for testing in 
the independent sample. 

In a task-based fMRI study, Fu et al. (15) used the vox-
el-wise hemodynamic response to sad faces to distinguish 
depressed participants with MDD (n=19) from healthy con-
trols (n=19) with 82% sensitivity and 89% specificity. Re-
gions with the highest vector weights included the dorsal 
anterior cingulate, middle and superior frontal gyri, hippo-
campus, caudate, thalamus, and amygdala. The same group 
achieved a less robust 65% sensitivity and a 70% specificity 
with the use of a working memory paradigm in 20 healthy 
subjects and 20 unmedicated depressed subjects (16). Inter-
estingly, despite the difference in task paradigm there was 
some overlap in the regions that distinguished patients and 
controls in the sad face task – namely the caudate, and the 
superior and middle-frontal gyri. 

In another task-based fMRI study, the hemodynamic re-
sponses within the default mode and temporal lobe net-
works during an auditory oddball paradigm were applied a 
priori to a sample of 14 medicated patients with bipolar dis-
order, type I (BD I), 21 medicated patients with schizophre-
nia, and 26 healthy controls (17). The authors could distin-
guish BD patients from schizophrenic patients with 83% 
sensitivity and 100% specificity. 

Hahn et al. (18) utilized three independent fMRI para-
digms in an attempt to maximize classification accuracy: the 
passive viewing of emotionally-valenced faces, and two dif-
ferent versions of the monetary incentive delay task empha-
sizing potential winnings and potential losses, respectively. 
A decision tree algorithm derived from the combination of 
the imaging task classifiers produced a diagnostic sensitivity 
of 80% and a specificity of 87% in a sample of 30 patients 
with depression (both unipolar and bipolar) and 30 healthy 
controls.

In addition, several studies have used machine learning 
methods to evaluate predictors of response to treatment 
with antidepressant medication. In one study, a whole brain 
voxel-based morphometry (VBM) analysis predicted treat-
ment response to fluoxetine with 89% sensitivity and 89% 
specificity. In contrast, the same algorithm derived from the 
VBM analysis only differentiated MDD patients (n=37) from 
healthy controls (n=37) with 65% sensitivity and 70% speci-
ficity (19). Response to treatment was associated with in-
creased gray matter density of the rostral ACC, left posterior 
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et al. [9] in first-episode patients). Recent studies using mul-
timodal imaging (such as the combination of fMRI function-
al connectivity data and MEG measures of oscillatory activ-
ity and other similar approaches using structural and 
functional MRI measures) have shown improved classifica-
tion over that obtained using each method alone and it is 
likely that the use of multiple image based as well as other 
features (cognitive and clinical measures for example) might 
eventually lead to the development of valid and reliable di-
agnostic biomarkers (10, 11). 

As discussed below, many of the studies published to date 
have significant methodological limitations and it is import-
ant to note that in no case has a method been independently 
replicated in an independent and comparable sample of pa-
tients and/or controls, one of the key requirements for diag-
nostic biomarker status as discussed in Section I. Further-
more the very few studies that have tested the replicability 
of a classifier have performed much less than optimally (12).

As this research approach has matured it has also become 
clear that there are a number of critical methodological is-
sues that have limited progress toward that application of 
this approach to enhance clinical diagnosis. As discussed in 
Demirci et al. (6) a number of studies have only classifica-
tion accuracy for the entire sample rather than separately 
for each group. High overall classification can be driven by 
very good classification performance for one group (either 
patients for controls) but poor performance for another, 
which would limit the clinical utility of such an approach. 
Many of the early classification studies were conducted in 
very small samples such that their generalizability would be 
questionable and as such must be considered proof of con-
cept. There are a number of ways in which classification 
methodology can be biased, such as by selecting the features 
forming the basis of classification based upon the entire data 
set being classified or failing to keep test and training set 
separate during all steps of the analysis. These problems are 
present to some degree in a number of the published studies 
using classification methodology to distinguish schizophre-
nia patients from other groups. 

The review by Demirci et al. (6) stresses the importance of 
large, well characterized and described sample sizes, multi-
site data sets, and unbiased use of classification methods 
along with detailed reporting of results in future classifica-
tion studies using imaging data in schizophrenia patients. 

In addition to differentiating patients from controls, ef-
forts have been made to extend this approach to the import-
ant area of risk prediction. Risk syndromes for psychotic dis-
orders, based upon clinical assessment techniques that detect 
the presence of sub-threshold symptoms (13) have been 
shown to be reliably applied in research settings across the 
world and predictive of transition to psychosis in the 20-40% 
range. This relatively low positive and negative predictive 
value limits the utility of this approach for guiding treatment. 
A number of research groups have sought to identity struc-
tural and functional changes in the brain in the risk state and 
to evaluate the predictive value of these findings for clinical 

couraged as this approach is not subject to the same tauto-
logical trap.

Ultimately the identification of neurobiologically distinct 
subtypes of mood disorders may be a more fruitful approach 
to understanding the underlying biology of psychiatric ill-
ness (22). The recent evidence of subtypes defined both by 
symptom clusters and immunometabolic biomarkers cor-
roborates the existence of biologically distinct subgroups 
within the MDD population, which has important ramifica-
tions for studies of neuroimaging classifiers and treatment 
predictors (23, 24). It is conceivable that combinations of 
neuroimaging data with immunometabolic or other bio-
marker types ultimately may prove more successful than ei-
ther data type alone at providing diagnostic classification 
and treatment prediction models. 

SECTION III. PROGRESS TOWARDS BIOMARKERS OF 
PSYCHOTIC DISORDERS

Section author: Cameron Carter

Going back to the original observations of enlarged ventri-
cles in schizophrenia (1, 2) as well as to observations of func-
tional hypofrontality (3, 4) and increased striatal dopamine 
release (5), a broad range of reliable and well replicated 
changes in brain structure, function and chemistry has been 
revealed using modern neuroimaging techniques. As is the 
case for many other behavioral and neurobiological mea-
sures that have been shown to be altered in schizophrenia, 
these widely replicated group differences belie a substantial 
degree over overlap between individual subject data from 
patients with schizophrenia compared to controls and other 
patient groups. This has placed a major limitation on the use 
of neuroimaging as a diagnostic biomarker of schizophrenia. 
As imaging methods have become more sophisticated, lead-
ing to the generation of massive multidimensional data sets, 
there has been a renewed interest in the diagnostic use of 
these methods by applying a new set of statistical and com-
putation tools that have gained traction in areas of biomedi-
cine. These new tools offer the hope of identifying subtle 
patterns in complex data sets that can be used to accurately 
identify group membership . This approach, known as Clas-
sification Analysis, applies statistical and/or computational 
methods to identify a “hyperplane” of features in high di-
mensional data that can be used to distinguish between 
groups. The goal of such an approach is to use individual 
subject MRI data (structural, functional or both) to differen-
tiate between membership in diagnostic groups with high 
positive and negative predictive value. 

This is a rapidly developing field and there are now a 
number of reports of what would be considered good classi-
fication rates for samples that include schizophrenia pa-
tients and either healthy controls or patients with bipolar 
disorder. This includes a small number of studies that report 
positive and negative predictive values that exceed 80% (6, 
7; see also Calhoun [8] who presented specificity and sensi-
tivity data in this range as well as a recent study by Squarcini 
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SECTION IV: IMAGING BIOMARKERS ASSOCIATED 
WITH COGNITIVE DECLINE

Section authors: Jonathan McConathy, M.D., Ph.D., and 
Yvette I. Sheline, M.D.

Introduction
In the past decade there has been a proliferation of neuroim-
aging studies examining cognitive decline in the elderly. 
Many of these studies have been small with small numbers of 
enrollees. It is becoming increasingly important to determine 
which studies and methods have achieved sufficient sensitiv-
ity and specificity that they can guide diagnostic or therapeu-
tic decisions. The major focus of molecular and structural 
imaging for dementia has been on Alzheimer-type dementia 
(AD), frontotemporal dementia (FTD), and dementia with 
Lewy bodies (DLB). These three types of dementia differ in 
terms of presentation, prognosis, etiology and response to 
therapeutics, although clinical overlap is not uncommon (1-
5). We will highlight those studies with sufficient power to 
make meaningful conclusions concerning the role of imaging 
biomarkers in cognitive decline and dementia. 

Traditionally, the clinical work up of dementia has fo-
cused on clinical assessment, neuropsychological testing, 
and exclusion of other etiologies. The National Institutes of 
Aging (NIA) and the Alzheimer’s Association have issued 
new diagnostic criteria for AD and mild cognitive impair-
ment (MCI) that build upon the 1984 NINDCS/ARDRA 
guidelines and now suggest that the use of biomarkers and 
neuroimaging can enhance diagnostic confidence (3, 6). 
Specific definitions for stages of preclinical AD were intro-
duced as well (7). Preclinical AD Stage I was defined as as-
ymptomatic cerebral amyloidosis (the presence of amyloid 
on positron emission tomography (PET) scan or lumbar 
puncture (LP). Stage II was defined as Stage I plus down-
stream neurodegeneration (the presence of elevated tau on 
LP, abnormal fluor-deoxyglucose [FDG[ metabolism on PET 
scan or abnormal volumetric loss on structural magnetic 
resonance imaging [MRI] scan). Stage III was defined as 
Stage II with the addition of subtle cognitive decline (7). An 
important concept introduced in these guidelines is the AD 
pathophysiological process (e.g. b-amyloid deposition in the 
brain) which can be observed in some cognitively normal in-
dividuals and is thought to represent preclinical disease in 
this group of people. The AD pathophysiologic process is 
distinct from AD dementia which requires objective evi-
dence of cognitive deficits established through clinical as-
sessment. Autopsy studies have demonstrated that the accu-
racy of clinical diagnosis for AD is approximately 80% (8-9). 
In addition to limitation in accurate diagnosis, reliance on 
clinical assessment alone may not be optimal for clinical tri-
als for therapies that slow or prevent the progression of de-
mentia because some of the preclinical AD pathophysiolog-
ical processes appear to precede clinical manifestations of 
dementia by many years (10-11). Biomarkers for the AD 
pathophysiological process could be used to select partici-
pants in clinical trials as well as to monitor response to ther-

and functional outcomes. The results of these studies has 
been quite variable, For example one of the leading groups in 
this area reported the presence of reduced cortical gray mat-
ter in prefrontal cortex and the temporal lobes in at risk indi-
viduals who later made the transition to psychosis while me-
dial temporal lobe abnormalities accompanied the emergence 
of psychotic symptoms (14. A more recent paper from the 
same group, using different analytic methods, reported the 
opposite finding, with reduced prefrontal gray matter being 
related to the risk syndrome per se while reduced medial 
temporal lobe gray matter was related to transition. The lat-
ter study had one of the larger samples reported to date but 
clearly additional well powered studies and meta analyses 
will be needed to clarify the relationship between changes in 
gray matter and psychosis risk in the clinical high risk syn-
drome. To date one study has reported the use of pattern clas-
sification analysis based upon structural MRI data to differ-
entiate high-risk subjects from controls as well as those who 
later transition to psychosis versus those who do not. In this 
single study the classification success rate was over 80% for 
each group and also for a second independent healthy control 
group. Further replication in an independent at risk group 
will be needed to establish the reliability and generalizability 
of this potentially promising result (15).

Two final points related to the use of structural and func-
tional MRI data for classification should be made. The first 
is that there is little standardization of either the acquisition 
or analysis methods and for this approach to have a clinical 
impact the field would need to develop consensus on this. 
More fundamentally, the validation of classification meth-
ods requires a gold standard, and for mental disorders in 
general and schizophrenia in particular this is a tall order. 
DSM schizophrenia itself is clearly a heterogeneous disor-
der that has phenotypic overlap at the behavioral level as 
well as in brain structure and possible function and so it may 
be unrealistic to achieve a consistently high level of classifi-
cation in clinical practice.

In summary considerable effort is currently being invest-
ed in using modern statistical and computational tools to 
utilize structural and functional MRI for diagnostic purpos-
es in patients with schizophrenia and related disorders. 
This approach has yielded some promising results but also 
methodological caution that seems largely addressable as 
more rigorous studies are performed on a much larger scale 
than has been typical to date. While there is reason to be 
hopeful that these methods will eventually yield generaliz-
able and replicable results that will permit their application 
in clinical practice at this time classification analyses remain 
a research tool only.
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the addition of cognitive change was 43% (20). Thus, adding 
structural MRI to amyloid alone improved the prediction of 
progression. On the other hand, another study found that 
the best predictors of progression to AD, such as entorhinal 
thickness or trail making test B was comparable to any com-
bination of predictors (21).

PET and SPECT Biomarkers

Molecular imaging uses tracers whose in vivo uptake pat-
terns and kinetics indicate and quantify the presence or ac-
tivity of specific biochemical processes including receptors, 
transporters, enzymes and metabolic pathways. Currently, 
positron emission tomography (PET) and single photon 
emission computed tomography (SPECT) which use radio-
labeled tracers are the primary molecular imaging tech-
niques used for imaging in dementia in humans. PET has 
higher spatial and temporal resolution and is more easily 
quantified than SPECT. There has been a great deal of work 
of the past 3 decades using PET and SPECT for human neu-
roimaging clinically and in the research setting.  

Molecular imaging has established utility for neuroimag-
ing in dementia, particularly AD (22-23). The glucose ana-
logue 2-[18F]fluoro-2-deoxy-D-glucose (FDG), several 11C- 
and 18F-labeled tracers that bind Ab neuritic plaques, the 
SPECT perfusion agents 99mTc-labeled ethyl L,L-cysteinate 
dimer (ECD) and hexamethylpropyleneamine oxime (HM-
PAO), and the dopamine transporter ligand FPCIT will be 
discussed in this section as biomarkers for specific demen-
tias. [18F]FDG and SPECT perfusion imaging have been eval-
uated in each of these types of dementia, while Ab imaging 
has focused primarily on AD. FPCIT has been used primarily 
to differentiate dementia with Lewy bodies (DLB) from AD. 

There are a number of other PET and SPECT tracers that 
have potential applications in dementia. Tracers targeting 
nicotinic and cholingergic acetylcholine receptors, acetyl-
cholinesterase, dopamine D1 and D2 receptors, serotonin 
5-HT1A and 5-HT2A receptors, vesicular monoamine trans-
porters (VMAT), and the peripheral benzodiazepine recep-
tors in activated microglia have all shown differences be-
tween subjects with dementia compared to controls (23-25). 
These tracers represent promising research tools, but there 
is not enough data to support their use as imaging biomark-
ers for dementia at this time.

Pathologic analysis of brain tissue obtained at autopsy is 
considered the best reference standard for establishing the 
sensitivity, specificity and accuracy of biomarkers in demen-
tia. There are several considerations unique to PET and 
SPECT biomarkers for dementia. The methods used for im-
age acquisition, reconstruction and analysis can affect the 
diagnostic performance of these imaging modalities, partic-
ularly when quantitative data analysis is performed. Be-
cause of spatial resolution limitations of PET and SPECT, 
brain atrophy can artifactually decrease measured tracer 
uptake and can be a potential confound to visual and quanti-
tative analysis. Correction for atrophy can be performed 
based on anatomic imaging with CT or MRI.

apies. It is important to note that these recent guidelines is-
sued by the NIA and Alzheimer’s Association restrict the 
application of imaging and CSF biomarkers to research ap-
plications and do not include these biomarkers in their clin-
ical diagnostic criteria. Of note, these guidelines were pub-
lished prior to the FDA approval of PET tracers for amyloid 
imaging in adults with cognitive impairment.

Structural Biomarkers

Very mild Alzheimer’s disease (AD) or mild cognitive im-
pairment (MCI) are characterized by magnetic resonance 
imaging (MRI) volumetric decreases in medial temporal 
lobe structures including the hippocampus (12) where hip-
pocampal volume is correlated with beta-amyloid (Ab)-as-
sociated memory decline (13-14). Subjects with MCI who 
show abnormalities in MRI and/or CSF biomarkers are at 
greater risk for cognitive decline and progression to AD than 
subjects without these abnormalities (15). However, the 
cross-sectional sensitivity and specificity of volumetric dif-
ferences compared with controls has not been demonstrat-
ed. At this time, therefore, structural MRI alone cannot be 
used alone to diagnose clinical dementia. In contrast, the 
sensitivity for detecting within-subject changes in structure 
is quite high. In one study, predictive prognosis of MR imag-
es obtained at one time point versus combining single-time-
point measures with 1 year change measures were com-
pared. To determine the value of including measures of 
longitudinal change in addition to the atrophy measures 
from a single-time-point MR imaging examination, individ-
ualized risk estimates were derived from the atrophy scores 
for thickness and volume measures calculated at the 1-year 
follow-up MR exam. Using the risk based on the atrophy 
progression scores, the discrimination improved significant-
ly in the ability to predict conversion to AD, relative to pre-
dictive ability of using single-time-point measures (16). A 
study which examined subregional neuroanatomical volu-
metric change as a biomarker for AD to quantify the com-
parative sensitivity for detection of longitudinal atrophy 
changes, found that the regions with most sensitivity were 
entorhinal cortex and inferior temporal cortex (17). This 
could potentially provide a sensitive method to detect with-
in subject change and potentially enough power to detect 
treatment induced change. For example, in prospective 
therapeutic trials, the number of intent-to-treat subjects 
necessary to detect differences in trajectory as a function of 
an intervention can be estimated (17). In addition to stand-
alone prediction of AD, MRI has been used to augment CSF 
biomarkers. In MCI subjects who were abnormal on both 
CSF and MRI measures there was a 4 times higher risk to 
progress to AD within less than 2 years than those who were 
abnormal on only one of these measures (18-19). A recent 
study using the NIA-AA definition of preclinical AD found 
that in a one year followup study the rates were significantly 
different across the stages (20). The rate in stage 0 was 5%, 
Stage I (amyloidosis only) was 11%, Stage II (including 
structural MRI abnormalities) was 21% and Stage III, with 
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2) Amyloid imaging

Abnormal homeostasis and aggregation of beta-amyloid (Ab) 
is a hallmark of the pathologic diagnosis of AD and is thought 
to play a central role in the pathogenesis of AD (38-39). The 
deposition of Ab in the brain appears to precede the develop-
ment of AD by up to 10-15 years (11, 40). A number of small 
molecule PET and SPECT tracers suitable for measuring Ab 
in the living human brain have been developed over the past 
decade. One of the first amyloid imaging agent developed 
was the PET tracer [11C]Pittsburgh compound B (PiB), and 
this tracer has been used extensively for research in subjects 
with AD and other dementias. More recently, several 18F-la-
beled amyloid imaging agents have been developed and eval-
uated for Ab imaging including florbetapir (AV-45), (41) 
flutemetamol, (42) florbetaben, (43), FDDNP, (44) and 
AZD4694 (45). These tracers are better suited to routine 
clinical use due to the longer half-life of F-18 compared to 
C-11 (110 min vs. 20 min). These tracers are similar in terms 
of mechanism of action by binding to the fibrillary form of 
the Ab protein that occurs in neuritic amyloid plaques (46). 

In April 2012, [18F]florbetapir was approved by the FDA 
for detecting abnormally increased b-amyloid deposition in 
the brain in patients with cognitive decline. Comparison 
with autopsy results demonstrated that positive florbeta-
pir-PET studies corresponded to moderate or frequent Ab 
plaques on neuropathology. Both flutemetamol and florbeta-
ben are currently in late phase clinical trials and appear to 
have similar diagnostic properties based on the available 
published data (47-48). With this class of tracers moving 
from the research to the clinical setting, their proper use will 
require referring health care providers and imaging physi-
cians to understand which patient populations will benefit 
from b-amyloid imaging as well as the implications of both 
positive and negative imaging studies. For florbetapir, a neg-
ative study (no abnormally increased cortical tracer uptake) 
is inconsistent with the diagnosis of dementia due to AD but 
does not exclude other dementias or neurological disorders 
that are not associated with b-amyloid pathology. In con-
trast, a positive study with florbetapir indicates the presence 
of abnormal levels of amyloid but does not by itself establish 
the diagnosis of AD dementia. As with PiB, positive florbeta-
pir PET studies can occur in 20-30% of cognitively normal 
older people, (49) and the significance of this finding is an 
area of active research. Additionally, Ab deposition has been 
reported in DLB, and AD pathology can potentially coexist 
with neurological conditions causing cognitive decline. Be-
cause abnormal Ab PET and CSF studies are currently the 
earliest known phenotypic marker of the AD pathophysio-
logical process and appear to precede clinically detectable 
cognitive decline, these agents may be particularly useful if 
disease-modifying therapies become available. 

The most rigorous published evaluations of the correla-
tion between imaging findings and pathologic confirmation 
of AD at autopsy are currently available for PiB and florbeta-
pir. Small studies comparing the brain uptake of PiB and Ab 

Alzheimer’s Disease (AD)

1) [18F]FDG

[18F]FDG-PET is the most widely used PET tracer in the 
United States for both oncologic and dementia imaging, and 
the regional uptake and retention of the PET tracer FDG in 
the brain can provide a quantitative measure of brain glu-
cose metabolism. Numerous studies have demonstrated 
progressively decreasing brain uptake of FDG in AD patients 
over time, predominantly in the parietotemporal, frontal 
and posterior cingulate cortices which is thought to reflect 
neuronal injury and loss. Currently, FDG-PET studies are 
reimbursed by the Centers for Medicare and Medicaid Ser-
vices (CMS) for differentiating suspected AD from FTD. 
The clinical interpretation of FDG-PET studies for the diag-
nosis of dementia can be performed by qualitative visual 
analysis of the relative levels of FDG uptake in relevant re-
gions of the brain. Quantitative analysis of regional FDG up-
take can also be performed through comparison with nor-
mative databases, and there is data suggesting that this type 
of analysis can improve diagnostic accuracy, particularly for 
less experienced interpreters (26-27). 

The sensitivity of FDG-PET for the diagnosis of early AD 
is approximately 90% although the specificity for distin-
guishing AD from other types of dementia is lower (71-73%) 
in studies that used autopsy confirmation as the reference 
standard (27-28). There is also data supporting the use of 
FDG-PET to predict which healthy individuals will develop 
mild cognitive impairment (MCI) and which individuals 
with MCI will progress to clinical AD (29-30). Recent stud-
ies suggest that FDG may be a better marker for progressive 
cognitive decline compared to amyloid imaging and CSF 
measures of Ab levels (31). However, there is also growing 
evidence that abnormal brain accumulation of tracers tar-
geting Ab occurs before changes in FDG uptake (10, 32).

A relatively small number of studies have examined the 
ability of FDG to discriminate patients with AD from those 
with FTD or DLB. In FTD, the typical pattern of FDG hy-
pometabolism predominantly involves the anterior aspects 
of the frontal and temporal lobes, often asymmetrically. In 
studies of subjects with AD and FTD, high specificities have 
been reported (93-98%) with more variable sensitivities (53-
95%) (33-35). Some of this variation is likely due to differ-
ences in patient population, methods and reference stan-
dard (pathologic confirmation versus clinical diagnosis). In 
a study of 31 patients with autopsy-confirmed AD and 14 
with FTD, FDG-PET was more accurate than clinical as-
sessment and differentiated AD from FTD with a specificity 
of 98% and sensitivity of 86% (34). The pattern of glucose 
hypometabolism is similar in AD and DLB, but occipital hy-
pometabolism typically is present in DLB but not in AD 
which can be used to distinguish these dementias. In studies 
of subjects with AD and DLB, the reported sensitivities and 
specificities are variable with ranges of values of 75-83% and 
72-93%, respectively (36) (37). 
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was present, the sensitivity was unchanged but the specific-
ity increased to 81%. However, diagnosis based on SPECT 
alone was less accurate than clinical diagnosis. 

3) Amyloid agents

There is currently insufficient data to define the role of am-
yloid imaging agents as a biomarker to distinguish FTD from 
AD, although the different pathophysiologies and several 
small studies suggest that Ab imaging may be useful to dis-
tinguish FTD from AD. Together, these studies demonstrate 
that 11-25% of patients with clinically diagnosed FTD have 
abnormally increased cortical Ab deposition as measured 
with [11C]PIB or [18F]fluorbetaben (58-60). None of these 
studies had autopsy confirmation, and the significance of 
the Ab deposition in the FTD subjects is unclear. One hy-
pothesis is the small percentage of patients with FTD and 
abnormal cortical Ab deposition may be in part explained by 
co-morbid FTD and AD in the same patient.

Dementia with Lewy bodies (DLB)

1) [18F]FDG-PET

[18F]FDG has shown utility in distinguishing AD from DLB 
based on different patterns of decreased regional brain glu-
cose metabolism (61-62). The pattern of decreased brain 
[18F]FDG uptake in DLB is similar to AD with the exception 
of involvement of occipital cortex, particularly the primary 
visual cortex, in DLB but not AD. In studies of subjects with 
AD and DLB, the reported sensitivities and specificities are 
variable with ranges of values of 75 -83% and 72-93%, re-
spectively (36) (37, 61). In a study combining both clinical 
and histopathologic confirmation of diagnosis, [18F]FDG-
PET was found to have a 90% sensitivity and 80% specificity 
for distinguishing AD from DLB (61).

2) SPECT perfusion

Studies examining the ability of 99mTc-labeled ECD and 
HMPAO to distinguish AD from DLB have shown similar 
sensitivity and specificity as [18F]FDG-PET (63). The region-
al pattern of decreased brain perfusion is similar to the pat-
tern of glucose metabolism observed with [18F]FDG. Some 
studies have reported 85% sensitivity and 85% specificity for 
this indication, (64) although other groups have found sub-
stantially lower values (sensitivity of 65%, specificity of 
87%) (65). Additionally, these studies used clinical diagnosis 
as the reference standard and were not histopathologically 
confirmed. 

3) Dopamine transporter (DAT) imaging

The SPECT agent [123I]FPCIT (ioflupane) has been used to 
discriminated DLB from other dementias based on the loss 
of dopaminergic neurons which in turn leads to decreased 
DAT density in the striatum. This agent has also been used to 
study the loss of dopaminergic neurons that occurs in Par-
kinson’s disease and related syndromes and is clinically ap-
proved for clinical use in Europe and the U.S. to distinguish 
Parkinsonian syndromes from essential tremor (66). A 2007 

plaques on histopathologic analysis have yielded mixed re-
sults, and sensitivity and specificity measurements cannot 
be provided based on this limited data (50-51). A recent 
study using florbetapir demonstrated 96% qualitative agree-
ment of PET imaging with Ab burden on histopathologic 
analysis in a group of 29 subjects (15 meeting pathologic cri-
teria for AD, 14 free of Ab pathology) (52). In the same study, 
74 healthy controls less than 50 years of age all were nega-
tive for Ab based on florbetapir-PET. One limitation of this 
study was the use of consensus reads between 3 nuclear 
medicine physicians with individual readers having more 
variable performance. The data reported by the FDA in the 
prescribing information document for florbetapir includes 
data from 59 subjects who had autopsies performed after 
florbetapir-PET, and the majority reader method provided 
sensitivity of 92% and specificity of 100%, although the sen-
sitivity for individual readers ranged from 69-95% (53).

3) Perfusion imaging

The use of lipophilic 99mTc-labeled complexes that readily 
cross the blood brain barrier (BBB) with subsequent trap-
ping are well-established radiopharmaceuticals for measur-
ing brain perfusion (54). Regional decreases in brain perfu-
sion measured with the ECD and HMPAO are similar to the 
regional decreases in glucose metabolism in AD, and region-
al cerebral blood flow (rCBF) has been proposed as method 
for diagnosing AD (55). In general, direct comparisons be-
tween FDG-PET and rCBF measured with SPECT have 
shown higher sensitivity and specificity with FDG-PET 
(56). In the past, the large differential in cost and availability 
between PET and SPECT cameras and radiopharmaceuti-
cals greatly favored the use of SPECT. However, the recent 
widespread adoption of FDG-PET for oncologic imaging 
has decreased this difference significantly.

Frontotemporal dementia (FTD)

1) [18F]FDG-PET

[18F]FDG has shown utility in distinguishing AD from FTD 
based on different patterns of decreased regional brain glu-
cose metabolism. Unlike AD, the brain regions with the most 
marked relative decreased in [18F]FDG uptake are in the 
frontal and/or anterior temporal cortices in FTD. Overall, 
studies of subjects with AD and FTD, high specificities have 
been reported (93-98%) with more variable sensitivities (53-
95%) (33-35). The largest study assessing the ability of [18F]
FDG to distinguish AD (n=31) from FTD (n=14) with patho-
logic confirmation found sensitivity of 86% and specificity 
of 97% (34). 

2) SPECT perfusion

Measurement of rCBF with SPECT perfusion agents has 
been used to distinguish FTD from AD. In a study using 
99mTc-labeled HMPAO in subjects with pathologically con-
firmed FTD (n=25) and AD (n=31), reduction of frontal rCBF 
permitted diagnosis of FTD with a sensitivity of 80% and 
specificity of 65% (57). When bilateral frontal reduced rCBF 
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cent investment in acquisition of longitudinal phenotypic 
and neuroimaging data in late childhood and early adoles-
cence by the National Institutes of Health in the Adolescent 
Brain Cognitive Development (ABCD) multicenter study. 
The following paragraphs summarize some of the existing 
data on neuroimaging biomarkers of the addictions.

Alcohol
Atrophic changes in gray matter as well as white matter 
damage have been amply documented in chronic alcoholics, 
involving frontal [2], cerebellar [3] and hippocampal struc-
tures ([4-6]), presumably accounting for neuropsychologi-
cal deficits, and reflecting the neurotoxic effects of chronic 
alcohol consumption. Reductions in gray matter volume in 
chronic alcoholics and improvements in those measures af-
ter prolonged abstinence have also been observed for some 
structures related to decision making and motivated behav-
ior (i.e., dorsolateral prefrontal cortex, insular cortex, nucle-
us accumbens, amygdala), with corresponding improve-
ments in neuropsychological measures (e.g., executive 
functions) [7]. Reductions in white matter connectivity us-
ing diffusion tensor imaging (DTI) have been documented 
in the fornix and cingulum, confirming the effects of alco-
holism on white matter tract integrity [8]. An impairment of 
abstinent alcoholics in performing an incentive conflict task 
that examines conflict resolution and the regulation of be-
havioral responses to potential gains and losses has also 
been described. Areas involved in these processes showed 
reductions in gray matter volume among the alcoholics that 
were more profound in those individuals undergoing multi-
ple detoxifications, suggesting that multiple withdrawals, 
and not just alcohol consumption, may also have effects on 
neuronal integrity and potentially the function of those re-
gions [9]. In a small sample of patients with either uncom-
plicated alcoholism or Korsakoff’s syndrome it was observed 
that microstructural anomalies in the white matter in the 
Papez circuit were associated with the more severe forms of 
alcoholism and with memory dysfunction, potentially pro-
viding information as to predisposition to cognitive decline 
in chronic alcoholics [10].

Reductions in markers of neuronal integrity as measured 
by MRS of the frontal lobes have been consistently found in 
alcoholism, with reductions in N-acetylaspartate (NAA) and 
glutamate/glutamine (Glu) content in heavy drinkers [11, 
12]. These are effects that also appear in other substance use 
disorders, such as methamphetamine and nicotine depen-
dence [13], likely reflecting the neurotoxic effects of chronic 
substance abuse. 

A number of studies have examined brain regions in-
volved in cue-reactivity with functional MRI (fMRI). Alco-
hol-related cues are associated with the activation of the pre-
frontal cortex, striatum and thalamus in volunteers with 
alcohol use disorder, compared to healthy controls [14, 15]. A 
pilot study examined the level of activation in these regions 
among relapsers vs. non-relapsers, showing that alcohol in-
take over a 3-month follow-up period was associated with 

multicenter trial in Europe with 326 subjects demonstrated 
that FPCIT has a sensitivity of 78% and specificity of 90% for 
distinguishing DLB from other dementias, primarily AD, us-
ing clinical diagnosis as the reference standard (67). A small-
er retrospective study (n=44) demonstrated lower sensitivity 
(63%) but higher specificity (100%) based on consensus diag-
nosis after 12 month follow up as the reference standard (68). 
A small prospective study that included 20 patients with de-
mentia and pathologic analysis at autopsy, FPCIT was 88% 
specific and 100% specific for differentiating DLB from other 
dementias compared to lower values of 75% and 44%, re-
spectively, based on initial clinical diagnosis (69).

4) Amyloid agents

There is insufficient data to use amyloid imaging agents to 
distinguish DLB from AD. The available data suggests that 
Ab deposition occurs frequently in DLB and may correlate 
with cognitive deficits (70-71).

SECTION V: PROGRESS TOWARD DIAGNOSTIC 
IMAGING BIOMARKERS FOR SUBSTANCE USE 
DISORDERS

Section author: Jon-Kar Zubieta, MD, PhD

The heritability of substance use disorders, including alco-
holism, is estimated at 50% [1], suggesting a strong biological 
basis for their development, that interacts with the effects of 
the shared environment. In addition, there are known neuro-
biological effects of drugs of abuse, some of which are related 
to their reinforcing effects, tolerance development and the 
formation of the addiction process, that are, at least in some 
part, common across substances of abuse. Neurodegenera-
tive processes also appear to take place upon prolonged 
abuse, with a number of neuropsychological consequences, 
including co-morbidity with other psychiatric and neurolog-
ical processes, making the parsing out of mechanisms associ-
ated with addiction processes particularly challenging. 

The vast majority of studies have examined differences in 
neuroimaging data (structural measures, connectivity, func-
tion, neurotransmission) between addicted samples and 
controls, and in some cases, have studied the relationship 
between those measures and variables related to the severi-
ty of the addiction, craving, withdrawal symptoms and treat-
ment effectiveness. The extant data on structural MRI, func-
tional MRI (fMRI), magnetic resonance spectroscopy 
(MRS), functional and neurochemical positron emission to-
mography (PET) and single-photon emission tomography 
(SPECT) are reviewed here with specific examples. Neuro-
imaging and related surrogate markers have the potential of 
defining addiction neurobiology, effects of drugs of abuse on 
various measures, and their relationship with particular in-
dividual characteristics and responses to treatment. Biolog-
ical markers related to risk/vulnerability are of particular 
importance as they address the potential for prevention and 
early intervention. The latter has been highlighted by the re-
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family history of alcoholism, and the effects of early alcohol 
and drug involvement. A blunted nucleus accumbens re-
sponse during reward anticipation has been found in young 
adults at risk for alcoholism based on family history [36], as 
well as in youth during an affective word processing task 
[37] and it has been suggested that a composite of impulsivi-
ty and negative affectivity may induce changes in reward 
response circuitry predisposing to the engagement in sub-
stance use behaviors [9]. Family history of alcoholism has 
also been associated with higher levels of dopamine D2/3 
receptors in the basal ganglia of unaffected relatives in one 
study, suggesting that those elevations may represent a pro-
tective factor [38].

Opioids
Heroin-dependent volunteers have shown diffuse reductions 
in gray matter volume in the prefrontal, cingulate cortex and 
supplementary motor cortex, as well as reductions in frac-
tional anisotropy as measured with DTI in frontal regions, 
further associated with duration of heroin use [39, 40]. A very 
specific form of heroin abuse, the inhalation of heated heroin 
vapor, has been additionally related to the development of 
spongiform encephalopathy as diagnosed with structural 
MRI [41]. Using resting state connectivity measures and 
fMRI, alterations in functional connectivity, affecting pre-
frontal, cingulate, ventral basal ganglia and amygdala net-
works, have been reported in abstinent heroin-dependent 
volunteers, with the extent of those anomalies correspond-
ing to the duration of heroin use [42-44]. Functional connec-
tivity indexes of the caudate nucleus, an area linked to both 
substance use disorders and the formation of habitual behav-
iors, were also different between heroin-dependent volun-
teers that relapsed after treatment in comparison with 
non-relapsers, and further associated with craving ratings, 
suggesting the potential utility of these measures to predict 
treatment responses in this population [45]. Reductions in 
the capacity to engage brain regions involved in impulse con-
trol and inhibitory responses have also been reported, even 
after prolonged abstinence [46]. As with other drugs of abuse, 
the presentation of heroin-associated cues during fMRI has 
been shown to increase brain regional activity (prefrontal, 
temporal cortical regions and amygdala) in currently using as 
well as detoxified heroin-dependent volunteers, compared 
to non-abusing controls [47, 48]. In the latter study, a reduc-
tion in responses to neutral cues in the prefrontal cortex was 
additionally observed. Cue-induced brain regional activity in 
heroin-dependent volunteers is reduced after methadone 
treatment in the insular cortex, amygdala and hippocampal 
formation [49]. 

Work examining structural and functional measures in 
prescription opioid-dependent individuals has shown selec-
tive reductions in the volume of the amygdala, as well as in 
DTI fractional anisotropy measures in amygdala-associated 
pathways. Reductions in the functional connectivity of the 
anterior insula, nucleus accumbens and amygdala were also 
observed, compared to that of controls, which were associ-

greater baseline cue-induced reactivity in the anterior cingu-
late, medial prefrontal cortex and striatum [16]. These find-
ings, together with evidence that naltrexone reduces cue-in-
duced activation in the ventral striatum [17], led to the 
development of a multicenter study for the stratification of 
patients into different treatments based on cue-induced re-
activity using fMRI measures as one of the predictors [18]. Its 
results showed that increases in cue-induced reactivity of the 
ventral striatum were associated with better treatment re-
sponses to naltrexone, suggesting the utility of fMRI for the 
prediction of treatment responses in alcoholism [19]. Along 
similar lines, and this time utilizing an impulsiveness task, it 
was observed that monozygotic twins discordant for alcohol 
use disorder showed hypermethylation of the 3’-pro-
tein-phosphate-1G (PPM1G) gene locus, and effect linked to 
the fMRI signal responses in the right subthalamic nucleus, 
part of the output of the ventral striatum through the indirect 
striatopallidal pathway, a network centrally involved in moti-
vational mechanisms and reward response integration [20].

Neurochemical imaging with PET and radiotracers have 
reported reductions in dopamine D2/3 receptor availability 
in the striatum of detoxified alcoholics in most studies (re-
viewed in [21]). In the ventral striatum these have been 
found to correlate with both alcohol craving and cue-in-
duced activation of the medial prefrontal cortex and anteri-
or cingulate in parallel fMRI experiments [22]. As reviewed 
below for other substances of abuse, and in particular psy-
chostimulants, reductions in D2/3 receptor availability is a 
consistent finding in the drug abuse literature, likely to re-
flect the role of dopamine in the reinforcement of both nat-
ural and drug-associated rewards. Chronic alcohol use has 
been additionally associated with reductions in presynaptic 
dopamine function in the ventral striatum and putamen, as 
measured by amphetamine- and methylphenidate-induced 
dopamine release [23, 24]. In the latter study, dopamine re-
lease was further negatively associated with the metabolism 
of the orbitofrontal cortex in healthy controls but not alco-
holics, suggesting a disruption of prefrontal-ventral basal 
ganglia regulatory processes in alcoholism. Less consistent, 
mixed results have been reported for other measures of pre-
synaptic dopamine or serotonergic function, such as the 
availability of dopamine transporters (DAT) [25, 26], sero-
tonin transporters (SERT) [27-29] or dopamine uptake as 
measured by [18F]fluorodopa [30, 31]. Similar conflicting re-
sults have been reported for other targets of alcohol effects, 
such as the opioid system and µ-opioid receptors [32, 33], 
although relationships with alcohol craving were reported 
in both studies, and the GABAA-benzodiazepine receptor 
site [34, 35]. Methodological differences between studies 
(radiotracer selectivity, length of abstinence, co-morbidities 
with other substances, such as tobacco smoking) are likely 
to account for some of the lack of consistency across studies.

A growing body of literature is also examining potential 
precursive factors that may underlie a predisposition for 
early alcohol and drug use among youth and adolescents “at 
risk”, such as those with high-levels of sensation seeking, 
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of cocaine use. These data would be consistent with an ef-
fect of chronic cocaine on mesocorticolimbic circuits, but 
also represent an example of alterations at the level of top-
down regulation between cortical and subcortical structures 
in cocaine dependence [59]. Another study, however, showed 
increased connectivity in perigenual anterior cingulate net-
works in cocaine-dependent volunteers, compared to con-
trols. This increased strength of connectivity was further 
associated with poorer performance on delayed discounting 
and reversal learning tasks in the cocaine-dependent group 
(reflecting difficulties in delaying rewards and in adaptive 
learning) [60]. Increases in connectivity were also reported 
recently by another group and associated with impulsivity 
scores and cocaine use severity [61].

In chronic cocaine abusers, the literature on cue-elicited 
functional PET and fMRI effects has shown that cocaine-re-
lated cues activate the dorsolateral prefrontal, orbitofrontal, 
anterior and posterior cingulate cortices, amygdala, thala-
mus, insula, dorsal and ventral striatum to a greater extent 
in cocaine-dependent volunteers than in non-users [62-68]. 
During cognitive tasks, greater activation of brain regions 
involved in decision-making, conflict resolution (ventral 
prefrontal cortex, posterior cingulate cortex) has been posi-
tively associated with cocaine abstinence measures [69]. 
Conversely, greater regional activation during the presenta-
tion of drug cues, involving the sensory association cortex, 
motor cortex and posterior cingulate cortex were associated 
with poorer treatment effectiveness, measured as co-
caine-free urine samples [70]. Greater activation of the thal-
amus, caudate, amygdala and parahippocampal gyrus during 
monetary reward expectation in recently detoxified co-
caine-dependent volunteers have also been negatively cor-
related with treatment outcome measures, such as co-
caine-negative urine toxicology, self-reported abstinence 
and treatment retention [71]. While preliminary, and hardly 
diagnostic in nature, these studies do seem to point to neu-
roimaging measures as potential biological markers in clini-
cal trials to determine the predictability of outcomes in sub-
stance abusing samples, and potentially aid in treatment 
stratification. 

Because of the direct effects of cocaine on dopaminergic 
and in general aminergic neurotransmission, as well as sec-
ondary effects on other neurotransmitter systems, such as 
the endogenous opioid system, a substantial volume of liter-
ature has examined neurochemical markers using PET and 
SPECT in cocaine-dependent volunteers. Consistent across 
studies, reductions in dopamine D2/3 receptor availability 
in vivo have been reported [72-75], that appear to persist 
long after detoxification, based on both human [73] and 
non-human primate studies [76]. These reductions have 
been further related to the pleasurable effects of cocaine [77, 
78], but not to the likelihood of self-administration [72]. In 
addition, amphetamine and methylphenidate-induced re-
lease of dopamine have been found consistently reduced in 
the basal ganglia of cocaine-dependent volunteers, docu-
menting a disruptive effect of this psychostimulant on dopa-

ated with duration of prescription opioid abuse [50]. Simi-
larly to other drugs of abuse, opioid dependence has been 
associated with reductions in dopamine D2/3 receptors, fur-
ther correlated with length of opioid and other drug use [51, 
52]. Increases in µ-opioid receptor availability have also 
been reported in a pilot study [53], potentially reflecting 
compensatory changes after prolong opioid agonist use, or 
the effects of detoxification. 

Psychostimulants
In cocaine dependence, reductions in gray matter volume 
and density have been reported in cortical and subcortical 
structures when compared to abstainers and control sam-
ples, and have been associated with lifetime cocaine or dura-
tion of cocaine use (most recently in [54-56]. In one of these 
studies, the effects of comorbidity with alcohol abuse was 
also examined, and related to reductions in dorsolateral pre-
frontal cortex gray matter volume. Common genetic poly-
morphisms previously associated with the interaction of 
childhood maltreatment with the development of antisocial 
traits, low monoamine oxidase function MAO-A genes, were 
also found to interact with lifetime cocaine use to induce 
larger reductions in orbitofrontal gray matter [54]. In 
healthy samples, this polymorphism has been associated 
with reductions in gray matter volume in some subcortical 
structures (nucleus accumbens, anterior cingulate cortex), 
but increases in the orbitofrontal cortex [57]. Reductions in 
gray matter measures among psychostimulant-dependent 
samples have been related to performance on memory tests, 
reaction time [56], as well as with attentional control and 
compulsivity of use [55]. In the latter study, increases in cau-
date volume were also observed. While not directly exam-
ined in a longitudinal fashion, these data suggest that gray 
matter measures may undergo inverted U-shape curve 
changes that are likely to vary regionally in their progres-
sion, as increased consumption of this psychostimulant in-
teracts with interindividual differences driven by genetic 
variation and potentially environmental influences.

From a functional imaging perspective, and similar to 
what has been proposed in alcohol dependence, reductions 
in actual reward sensitivity, but increased sensitivity to the 
potential for rewards (e.g., expectation of drug reward ac-
quisition) are thought to underlie the drive to consume psy-
chostimulant drugs, and may also represent a precursive 
neurobiological mechanism that increases the possibility of 
early engagement in drug use. These processes are thought 
to take place through the interaction of cognitive regulatory 
regions (e.g., prefrontal cortical areas), with those involved 
in reward responding, such as the ventral striatum [58]. 
FMRI resting state data has shown reductions in the func-
tional connectivity between the ventral tegmental area and 
ventral basal ganglia and thalamus, between the amygdala 
and the medial prefrontal cortex and between hippocampus 
and dorsomedial prefrontal cortex; the reductions in func-
tional connectivity between the ventral tegmental area and 
ventral basal ganglia/thalamus were correlated with years 
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functional responses of the insular cortex and prefrontal 
cortical regions (ventral prefrontal and anterior cingulate) in 
abstinent methamphetamine-dependent individuals, com-
pared to a non-abusing control sample [101]. This exempli-
fies the use of neuroimaging tools to determine not only the 
functional alterations associated with substance abuse, but 
also to objectively assess the effect of potential treatments.

In a study examining predictors of treatment response, 
Paulus et al. [102] utilized a decision-making task to test the 
possibility that regional activation during this task predicted 
relapse of use. Greater activation of the right insula, posteri-
or cingulate and middle temporal gyrus were predictive of 
better outcomes (longer time to relapse) during a one year 
follow-up period with 94% sensitivity and 86% specificity. 
In parallel to findings in cocaine-dependent volunteers, 
methamphetamine abusers also show reductions in basal 
ganglia dopamine D2/3 receptor availability [103], which 
have been further associated with measures of impulsivity 
[104]. 

Nicotine and Marijuana
Tobacco use and nicotine dependence have been associated 
with reduced cortical gray matter volumes in chronic smok-
ers, compared to non-smokers, potentiating the effects of 
aging on those structures [105, 106]. Reductions in gray mat-
ter have also been reported for subcortical structures, such 
as the thalamus and substantia nigra, compared to non-smok-
ers [105, 106]. A large community-based sample reported 
smaller nucleus accumbens volume with greater lifetime use 
of cigarettes and an association between larger putamen vol-
ume with a lower age at smoking initiation [107]. Most stud-
ies on cannabis, however, have not found consistent reduc-
tions in structural measures or structural connectivity using 
DTI, albeit reductions in hippocampal, parahippocampal 
and amygdala gray matter volume have been reported in 
chronic cannabis users [108-110]. 

Tobacco smoking after overnight abstinence has been as-
sociated with reductions in the activity of cognitive-emo-
tional state processing regions, such as the anterior cingu-
late and hippocampus, further correlating with changes in 
cigarette craving after smoking [111]. Contrary to those re-
sults, dose-dependent increases in the activity of numerous 
cortical areas has been observed after intravenous nicotine 
after smoking freely [112], suggesting that withdrawal state, 
together with the direct and indirect effects of nicotine (and 
potentially its route of administration) on the human brain 
are important modifiers of neuronal responses. In this re-
gard, differential effects of smoking abstinence and satiation 
on neural responses have also been reported during a prob-
abilistic reward task [113].

Presentation of smoking cues has been shown to induce 
greater activation of prefrontal cortical areas, amygdala, and 
ventral and dorsal striatum in smokers compared to 
non-smokers [114-118]. Compounds such as bupropion and 
varecicline, clinically utilized to reduce craving during 

minergic neurotransmission, potentially driving further 
consumption and high frequencies of relapse upon detoxifi-
cation and treatment [75, 79]. Drug-related cues have also 
been documented to increase dopamine release in the basal 
ganglia, correlating with craving for cocaine in addicted vol-
unteers [80, 81]. Central to theories related to the reinforc-
ing effects of psychostimulants, sensitization to the effects 
of cocaine has been shown in one study of healthy, non-ad-
dicted volunteers, whereby the repeated administration of 
amphetamine was associated with increases in dopamine 
release, an effect that was observed at two weeks and up to 
one year from the administration of three doses of amphet-
amine [82]. Effects of cocaine-dependence in recently de-
toxified addicts, with increases in availability, have been re-
ported for DAT [83] and SERT [84], probably reflecting 
upregulatory changes after chronic blockade by cocaine, al-
beit their behavioral consequences are presently unknown. 
Increases in the availability of µ-opioid receptors in pre-
frontal, temporal cortex and amygdala have also been re-
ported, and are consistent with the known interactions be-
tween dopaminergic and opioid systems in mesocorticolimbic 
regions. These have been related to craving for cocaine 
shortly after detoxification [85], shown to persist over 
months after cocaine-cessation, and additionally related to 
shorter time to relapse [86, 87].

The literature on the amphetamine-type psychostimu-
lants, including methamphetamine and 3,4-methylenedioxy-
methamphetamine (MDMA), is somewhat more limited in 
volume, and has emphasized the neurotoxic effects of these 
compounds. Amphetamine use has been associated with se-
lective increases in the volume of basal ganglia structures 
[88, 89]. The enlargements observed in striatal structures 
have been ascribed to effects of psychostimulants on water 
content, inflammation, trophic neuromodulators and glial 
activation during neural injury, which after persistent dam-
age may induce long-lasting reductions in cellular content 
and volumes [90]. These enlargements appeared against a 
more generalized background of reductions in gray matter 
volume in cortical regions, amygdala and the hippocampus, 
the latter correlating with impairments in verbal memory 
[91, 92], accentuating the effects of aging on those brain re-
gions [93]. Reductions in gray matter volumes were most 
pronounced in experienced users, compared to low expo-
sure users [94]. Consistent with those findings, reductions in 
high-energy metabolism in the prefrontal cortex have been 
described using [31P]-MRS in methamphetamine depen-
dence [95]. As with cocaine, impaired prefrontal cortical 
function, as measured with glucose metabolism and PET 
[96] or fMRI during cognitive [97, 98] and emotion process-
ing tasks [99, 100] has been observed in methamphetamine 
abusers, and has been related to impulsivity, aggression and 
cognitive dysfunction in these individuals. Treatment with 
modafinil, potentially through its dopaminergic effects, has 
been shown to improve performance during an associative 
reversal-learning task and induce greater increases in the 
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This highlight of neuroimaging studies related to sub-
stance abuse reflects the complexity of the interactions be-
tween substances of abuse and their neurobiological sub-
strates. There is evidence of neurotoxic and degenerative 
effects that to a fair extent, show overlap across substances, 
with no research examining differences that maybe diagnos-
tic or predictive. In some cases, both anatomical and func-
tional measures related to the effects of drugs of abuse have 
been associated with the severity of the addiction, however 
this type of relationship is not likely to change clinical prac-
tice. Similarly, an emerging literature is linking genetic vari-
ation with anatomical and functional effects of drugs of 
abuse. While the examination of relatively simple to obtain 
genetic markers with the circuitry where their interaction 
takes place in terms of the processes of addiction may pro-
vide a more comprehensive view of their potential use in 
practice, this is a field largely in its infancy, which will re-
quire larger scale, more definitive studies. It is also ham-
pered by the very low predictive value of a given genetic 
variation for behavioral measures or at the individual level. 
Studies examining cue-induced increases in the activity of 
brain regions related to craving and the drive to consume 
drugs are starting to show some relationships with treat-
ment responses and outcomes, as is the study of the func-
tional relationships between frontal, regulatory regions with 
reward-responsive structures. At the present time, those 
studies are largely exploratory and in need of replication in 
naturalistic settings. Persistent changes in neurotransmitter 
receptors, particularly dopaminergic, are observed across 
substance of abuse, and being linked to addiction severity, 
the rewarding effects of drugs or even some of the personal-
ity factors that increase risk for addiction, such as impulsiv-
ity and reward vulnerability. These measures are typically 
obtained in highly specialized settings, and their translation 
to practice through less expensive, easier to obtain surrogate 
markers, is presently lacking. Last, a nascent literature is ex-
amining neurobiological measures that precede the onset of 
the addictions, providing an objective understanding of fac-
tors that contribute to resiliency and vulnerability to disease. 
These studies, while potentially helpful in prevention ef-
forts, are still at a very early stage, and will require the defi-
nition of consistent relationships with addiction trajectories 
for them to be of use in clinical settings. While much has 
been learned about the effects of drugs of abuse on human 
neurobiology, and the potential of imaging to link neurobio-
logical mechanisms with risk/vulnerability and treatment 
response, the present state of knowledge is far from being 
generalizable to clinical settings in a manner that would af-
fect clinical decision-making for a given individual, and to 
this date remain exploratory and in need of replication.

smoking cessation have been additionally shown to reduce 
the activation of the ventral striatum, prefrontal and cingu-
late cortex during the presentation of smoking cues [119, 
120]. Nicotine replacement has also been shown to increase 
brain regional activity and the correlations between al-
pha-EEG power and brain activity in cortical regions, an ef-
fect interpreted as reflecting the negative effects of nicotine 
withdrawal on attentional networks, with respective im-
provements after replacement [121, 122]. Effects of genetic 
variation have also been described, with variable number of 
tandem repeats in the DAT gene influencing brain regional 
responses to smoking cues. Individuals with 9-repeats had 
greater responses to smoking cues in ventral striatal and 
prefrontal regions, compared to smokers homozygous for 
the 10-repeat allele in the SLC6A3 gene [123]. Differences in 
responses to smoking cues in female smokers have also been 
reported for allelic variations in a single nucleotide poly-
morphism of the nicotinic acetylcholine receptor (nAChR) 
alpha-5 subunit [124].

Increases in the availability of beta-2 nAChR’s have been 
reported in smokers during acute abstinence using selective 
radiotracers [125], with reductions towards baseline after 
2-3 months of abstinence [126]. After smoking to satiation, 
high levels of receptor occupancy have been reported, in the 
55 to 80% range [127].

Smoking has additionally been shown to acutely activate 
dopamine D2/3 neurotransmission in the ventral basal gan-
glia, as measured with PET and [11C]raclopride. These ef-
fects have been associated with reductions in craving for 
cigarettes [128], improved mood [129], the hedonic effect of 
smoking [130] and with the severity of nicotine addiction, as 
measured by the Fagerström scale of nicotine dependence 
[131]. The baseline level of DA D2/3 receptors of smokers 
has been found to correlate with Fagerström scores (albeit 
D2/3 receptor availability was not significantly different be-
tween smokers and non-smokers), while nicotine plasma 
levels were related to the magnitude of DA release after 
smoking in another study [132]. Reductions in D2/3 recep-
tors have been reported in one report in the basal ganglia of 
heavy smokers using [18F]fallypride, with positive correla-
tions with craving in the ventral basal ganglia, and negative 
relationships with craving in the anterior cingulate and infe-
rior temporal cortex [133], as well as reductions in dopamine 
D1 receptors in the striatum of smokers, using [11C]
SCH23390 and PET [134]. DA release in response to nico-
tine gum administration has also been found to be greater in 
smokers, compared to non-smokers, and proportional to the 
degree of nicotine dependence [135]. 

Increases in the release of endogenous opioids acting on 
µ-opioid receptors during smoking nicotine-containing cig-
arettes, compared to denicotinized cigarettes have been de-
scribed [131, 136], as well as effects of the A118G µ-opioid 
receptor polymorphism on both baseline receptor availabil-
ity and changes in µ-opioid receptor availability when smok-
ing nicotine-containing cigarettes [137]. 
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search is leading to substantial progress in our understand-
ing of the brain/behavior mechanisms underlying child psy-
chiatric disorders. Second, at present, no findings in any 
disorder would qualify as a neuroimaging biomarker for any 
psychiatric disorder in children or adolescents that could be 
used clinically to guide the diagnosis or treatment of any in-
dividual child. While that is the goal, at present, anyone 
making such claims is, at best, misrepresenting themselves, 
and at worst taking advantage of a family’s need for hope.

This review seeks to summarize the state of the field with 
respect to neuroimaging research as potential biomarkers 
on three of the most important categories of child psychiat-
ric disorders: (1) attention deficit/hyperactivity disorder, (2) 
mood and anxiety disorders (including major depressive 
disorder, bipolar disorder, disruptive mood dysregulation 
disorder, and generalized anxiety disorder), and (3) autism 
spectrum disorder (including the formerly separate diagno-
ses of autistic disorder and Asperger’s disorder). 

Attention-Deficit/Hyperactivty Disorder (ADHD)
ADHD is among the most common pediatric psychiatric dis-
orders affecting approximately 3–10% of school-age chil-
dren.1-3 ADHD involves developmentally-inappropriate 
symptoms of inattention, hyperactivity and impulsivity, 
with resultant functional impairment, including academic 
underachievement and school failure, problems in social re-
lations, emotion dysregulation, risk for antisocial behavior 
patterns including substance use, and increased levels of 
risky sexual behavior.4-7

Neuroimaging research has suggested that fronto-striatal 
alterations lie at the core of ADHD.8 One of the most interest-
ing lines of research supporting this position comes from lon-
gitudinal structural imaging studies of children with ADHD 
as they progress through adolescence and young adulthood. 
For example, compared to TDCs, children with ADHD have 
delays of around 2–5 years in the peak of cortical thickness 
and surface area, and these delays are greatest in the frontal, 
superior temporal and parietal regions.9,10 Moreover, while 
TDCs have expansion of the ventral striatum’s (VS) surface 
area with age, children with ADHD have a progressive con-
traction.11 Such reductions in children with ADHD compared 
to TDCs are also seen in dorsal striatal regions.11 Taken to-
gether, longitudinal structural imaging studies have demon-
strated that ADHD is unlikely the result of a static, unchang-
ing lesion, but rather represents a developmental lag in neural 
development.9,12,13 Present longitudinal neuroimaging studies 
are striving to delineate “growth curves” of brain develop-
ment in typical children as they become adolescents and 
adults so as to define where ADHD youth diverge from this 
trajectory in a potentially clinically applicable way. Neverthe-
less, there is no current neuroimaging biomarker for ADHD. 

Structural MRI Studies

As is true for many neuropsychiatric disorders, the vast ma-
jority of structural MRI studies in ADHD are cross-sectional 
studies that compare the volume of certain brain regions of 
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Introduction
Among the most important scientific trends in the past thirty 
years is the growing recognition that neuropsychiatric disor-
ders are developmental disorders, with antecedents starting 
in childhood. Though in some respects, this “back-to-the-fu-
ture” phenomenon takes us back to psychiatry’s founding, it 
differs from prior incarnations in an important aspect: em-
pirical data. Starting with the Decade of the Brain initiative in 
the 1990s, and continuing with the present emphasis on 
translational research, studies have shown that psychiatric 
illness can start in childhood, and that patients have brain/
behavior alterations from typically-developing controls 
(TDC) without psychopathology. Magnetic resonance imag-
ing (MRI) is the most common form of neuroimaging tech-
nique used in children to probe neural structure, function 
(aka functional MRI [fMRI]), and connectivity because it 
does not use radiation, unlike postitron emission tomography 
(PET) or computed tomography (CT) scans. Neuroimaging is 
critically important to advance what we know about the neu-
ral mechanisms underlying childhood psychiatric disorders, 
holding the promise of future biomarkers that could augment 
clinical history for better, more specific, and earlier psychiat-
ric diagnosis and treatment—akin to methods currently em-
ployed to fight cancer with greater and greater success.

To qualify as a potential biomarker, a finding must not 
only be a quantitative difference between patients with a 
specific form of psychopathology compared to TDCs with-
out psychopathology, but it also must be specific to that dis-
order compared to other psychiatric disorders. At least three 
possible study designs can examine specificity: (1) multi-
group studies comparing patient group A to patient group B 
and TDCs without psychiatric illness; (2) machine learning 
studies that first train a computer to recognize group A 
based on certain neuroimaging parameters and then test the 
accuracy of these computer algorithms in correctly identify-
ing if a particular person belongs to illness group A or not; 
(3) studies employing neuroimaging pre- and post-treat-
ment to identify neural predictors of treatment response. Of 
course, to be considered a biomarker, the finding would also 
have to be independently replicated. 

Broadly considering neuroimaging findings as potential 
biomarkers for child psychiatric disorders, two statements 
can be made at the present time. First, neuroimaging re-

1 The authors would like to thank and acknowledge the following 
current support: Dr. Dickstein and PediMIND program staff: 
R01MH111542 and R33MH096850. Dr. Seymour: NIMH 
K23MH107734 and Brain & Behavior Foundation NARSAD Young 
Investigators Award. Dr. Seymour has received speaking fees from 
Medgenics Pharmaceuticals and consulting fees from AvaCat 
Consulting. All other authors have no financial disclosures.
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dict group membership, For example, using six ROI mea-
surements (i.e., length of the bilateral plana temporala, 
length of bilateral insula and width of the bilateral anterior 
frontal region), Semrud-Clikeman et al. achieved a 60% ac-
curacy rate in predicting diagnosis for 6–16 years-old diag-
nosed with either ADHD combined type (N=10), dyslexia 
(N=10), or TDC (N=10) 23. When including age and full-scale 
intelligence quotient (FSIQ), accuracy improved to 87%. 
Similarly, two studies used caudate morphometry to predict 
group membership (i.e., ADHD or TDC). First, Soliva et al. 
used the ratio of right caudate body volume (rCBV) to bilat-
eral caudate body volume (rCBV/bCBV) to achieve 94.74% 
specificity in the correct prediction of diagnosis, and an esti-
mated negative predictive value of 93.64%.24 In a second 
study, Igual et al. examined a fully-automated segmentation 
of the caudate (using the internal and external capsules) in 
the classification of children with ADHD and TDCs (N=39 
per group), achieving 72% accuracy, 86% specificity, and 
95% negative predictive value.25 While requiring replication 
in larger samples and groups without ADHD, these results 
using machine learning are quite promising.

The neuroimaging/treatment literature in children with 
ADHD is extremely mixed, with most studies comparing 
medication naïve ADHD children vs. ADHD children on 
medications, rather than pre-post designs involving the 
same participants).26,27 For example, Castellanos et al. found 
no differences in total cerebral volume between medication 
naïve children with ADHD and those taking medication.13 
Similarly, ROI-based studies have found no volumetric dif-
ferences in the anterior cingulate cortex (ACC),28 corpus 
callosum,29 caudate,30,31 putamen,31 or globus pallidus31 be-
tween children with ADHD taking medication vs. others 
who are medication naïve. Moreover, in Hoogman’s above-
mentioned volumetric mega-analysis, among those ADHD 
participants for whom stimulant medication history was 
available (42%; N=719), there was no volumetric differences 
in any structures between ADHD participants with a history 
of stimulant medication use (82%), those who were stimu-
lant naïve (11%), and TDCs.17

In contrast to these studies suggesting that ADHD medi-
cations do not affect brain volume, other studies do support 
that possibility—suggesting that ADHD stimulant medica-
tions provide compensatory increases in key ROIs. For ex-
ample, Ivanov et al. found larger regional volumes in the left 
cerebellar surface in children with ADHD taking stimulant 
medication (N=31) vs. those who were stimulant naïve 
(N=15), with duration of stimulant treatment positively cor-
related with cerebellar volumes suggesting compensatory 
morphological changes associated with stimulant treat-
ment.32 Similarly, Villemonteix et al. showed that never 
medicated children with ADHD (N=33) exhibited decreased 
grey matter volume in the insula and middle temporal gyrus 
compared to stimulant-treated ADHD (N=20) and TDC 
(N=24), but no differences between stimulant-treated 
ADHD and TDC youth suggesting that stimulant medica-
tion may have a “normalization” effect on grey matter vol-

interest (ROIs) in ADHD vs. TDC participants. However, 
there are a growing number of studies that have begun to 
test the specificity of such alterations.

Meta-analyses have consistently shown children with 
ADHD have decreased grey matter volume vs. TDCs, in basal 
ganglia structures including the putamen, caudate, and glo-
bus pallidus.14-16 Nakao et al. found that increasing age and 
stimulant medication use were associated with increased 
basal ganglia volumes among ADHD youth (N=378), suggest-
ing that stimulant medication treatment may “normalize” 
these structural anomalies.16 Finally, in the first mega-analy-
sis of structural data—re-analyzing original MRI data from 
participants aggregated from different studies (N=1713 
ADHD, N=1529 TDC; age range 4–63 years), Hoogman et al. 
found widespread subcortical reductions in participants 
with ADHD vs. TDCs in the basal ganglia (accumbens, cau-
date, and putamen) and limbic regions, including the amyg-
dala and hippocampus, plus an overall reduction in total ce-
rebral volume.17 Of note, effect sizes were greatest in children 
vs. adults, corroborating abovementioned work showing 
ADHD may involve a delay in maturation, rather than a per-
manent “lesion”.

Multi-group imaging studies have evaluated the specific-
ity of these neural alterations in ADHD by comparing them 
to other patient populations, such as children with autism 
spectrum disorders (ASDs) or bipolar disorder (BD). For ex-
ample, one study showed that medication naïve boys with 
ADHD (N=44) had volume reductions in total gray matter, 
total brain volume, and the right posterior cerebellum com-
pared to medication naïve boys with ASD (N=19) or TDCs 
(N=33).18 In contrast, an earlier study found no ADHD-spe-
cific grey matter differences comparing ADHD, ASD, and 
TDC children (N=15 of each) highlighting the inconsisten-
cies within the literature.19

To date, three structural MRI studies have compared 
children with ADHD to those with pediatric BD with, and 
without, comorbid ADHD.20-22 For example, Lopez-Larson 
et al. compared children with ADHD (N=23), children with 
BD only (BD-ADHD, N=30), children with BD and comor-
bid ADHD (BD+ADHD, N=23) and TDCs (N=29) and found 
youth with ADHD had smaller caudate and putamen vol-
umes relative to both BD groups and smaller amygdala vol-
umes relative to all three other groups.20 Interestingly, an-
other study comparing these four groups by Liu et al. showed 
that ADHD youth had specific significant reductions in total 
caudate and putamen volume relative to BD and TDCs 
whereas BD youth had specific significant increases of total 
caudate, putamen and globus pallidus relative to ADHD 
youth.21 Results examining cortical thickness between these 
groups have shown that in the right lateral orbitofrontal cor-
tex (OFC) and left subgenual cingulate the effect of BD and 
ADHD is independent rather than additive yielding a unique 
phenotypic signature for participants in the comorbid group 
(BD + ADHD group).22

The last 15 years has witnessed considerable growth in 
the number of ADHD studies using machine learning to pre-
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gest that ADHD may be characterized by more diffuse white 
matter changes while BD may result in more focal changes 
residing in the prefrontal anterior corona radiata and poste-
rior cingulate.

In another recent example, Ameis et al. compared struc-
tural connectivity in youth with ADHD (N=31), ASD (N=71), 
obsessive-compulsive disorder (OCD; N=36) and TDCs 
(N=62).42 While participants with ADHD had reduced FA 
compared to those with OCD in the anterior thalamic radia-
tion, genu of the corpus callosum, cortico-spinal tract, arcu-
ate, and inferior-fronto-occipital fasciculi, FA reductions in 
the splenium was reduced in all of the patient groups vs. 
TDCs. As in the prior study, the conclusion is that ADHD 
(and ASD) involves widespread white matter disruptions, in 
this case compared to those with OCD or TDCs.

In a third example, van Ewijk et al. examined the role of 
ODD in white matter connectivity in children with ADHD. 
Compared to children with ADHD alone, those with comor-
bid ADHD+ODD had reduced FA in fronto-temporal tracts 
and parts of the basal ganglia.43 These differences were inde-
pendent of ADHD symptoms suggesting that ODD confers 
greater risk for white matter disruptions independent of 
ADHD.43

In the only DTI classification study to date, Yoncheva et 
al. conducted a study including 82 children with ADHD and 
80 TDCs. They found that mode of anisotropy, a measure of 
whether anisotropy is more planar (e.g., due to predomi-
nantly crossing fibers within a voxel) or more linear, in com-
bination with ADHD rating scales resulted in a 94.12% posi-
tive predictive value, 96.67% sensitivity, and 94.59% 
specificity (Cohen’s d=0.68).44 Moreover, mode of anisotro-
py had substantially greater predictive power for diagnosis 
than any of the other DTI measures (area under the curve 
ROC = 0.70).44

To date, no DTI studies of individuals with ADHD have 
examined white matter integrity before and after treatment. 
However, one study examined the cumulative effect of stim-
ulant medication in children with ADHD (ages 9–26 years 
old, N=172) vs. TDCs (N= 96). Results showed that cumula-
tive stimulant intake was negatively correlated with mean 
diffusivity (MD; a measure of the amount of water diffusion 
in any direction) in the orbitofrontal-striatal pathway such 
that higher cumulative stimulant intake was associated with 
lower MD in both hemispheres suggesting higher structural 
connectivity is associated with higher dose/longer duration 
of stimulant treatment.45

Functional MRI ( fMRI)

Aligning with the structural MRI literature, fMRI studies 
primarily show hypoactivation of fronto-striatal regions.46 
Several ADHD fMRI meta-analyses have been conducted 
drawing on the increased power of larger, aggregated sam-
ples. For example, Dickstein et al. who found a widespread 
hypoactivity in frontal regions (e.g., dorsolateral prefrontal 
cortex [dlPFC], inferior PFC, OFC, and ACC) and portions 
of the basal ganglia aggregating 16 studies of ADHD vs. TDC 

ume.33 Furthermore, the authors found a positive associa-
tion between duration of treatment and grey matter volume 
in the nucleus accumbens in medicated children with 
ADHD.33 Also, in one of the few longitudinal studies exam-
ining medication effects, Shaw et al. demonstrated an exces-
sive rate of cortical thinning in the right motor strip, left 
middle/inferior frontal gyrus, and right parieto-occipital 
region in the never-medicated ADHD group (N=19) com-
pared to those with a history of psychostimulant use (N=24) 
and TDCs (N=24).34

Diffusion-Tensor Imaging (DTI)

DTI is another form of structural MRI that tests the integri-
ty and connectivity of cerebral white matter tracts via diffu-
sion of water (the most common molecule in the human 
brain). Common DTI measures include fractional anisotro-
py (FA), which reflects the relative diffusion of water and 
has values ranging from zero (isotropic [unrestricted] diffu-
sion in all directions) to one (diffusion only along one axis, 
and restricted in all others) and mean diffusivity (MD) 
which measures the amount of water diffusion in any direc-
tion. DTI studies of ADHD have focused on white matter 
tracts connecting PFC and striatal regions implicated in the 
etiology of ADHD.35,36 

To date, only a few meta-analyses of ADHD DTI data 
have been conducted. Earlier studies with smaller sample 
sizes have indicated altered FA, in widespread regions of the 
brain including most consistently the anterior corona radia-
ta, forceps minor and internal capsule.37 Consistent with 
this early review, Chen et al., found widespread white mat-
ter disruption in a large meta-analysis of 470 individuals 
with ADHD and 477 TDCs. Specifically, individuals with 
ADHD had reduced FA in the splenium of the corpus callo-
sum, right sagittal stratum, and left tapetum of the corpus 
callosum.38 Further analyses showed that mean age of pa-
tients was negatively associated with reduced FA in the 
splenium of the corpus callosum suggesting that as age in-
creases, FA decreases in this region for individuals with 
ADHD.38 Unfortunately, this meta-analysis included both 
children and adults with ADHD given the small sample sizes 
of current DTI studies; therefore, few conclusions can be 
drawn about the specific nature of white matter integrity in 
children with ADHD.

There are a few multi-group DTI studies comparing chil-
dren with ADHD compared to children with other forms of 
psychopathology; however, these studies often present lim-
ited sample sizes and have not been replicated thus limiting 
the conclusions that can be drawn.39-43 For example, Pavulu-
ri et al. found ADHD youths (N=13) had significantly lower 
FA and regional fiber coherence index (i.e., a measure of the 
degree of coherence in a given fiber tract) in white matter 
fibers of the internal capsule connecting the neocortex and 
the brainstem compared to children with BD (N=13), and 
age- and IQ-matched TDCs (N=15).39 Furthermore, both 
ADHD and BD youths had significantly lower FA in the an-
terior corona radiata compared to TDC.39 These results sug-
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and TDCs, while adults with OCD had increased activation 
in these regions relative to patients with ADHD and TDCs.55 
Further, adults with ADHD had disorder-specific reduced 
activation in the vlPFC. The results of this analysis suggest 
that while inhibitory control deficits are present in both 
ADHD and OCD, the neural mechanisms of action underly-
ing these deficits appear to have different neurobiological 
origins.55 

A number of studies have probed neural response to emo-
tional stimuli in children with ADHD compared to other 
forms of psychopathology. Brotman et al. compared emo-
tional face processing alterations in children ages 8-17 years 
with either: (1) ADHD (N=18), (2) BD (N=43), (3) Severe 
mood dysregulation (SMD; N=29), or (4) TDC (N=37).56 
ADHD participants had significantly increased neural activ-
ity in the left amygdala when rating their fear of emotionally 
neutral faces compared to BD, SMD, and TDC participants 
suggesting the involvement of the limbic system in the etiol-
ogy of ADHD.56 In an examination of the neural basis of cog-
nitive control during emotional processing, results compar-
ing children with ADHD vs. children with BD and TDCs 
showed an ADHD-specific under-activation in the vlPFC 
again suggesting the importance of cognitive control regions 
in the etiology of ADHD.57 Finally, using an affective n-back 
task to compare children with ADHD vs. children with BD 
vs. TDCs, Passarotti et al., found that relative to the BD 
group, children with ADHD had greater deployment of pre-
frontal working memory circuitry whereas children in the 
BD group had greater deployment of emotional processing 
circuitry suggesting different neural phenotypes for ADHD 
and BD.58 In a succinct review of the literature comparing 
neural activation in children with ADHD compared to those 
with BD, Passarotti and Pavuluri specify that in ADHD dys-
function is primarily due to deficits in top-down cognitive 
control regions (i.e., dorsal frontostriatal regions), whereas 
in BD dysfunction is driven by deficits in “bottom-up” moti-
vational and emotional circuitry (i.e., ventral frontostriatal 
regions).59 Taken together, while ADHD is primarily consid-
ered to be a behavioral disorder, these finding also suggest 
the importance of understanding the neural underpinning 
of emotional processing in individuals with ADHD.7,60

Only a few studies have examined reward processing in 
children with ADHD compared to other forms of psychopa-
thology. In a study comparing reward responsiveness in 
boys with ASD (N=18), boys with ADHD (N=19) and TDC 
boys (N=18), results showed that ADHD boys had medial 
prefrontal hyperactivation in response to social rewards 
while ASD boys had ventral striatal hypoactivation to mone-
tary rewards and both clinical groups showed fronto-stria-
to-parietal hypoactivation compared to TDCs when mone-
tary rewards were present.61 Therefore, while youth with 
ADHD had equally high striatal activation to monetary and 
social rewards, the ASD group displayed low striatal re-
sponse to both reward types suggesting that while both dis-
orders have aberrant responses to reward processing, they 
may have unique etiologies.

participants.47 Cortese’s et al. conducted a larger meta-anal-
ysis of 55 fMRI studies (39 child, 16 adult) and similarly 
found overall ADHD-related hypoactivation in the bilateral 
frontal, right parietal and temporal, and bilateral putamen 
areas.46 In contrast, they found ADHD-related hyperactiva-
tion in the right angular gyrus, middle occipital gyrus, poste-
rior cingulate cortex and mid-cingulate cortex. When limit-
ed to child-only studies, ADHD participants had 
hypoactivation in fronto-parietal and ventral attention net-
works.46 Taken together, these results are consistent with 
theoretical models of ADHD which implicate disruption in 
fronto-striatal networks.8

In addition to generalized meta-analyses of task-based 
fMRI, there have also been many reviews focused on fMRI 
neural activation during particular tasks tapping specific do-
mains of function, such as response inhibition, sustained at-
tention, and reward responsiveness. For example, Hart et 
al.’s review of inhibition and attention fMRI studies (21 
studies: 287 individuals with ADHD, 320 TDCs) showed 
that individuals with ADHD had hypoactivation in the right 
inferior frontal cortex, supplemental motor area, ACC, cau-
date, and thalamus compared to TDCs.48 However, when 
age effects were examined, only basal ganglia and supple-
mental motor area abnormalities were present in children 
with ADHD vs. TDCs. For attentional control tasks (13 stud-
ies: 171 individuals with ADHD, 178 TDCs), results showed 
ADHD participants had significantly less activation than 
TDCs in the fronto-basal ganglia-parieto-cerebellar net-
work responsible for visuospatial attention.48 Finally, a me-
ta-analysis of the ADHD reward processing literature 
showed that during reward anticipation, individuals ADHD 
have ventral striatal hypo-responsiveness vs. TDCs (Cohen’s 
d=0.48-0.58).49

Against this background, several multi-group fMRI stud-
ies have examined the specificity of these alterations. For 
instance, during a sustained attention task, boys with ADHD 
had reduced left dlPFC activation vs. boys with ASD or 
TDCs (N=20 in each of these three groups).50 Another study 
of sustained attention showed children with ADHD (N=18) 
had reduced activation in the ventrolateral PFC (vlPFC) and 
increased activation in the cerebellum vs. children with ei-
ther with conduct disorder (CD, N=14) and TDCs (N=16).51 
Interestingly, when reward was introduced into the task, 
children with CD had specifically OFC hypoactivation, sug-
gesting that functional differentiation between attentional 
alterations in ADHD and reward in CD worthy of follow up.

Studies of inhibitory control have shown reduced frontal 
lobe activation (e.g., dlPFC, vlPFC, right inferior PFC) in 
children with ADHD vs. children with either primary BD, 
CD, or OCD.52-54 Moreover, in a large-scale meta-analysis of 
inhibition task activation in adults with ADHD (N=541, 
mean age = 19.6 years) compared to adults with OCD (N= 
287, mean age = 27.1 years) results showed two distinctly dif-
ferent patterns of activation such that adults with ADHD 
had reduced activation in the basal ganglia, especially the 
putamen, as well as the insula compared to adults with OCD 
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pendent activities, such as making decisions, or attending to 
specific stimuli 68,69. 

Discovery science in resting-state fMRI is particularly 
robust in ADHD, due in part to projects designed to share 
data-sets amongst research such as the “1000 Functional 
Connectomes Project” in which researchers have posted 
their resting state fMRI data on the Neuroimaging Infor-
matics Tools and Resources Clearinghouse (NITRC), a 
publicly available website (www.nitrc.org/projects/
fcon_1000).70,71 Many RSFC studies suggest ADHD in-
volves reduced RSFC in the so-called “Default Mode Net-
work” (DMN), which includes a large network of brain re-
gions associated with task-irrelevant mental processes and 
mind wandering. Studies have also found atypical RSFC in 
limbic cortico-striato-thalamo-cortical (CSTC) loop cir-
cuits supporting neuropsychological models of ADHD 
known as the “dual pathway model”—which posits that 
ADHD involves considerable heterogeneity of neural cog-
nitive alterations, with some having primary neurocogni-
tive deficits involving executive function and the cognitive 
CSTC loop, while other’s primary deficit involves affective 
and motivational systems and the limbic CSTC loop.72-74

To date, only a few multi-group RSFC studies have evalu-
ated the specificity of findings in ADHD youth to those with 
other forms of psychopathology. Di Martino et al. found an 
ADHD-specific increase in degree centrality, a measure in-
dexing the number of direct connections for a given node 
(i.e., high degree centrality=numerous direct connections 
with other nodes), in the right caudate, pallidum, and 
putamen among youth with ADHD (N=45) vs. those with 
ASD (N=56) and TDCs (N=50), once again highlighting the 
importance of the basal ganglia in the etiology of ADHD 75. 
In another example, Ray et al. showed a differential pattern 
of “rich club organization” of RSFC—defined as a tendency 
for high-degree nodes (i.e., nodes within a network that are 
highly connected) to be more densely connected among 
themselves than to nodes of a lower degree—among ADHD 
(N=20), ASD (N=16), and TDCs (N=20) children 41. Specifi-
cally, ADHD had under-connectivity in the rich club, while 
ASD had over-connectivity in the rich club 41. In a third ex-
ample, two recent studies evaluated RSFC in children with 
ADHD vs. those with BD. Hafeman et al. compared RSFC 
collected during an emotional processing task in youth with 
BD (N=22), youth with ADHD (N=30) and TDCs (N=26), 
and results showed decreased RSFC between the amygdala 
and right superior frontal gyrus in the ADHD vs. BD group 
76. In contrast, Son et al. compared youth with BD (N=22), 
youth with ADHD (N=25) and TDCs (N=22) and found no 
significant ADHD-specific differences between groups 77. 
Such contrasting findings may be the result of different 
methodologies for conducting RSFC analysis.

In contrast, efforts of the ADHD-200 competition (http://
fcon_1000.projects.nitrc.org/indi/adhd200/index.html) 
have fueled a groundswell of interest in computerized clas-
sification of ADHD by RSFC results. The ADHD-200 com-
petition encouraged teams of researchers to develop ma-

Studies testing computerized algorithms in predicting 
ADHD group status are few in number. One example in-
cludes Hart et al.’s study that used Gaussian process classifi-
ers to predict ADHD group status with data from a time-dis-
crimination task, showing an overall classification accuracy 
of 75% (80% sensitivity, 70% specificity) 62. In particular, 
aberrant activity in fronto-limbic regions such as the ventro-
medial PFC, ventral ACC, parahippocampal gyrus and cere-
bellum were most predictive of ADHD 62. Another study by 
Hart et al. used Gaussian process classifiers with fMRI acti-
vation during a stop-signal task with an even greater accura-
cy of 77% (90% sensitivity, 63% specificity) 63. In a third ex-
ample Hammer et al. used working memory task data from 
four different tasks resulting in a diagnostic accuracy rate of 
92.5% when using fMRI data compared to an accuracy of 
75% when using the behavioral task data alone suggesting 
the important additive contribution of neuroimaging data in 
the classification of ADHD diagnosis 64. Finally, a fourth 
large study of stop-signal performance in participants with 
ADHD (N=184), unaffected siblings (N=103), and TDCs 
(N=128) showed that neural activation during successful 
stop trials yielded an accuracy rate of almost 60% (63% sen-
sitivity, 57% specificity) 65. 

In contrast, there have been numerous studies imaging/
treatment studies examining the acute effects of psycho-
stimulant medication on neural activation in children with 
ADHD. Generally, studies comparing medication naïve 
ADHD patients to those treated with ADHD stimulants sug-
gest that these medications “normalize” brain activation 
(i.e., increase) in PFC regions, including the ACC, during 
multiple tasks of inhibition, error processing, and sustained 
attention. For example, Rubia et al.’s meta-analysis of the 
task-based fMRI treatment literature including 14 studies of 
children with ADHD (N=212) showed that stimulants most 
consistently enhanced activation in the right inferior frontal 
cortex/insula and putamen 66. However, to date, there has 
been only one longitudinal study examining the long-term 
effects of methylphenidate on executive attention in chil-
dren with ADHD 67. This study showed that one year later, 
while TDCs showed an increase in neural activity in the 
right temporo-patietal junction, important for the disen-
gagement of attention, children with ADHD did not show 
this differential pattern of neural activity 67. Further, medi-
cated ADHD patients showed reduced activation in the in-
sula and striatum during reorienting one year later suggest-
ing a tendency for the “normalization” of neural activity 
subsequent to medication 67.

Resting State Functional Connectivity (RSN-FC)

Augmenting task-dependent, event-related fMRI, the past 
several years have witnessed a groundswell of interest in 
task-independent fMRI collected while the participant is at 
rest, and also known as “resting state functional connectivi-
ty” (RSFC) or “intrinsic functional connectivity” (IFC). In 
general, studies suggest that 95% of the brain’s metabolism 
is devoted to RSFC, whereas only 5% is devoted to task-de-
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school and work absenteeism, substance abuse, and in-
ter-personal conflict 81,82. More disturbing is the fact that 
suicide has risen to become the 2nd leading cause of death 
among those ages 10-24 years old in the U.S.83

Neuroimaging studies of pediatric depression have fo-
cused primarily on the amygdala as well as the PFC, includ-
ing the OFC and ACC. Yet, there is relatively little consisten-
cy in the direction (increased vs. decreased) of these findings, 
regardless of whether the neuroimaging method involves 
structural MRI, fMRI, or DTI. For example, in comparing 
three structural MRI studies of amygdala volume in pediatric 
depression vs. TDCs, one study reported bilateral decreases 
while two failed to find such significant differences 84-86.

Studies are also now in the early phase of employing ma-
chine learning or computer models of neuroimaging data to 
predict group membership. Given the infancy of this work, 
no solid conclusions can yet be formed about the utility of 
such data as a diagnostic tool in the real-world.

Structural MRI: Fallucca et al. conducted the only multi-
group structural MRI study of pediatric depression, com-
paring those children with MDD (N=24), OCD (N=24), and 
TDC (N=30). Focusing on cortical thickness, they found that 
the right peri-calcarine gyrus, post-central gyrus, and supe-
rior parietal gyrus were thinner in depressed vs. OCD and 
TDC youths, whereas the left-sided temporal pole was 
thicker in depressed youths than in either group 87. More-
over, secondary analyses showed that these cortical thick-
ness differences were primarily driven by children with 
MDD who had a family history of MDD (N=15)—a finding 
directly in contrast with those of Nolan et al., who did not 
find PFC volume differences when comparing depressed 
youth with depressed family members to TDC 88. Instead, 
they found that depressed youth with non-familial MDD 
had significantly larger left PFC than those with familial 
MDD or TDC. Such inconsistencies highlight the current 
state of the neural underpinnings of pediatric depression. 

Wehry et al. more recently conducted a quasi-multi-
group study using voxel-based morphometry (VBM) to 
compare gray matter volumes among adolescents with 
MDD plus comorbid anxiety disorder(s) (N=12), those with 
MDD but no comorbid anxiety (N=14), and TDC (N=41). 
They found that those with MDD plus comorbid anxiety 
had decreased gray matter volumes in the DLPFC vs. those 
with MDD alone, and increased gray matter volumes in pre- 
and post-central gyri vs. TDC 89. This study, however, is lim-
ited by small sample size and also heterogeneity of comorbid 
anxiety disorders allowed (i.e., generalized anxiety, social 
anxiety, and anxiety not otherwise specified), precluding 
conclusions about any single anxiety disorder. To allow for 
comparison across studies, further efforts are needed utiliz-
ing standardized methods of assessment and longitudinal 
design that account for extraneous factors (e.g., family histo-
ry, comorbid conditions, age, medication status). 

Finally, as aforementioned, researchers are now begin-
ning to use computer modeling to assess the role of such neu-

chine learning methods to classify ADHD diagnosis using a 
standardized dataset consisting of RSFC data from 491 
TDCs and 285 children with ADHD. Results from the win-
ning team showed a diagnostic accuracy rate of 60.51% (21% 
sensitivity, 94% specificity) 78. Interestingly, another team 
achieved an accuracy rate of 62.52% using only phenotypic 
data (e.g., age, IQ, gender, etc) and no RSFC or imaging data, 
supporting the notion that neuroimaging is not the only 
means of predicting disease, and that we are in the early 
days of using imaging biomarkers to predict any psychiatric 
diagnosis, including ADHD. 

Very few neuroimaging/treatment studies of RSFC 
among ADHD children and adolescents exist. In one exam-
ple, Hong et al. found reduced RSFC in participants with 
ADHD who were considered “good responders” (N=48) to 
MPH treatment vs. “poor responders” (N=30), particularly 
connectivity between the ventral caudate/nucleus ac-
cumbens and the right rectal and orbitofrontal gyri as well as 
the dorsal caudate to bilateral frontal cortices 79. In another 
example, An et al. examined regional homogeneity (ReHo), 
which calculates the temporal similarity of time series of a 
given voxel to those of its nearest neighboring voxels, in rest-
ing-state fMRI data among boys with ADHD (N=23) scanned 
initially off medication, and then a second time half of the 
ADHD boys received 10mg methylphenidate (MPH) while 
the other half received placebo 80. They found MPH vs. pla-
cebo upregulated activity in the left inferior frontal cortex, 
right OFC, and cerebellar vermis, while it downregulated 
activity in the right parietal and visual cortex. Interestingly, 
when patients were treated with MPH, no RSFC differences 
were observed between the ADHD and control groups, sug-
gesting a “normalizing” effect of MPH 80. 

Mood and Anxiety Disorders
Beyond ADHD, neuroimaging research has also advanced 
our understanding of the brain/behavior interactions un-
derlying pediatric mood and anxiety disorders. Similar with 
ADHD though, most studies have employed cross-sectional 
neuroimaging methods to identify structural, DTI, and 
fMRI differences between participants with mood and anx-
iety disorders vs. TDCs. Given the considerable overlap be-
tween such disorders, although quantitative differences 
have been identified by such studies, there is clear need to 
probe their specificity, to independently replicate their find-
ings, and to delineate their longitudinal trajectory. Thus, 
there are no neuroimaging findings that would be considered 
biomarkers for pediatric mood and anxiety disorders on a 
case-by-case basis at present, though the discovery of such 
biomarkers is an important and needed goal. 

For this review, we focus on the following mood condi-
tions: major depressive disorder [MDD], bipolar disorder 
[BD], and disruptive mood dysregulation disorder [DMDD]. 

Depression
Depression causes significant morbidity and mortality in 
children, adolescents, and young adults annually, including 
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In the second study, Roberson-Nay et al. evaluated emo-
tional face encoding using a subsequent memory paradigm. 
Specifically, participants first completed an event-related 
fMRI scan requiring them to attend to emotional face stim-
uli. Then they completed a post-scan memory task that re-
quired them to identify if they had, or had not, seen certain 
emotional face stimuli during the fMRI task. Unlike Thomas 
and colleagues who found decreased amygdala activity 
among depressed youth, they found that MDD youths 
(N=10) had increased left amygdala activity when success-
fully encoding emotional faces compared to anxious (N=11) 
and TDC (N=23) participants 95. Again, a notable subset of 
depressed youth had comorbid anxiety (N=4/10) while no 
anxious participants (i.e., 3 separation anxiety, 3 social anxi-
ety, 9 GAD) were given a comorbid MDD diagnosis.

In the third study, Beesdo et al. compared emotional face 
viewing in three groups of children ages 7-17 years: (1) MDD 
(N=26; 14 with comorbid anxiety and 12 without comorbid 
anxiety); (2) anxious youths without depression (N=16), and 
(3) TDC (N=45). Among their findings, they noted disor-
der-specific alterations when passively viewing faces, with 
MDD participants having decreased activation, and anxious 
participants having increased activation, when viewing 
fearful vs. happy faces. Addressing the potential influence of 
comorbidity lacking in other studies, Beesdo found that ex-
cluding the subset of adolescents with comorbid MDD and 
anxiety did not alter results 96.

Two other studies compared face viewing in children 
with MDD vs. TDC, although they also considered the po-
tential impact of comorbid anxiety. Hall et al. compared un-
medicated adolescents with MDD (N=32) to age and sex-
matched TDC (N=23) 97. They found that youth with MDD 
had greater bilateral amygdala activity than TDC in response 
to fearful vs. happy faces, such that this finding remained 
significant when controlling for comorbid anxiety. In con-
trast, van den Bulk et al., compared adolescents with depres-
sion and/or anxiety disorders (N=25 total; N=17 MDD or 
dysthymia, N=6 with an anxiety disorder, N=2 with adjust-
ment disorder with depression/anxiety) to TDCs (N=26) 98. 
They found no significant between-group differences in ac-
tivation patterns on the whole brain or specific ROI level 
(amygdala). However, they noted that dimensional anxiety 
scores (and not depression scores) predicted right amygda-
lar activity when viewing fearful, happy and neutral faces. 
Again, next steps need to focus on including larger samples 
and additional psychiatric comparison groups in order to 
examine the specificity and replicability of such findings. 

Finally, Forbes et al. paired fMRI with a treatment study 
to evaluate neural activation changes as a result of treatment 
response. This study compared pre- and post-treatment 
neural activity on a reward anticipation task among de-
pressed adolescents (N=13) receiving either cognitive be-
havioral therapy (CBT; N=7) or CBT plus a selective sero-
tonin reuptake inhibitor (SSRI; N=6). Among their findings, 
they demonstrated that less medial PFC and greater striatal 
activity pre-treatment was associated with post-treatment 

roimaging findings as potential biomarkers for depression. 
One example is by Foland-Ross et al. who used support vec-
tor machines (SVMs) to examine if baseline cortical thick-
ness could identify adolescents who go on to develop clini-
cally meaningful depressive symptoms vs. those who remain 
depression free 90. Specifically, they followed N=33 female 
adolescents (10-15 years old), who at initial evaluation were 
Axis I disorder naïve, for up to 5 years. The primary finding 
was that baseline cortical thickness predicted the onset of 
depression with 70% accuracy (69% sensitivity, 70% specific-
ity, p=0.02) comparing those who developed MDD (N=18) vs. 
those who remained depression free (N=15), with the right 
medial OFC, right precentral, left ACC and bilateral insular 
cortex most notably contributing to this prediction. 

A second study by Wu et al. also used SVMs to compare 
the role of several neuromorphometric indices (including 
cortical thickness, volume and folding patterns) in catego-
rizing individual adolescents, N=25 diagnosed with MDD 
and N=26 demographically matched TDCs 91. The model 
with 78.4% accuracy identified 40/51 adolescents (76% sen-
sitivity, 80.8% specificity, p=0.000049). Dissimilar to Fo-
land-Ross et al., the volumetric and cortical folding in the 
right thalamus and right temporal pole were most involved 
in differentiating the depressed from control teens. Al-
though both research groups were able to predict with high 
accuracy those who were depressed vs. not, the findings of 
Wu and also of Foland-Ross are based upon small sample 
sizes. Moving forward, there is need to include larger sam-
ples, demonstrate the specificity of such findings for pediat-
ric depression vs. other psychiatric disorders, and to focus 
on the replicability of findings. 

Diffusion Tensor Imaging (DTI): While a few DTI studies 
have examined potential white matter abnormalities associ-
ated with pediatric depression, none are known to gauge the 
specificity of findings through use of a multi-group de-
sign.92,93

Functional MRI (fMRI): The state of fMRI research in pe-
diatric depression mirrors that of structural MRI studies in 
that few have probed the specificity of difference between 
MDD vs. TDC youths.

In fact, only three known studies have begun to evaluate 
the specificity of emotional face processing in pediatric de-
pression. In the first, Thomas et al. compared emotional face 
processing in girls with either MDD, anxiety (i.e., primary 
GAD or panic disorder), or TDC (N=5 in each group). They 
found that depressed girls had significantly less left amygda-
la activity than anxious or TDC girls when viewing faces re-
gardless of the stimuli’s emotional content 94. One strength 
of this research is the use of a multi-group design—compar-
ing youth with MDD to TDC and another clinical group. 
However, complicating these findings is the reliance on such 
small samples, as well the comorbid conditions potentially 
unaccounted for. While none of the anxious youth were di-
agnosed with MDD, N=2/5 youth with MDD had GAD.
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vance (and high co-occurrence) with other anxiety disor-
ders, as well as the paucity of efforts existing to delineate the 
pathophysiology of GAD alone 107.

That said, studies of anxiety implicate a “fear circuit” 
consisting of the amygdala, medial and lateral PFC, and hip-
pocampus in the underlying pathophysiology 108. More 
broadly, these studies include animal models, typically de-
veloping humans across the lifespan, and adult patients di-
agnosed with anxiety. Neuroimaging studies of pediatric 
anxiety have focused on these ROIs, though conclusions 
about potential biomarkers are again limited by relatively 
small sample sizes and the need for more studies that can 
test the specificity of such findings.

Pediatric Anxiety Disorders: Structural MRI: Structural 
MRI studies have implicated the amygdala in the pathophys-
iology of pediatric anxiety. However, the direction (increased 
or decreased volume) of these findings vs. TDC participants 
is often inconsistent. For example, De Bellis et al. found that 
GAD participants (N=12) had significantly larger right and 
total amygdala volumes vs. age-, sex-, height-, and handed-
ness-matched TDCs (N=24).109 In contrast, Milham et al. 
found the opposite, with anxious youths (GAD, SAD, and/or 
SOC) having decreased left amygdala volume and no differ-
ence in either right or total amygdala volume vs. age-, gen-
der-, and intelligence-matched TDC (N=34).110 In line with 
Milham et al., Mueller et al. also found smaller amygdala and 
hippocampal gray matter volume (with inverse pattern for 
the insula) in 39 adolescents diagnosed with an anxiety dis-
order (GAD, SOC, SP, and/or SAD) compared to 63 TDCs.111 
Post-hoc analyses explored the specificity of these findings, 
showing that SOC contributed uniquely to the amygdala and 
hippocampus gray matter volume reductions although this 
finding must be considered preliminary given the small num-
ber of youth diagnosed with social anxiety (N=11). Strawn 
and colleagues have conducted a series of studies evaluating 
structural changes among adolescents with GAD vs. TDCs. 
In two such studies, they found that adolescents with GAD 
(N=15) have decreased gray matter volume in the left orbital 
gyrus and posterior cingulate (N=28 TDC),112 and that ado-
lescents with GAD plus SOC and SAD (N=32) had decreased 
volume of the inferior frontal gyrus, left postcentral gyrus 
and cuneus vs. TDCs (N=27).113 Strawn also found that, com-
pared to TDCs (N=19), GAD youth without comorbid depres-
sion (N=13) had increased cortical thickness in areas impli-
cated in fear learning, extinction, and regulation of the 
amygdala, including the right inferolateral and ventromedial 
PFC, left inferior and middle temporal cortex, and right lat-
eral occipital cortex.114

To the best of our knowledge, no study has tested the 
specificity of potential structural MRI alterations in pediat-
ric anxiety disorders. This deficiency is related to the lack of 
large, well-powered multi-group studies. Qin et al., however, 
have examined machine learning algorithms to assess the 
utility of structural and functional MRI abnormalities for 
predicting trait anxiety among TDCs without formal anxiety 

clinical severity and reductions in comorbid anxiety symp-
tomatology. Importantly N=10/13 participants had co-mor-
bid GAD. This suggests that fronto-striatal activity may be 
important in pediatric depression, plus highlighting the po-
tential phenomenological and/or DSM nosological conun-
drum of the overlap between MDD and GAD, especially in 
children where irritable mood can serve as a diagnostic 
symptom for either disorder 99. Tao et al. then compared 
N=19 adolescents with MDD (N=4 with comorbid anxiety, 
N=2 with comorbid ADHD, N=8 with comorbid dysthymia 
or “other”) to N=21 TDCs such that the former underwent 
an 8-week trial of fluoxetine treatment. At baseline, results 
showed that depressed youth had significantly greater acti-
vation in multiple ROIs including the amygdala, OFC and 
subgenual ACC during an emotional face processing task. At 
post-treatment, these activations were decreased and com-
parable to repeat TDC scan results 100. 

Resting State Functional Connectivity (RSFC): While a 
growing number of studies have used RSFC in adults with 
MDD (e.g., Sheline et al., 2010; Veer et al., 2010; Anand et al., 
2005), fewer have focused on pediatric MDD and those that 
have included only TDC as a comparison group 101-103.

Taken as a whole, although there clearly have been strides 
toward understanding the pathophysiology of pediatric de-
pression, findings can best be described as preliminary as 
studies have used varying cross-sectional methodologies 
(e.g., different MRI tasks) with small samples of diagnostical-
ly complicated youth (e.g., presence of comorbid diagnoses). 
To better examine the diagnostic specificity of neural differ-
ences and gauge their worth as potential biomarkers, future 
studies should therefore aim to replicate previous findings 
with larger samples, using similar (if not the same) imaging 
paradigms and methods for analysis—particularly to com-
pare depressed youth to TDC, as well as other clinical groups. 

Anxiety Disorders

Diagnoses included under the rubric of anxiety disorders 
have shifted with the adoption of the DSM-5. Specifically, 
OCD and posttraumatic stress disorder have been moved 
out of the anxiety disorders group to other diagnostic group-
ings (OCD moving to the Obsessive-Compulsive and Relat-
ed Disorders, and PTSD to Trauma and Stressor-related dis-
orders) in line with phenomenological and neurobiological 
evidence that they differ from the “phobic” anxiety disor-
ders –i.e., GAD, social anxiety (SOC), panic (PD), separation 
anxiety (SAD), and specific phobias (SP). These five disor-
ders, the focus of the current review, are commonly col-
lapsed under the umbrella term of ‘anxiety disorders’ in 
studies examining their overarching clinical features, func-
tional impairment, and neural underpinnings. Moreover, 
this grouping is largely consistent with the findings of sever-
al important studies describing them as the fear-based inter-
nalizing disorders (compared to dysphoric or distress disor-
ders which include GAD, MDD, and dysthymia) 104-106. GAD 
was nevertheless included in this grouping given its rele-
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Their main finding was that those with GAD had significant-
ly increased amygdala activity vs. TDCs when viewing angry 
faces, and that level of activation was significantly and posi-
tively correlated with anxiety disorder severity. Post-hoc 
comparisons to test specificity showed that both GAD only 
(N=9) and those with both GAD and MDD (N=8) had greater 
amygdala activation than TDCs, suggesting that comorbid 
depression was not driving their results 116.

Swartz et al. aimed to extend the understanding of amyg-
dala dysfunction present in pediatric anxiety disorders by 
assessing its activation and connectivity over time. Specifi-
cally, they compared youth with anxiety (N=34, primary 
GAD, SP, SAD, some with secondary diagnoses of OCD and 
PTSD) to TDCs (N=19) while performing an emotional 
face-matching task. Activation patterns were compared for 
different portions of the task, which was separated into thirds 
(initial vs. prolonged exposure to stimuli) 117. They showed 
that anxious youth had increased amygdala activation during 
the first third of the task compared to TDCs, but that this ac-
tivation significantly decreased over time. There was also ev-
idence that youth with anxiety had altered prefrontal cor-
tex-amygdala connectivity, such that TDCs had greater 
context-modulated connectivity during the first third of the 
task whereas anxious youth had increased context-modulat-
ed connectivity during the second third of the task. 

Studies have also begun to focus on examining the patho-
physiology underlying pediatric anxiety disorders using 
non- face processing tasks although only a few have includ-
ed two clinical groups and healthy controls. For example, 
Guyer et al. compared adolescents with GAD (N=18, all 
without comorbid SOC) to those with SOC (N=14, 3 with co-
morbid GAD) to TDCs (N=26) using the monetary incentive 
delay task, which engages the striatum during anticipation 
of monetary gains or losses 118. Findings showed that youth 
with SOC had greater activation in the caudate and putamen 
when anticipating incentives vs. TDCs and GAD, whereas 
youth with GAD showed a unique valence-specific putamen 
response (i.e., greater activation during potential gain vs. 
loss trials). Fitzgerald et al., used the multi-source interfer-
ence task to examine activation, particularly in the posterior 
medial frontal cortex (pMFC) and DLPFC, among female 
youth with non-OCD anxiety disorders (N=23; GAD, SOC, 
and SAD) vs. those with OCD (N=21) and TDCs (N=25) 119. 
Findings showed that the non-OCD and OCD groups had 
hypoactive DLPFC error processing compared to TDCs, 
while there were no differences found in activation between 
the clinical groups. 

No studies have employed machine learning techniques 
to evaluate fMRI neuroimaging findings as potential bio-
markers of pediatric anxiety disorders. However, McClure 
et al. have paired neuroimaging with treatment to explore 
potential neural markers of treatment response. Specifically, 
they showed that greater pre-treatment amygdala activation 
during a face-attention task was significantly associated 
with better treatment response for youth with primary GAD 
or SOC (N=12) receiving either 8-weeks of CBT (N=7) or flu-

disorder diagnoses (N=76, of which N=38 were boys) at the 
individual level 115. They found increased volume in the left 
amygdala predicted higher parent-reported anxiety symp-
toms (r(predicted, observed)=0.33, p=0.005), although right amyg-
dala volume did not (r(predicted, observed)=0.10, p=0.17). They also 
found that greater functional connectivity between the left 
amygdala and multiple brain regions (e.g., lateral occipital 
and inferior temporal cortices in the sensory association 
cortex, frontal eye field and superior parietal lobe, putamen 
and ventral striatum in the basal ganglia, and thalamus, hy-
pothalamus, and midbrain) significantly predicted individu-
al anxiety per parent report. Next steps are needed to exam-
ine the specificity and replicability of such prediction 
findings among youth diagnosed with clinical anxiety disor-
ders and with a longitudinal study design. 

Pediatric Anxiety Disorders: Diffusion Tensor Imaging 
(DTI): Unfortunately, to the best of our knowledge, there are 
no DTI studies that evaluate the specificity of white matter 
abnormalities in pediatric anxiety disorders (i.e., GAD, SOC, 
SAD, PD, SP).

Pediatric Anxiety Disorders: Functional MRI: As in studies 
of pediatric depression, several studies have used event-re-
lated fMRI to examine the brain/behavior interactions un-
derlying pediatric anxiety disorders. Also, as in studies of 
depression, many of these have employed emotionally-va-
lenced visual stimuli, including faces, and have focused on 
the amygdala given its role in both fear circuitry and face 
processing.

In fact, the multi-group studies by Beesdo et al. and 
Thomas et al. described above in the pediatric depression 
section are among the best examples. Specifically, Beesdo et 
al. found that anxious youths without depression (N=16) had 
significantly greater amygdala activation when passively 
viewing fearful vs. happy faces compared to those with 
MDD plus comorbid anxiety (N=26) and to TDC partici-
pants (N=45) 96. Additionally, Thomas et al. found similar 
patterns of exaggerated amygdala activity for a small sample 
of anxious youth vs. separate groups of TDC and depressed 
peers (N=5 in each group). While both anxious and TDC 
youth showed overall increased amygdala activity when 
viewing faces regardless of emotional content, only the anx-
ious youth had significantly increased right amygdala activ-
ity when viewing fearful vs. neutral faces, and the magni-
tude of this neural activation correlated positively with 
child-reported anxiety on the Screen for Child Anxiety Re-
lated Disorders (SCARED). In contrast, the depressed group 
showed decreased left amygdala activity when viewing fear-
ful faces suggesting different neural alterations in pediatric 
anxiety versus depression 94.

Other fMRI studies, while not outright comparing two 
patient groups to TDC participants, have at least attempted 
to acknowledge the potential role of comorbid conditions.

In this vein, Monk et al. compared GAD (N=17) to TDC 
participants (N=12) while attending to emotional faces. 
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Pediatric Bipolar Disorder (BD)

As discussed above, we note that mechanism-oriented re-
search, including neuroimaging and other phenomenologi-
cal data, meant to address ongoing controversies about bipo-
lar disorder (BD) in children and adolescents led to changes 
in DSM-5. Specifically, studies led by Leibenluft et al. com-
pared two groups of children to one another and to TDCs: 
(1) “narrow phenotype BD youth” with distinct episodes of 
euphoria and (2) “severe mood dysregulation (SMD) youth” 
with a chronic course of functionally impairing irritability 
124,125. More than a decade of research, including structural 
and fMRI studies, led to the inclusion of a new diagnosis in 
DSM-5 known as “disruptive mood dysregulation disorder” 
(DMDD) based on the SMD criteria of chronic disabling ir-
ritability not due to another cause, such as ADHD, ASD, etc. 
Nevertheless, BD remains an important diagnosis because of 
the substantial associated morbidity and also difficulty mak-
ing the diagnosis, including parsing it from other conditions, 
such as ADHD and now DMDD despite DSM-5 prompts 
that suggest the dichotomy should be clear. Data preceding 
DSM-5’s releasein 2013 suggested that more children in the 
U.S. and internationally were being diagnosed with BD from 
the mid-1990s through the mid-2000s 126-128. It remains un-
clear if these DSM-5 changes have reduced this trend or po-
tentially shifting it to increases in children diagnosed with 
DMDD. Thus, there is a pressing need for greater under-
standing of the neural mechanisms underlying BD that 
might be leveraged to improve sensitivity and specificity of 
diagnosis, or to develop targeted treatments.

Research examining neural correlates of BD has focused 
on fronto-temporal neurocircuitry. In particular, research-
ers have explored the relationships between frontal regions 
of the DLPFC and VLPFC, temporal regions, including the 
amygdala, and striatal regions, including the caudate and ac-
cumbens area. As highlighted below, there are a number of 
multi-group and treatment/imaging studies that have begun 
to evaluate the specificity of these neuroimaging findings in 
BD youths, but there are few studies that employ machine 
learning or other computer algorithms to predict diagnostic 
status or treatment outcome. Such work is progressing, but 
is important to note that, as in the other disorders discussed, 
there is no current neuroimaging biomarker for pediatric 
BD that is useful on a clinical case-by-case basis.

Pediatric BD: Structural MRI: Structural MRI studies have 
implicated fronto-temporal alterations in the pathophysiol-
ogy of pediatric BD. By far, the most consistent anatomical 
finding in pediatric BD is significantly reduced amygdala 
volume compared to TDC, now found in seven of nine 
cross-sectional structural MRI studies to date 129-135, but not 
in two others 136,137. This is among the more replicated neuro-
imaging findings in either children or adults with any form 
of psychiatric illness.

Although there are few multi-group structural MRI stud-
ies that compare BD youths to those with other forms of 

oxetine (N=5). Of note, treatment type (psychotherapy vs. 
medication) was chosen by families, and all participants sig-
nificantly improved during treatment, though neural pre-
dictors of treatment outcome were not compared across 
treatments 120.

To address this limitation, Maslowsky et al. 2010 extend-
ed McClure’s findings by comparing vlPFC and amygdala 
activity for GAD participants treated with CBT vs. those 
treated with fluoxetine (N=7 of each). While both groups 
significantly improved and had increased post- vs. pre-treat-
ment vlPFC activity, only the CBT group had increased bi-
lateral amygdala activity. Post-treatment vlPFC or amygdala 
activation did not significantly relate to the decrease in anx-
iety symptoms from pre- to post-treatment 121.

Pediatric Anxiety Disorders: Resting State Functional Con-
nectivity (RSFC): To our knowledge, there are not yet any 
studies examining RSFC in pediatric anxiety disorders that 
include multiple clinical groups and healthy controls. The 
few studies that have compared anxious youth, particularly 
those with GAD to TDCs only, highlight the connectivity of 
the amygdala. For example, Roy et al. evaluated RSFC be-
tween sub-nuclei of the amygdala and the rest of the brain in 
adolescents with GAD (N=15 total; N=12 with comorbid 
SOC, SP, PD, SAD, MDD and/or OCD) vs. TDCs (N=20) 122. 
They found that youth with GAD had complicated patterns 
of disruption in an amygdala-based network, including de-
creased connectivity between the centromedial amygdala 
and the VMPFC and between the superficial amygdala and 
cerebellum. They also found youth with GAD had increased 
connectivity between the centromedial amygdala, insula 
and superior temporal gyrus; superficial amygdala, DLPFC 
and DMPFC; and basolateral amygdala and cerebellum. 
Post-hoc analyses examined the potential effect of comor-
bidity, first by excluding youth with GAD and comorbid 
MDD, and then those with GAD and comorbid SOC. All 
group differences in amygdala functional connectivity re-
mained significant. Similarly, Liu et al. found alterations in 
amygdala connectivity when comparing youth with first-ep-
isode GAD (N=26) to age-matched TDCs (N=20) 123. Specif-
ically, youth with GAD had decreased functional connectiv-
ity between the left amygdala and left DLPFC, as well as 
increased connectivity between the right amygdala and 
right posterior and anterior lobes of the cerebellum, insula, 
superior temporal gyrus, and putamen.

In summary, the current state of neuroimaging as a po-
tential biomarker of pediatric anxiety disorders resembles 
that of depression—i.e., these data are important clues about 
the pathophysiology of anxiety, but they are far from ready 
for clinical application to the diagnosis and treatment of 
anxiety disorders in children. For this to ever become a real-
ity, we need more studies, involving large samples and longi-
tudinal assessments. There is also a need to determine the 
specific brain/behavior interactions underlying particular 
types of anxiety, rather than clustering them. 
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with BD (N=7), and (3) TDC (N=8). The BD group had de-
creased FA in the cingulate-paracingulate white matter vs. 
both at-risk and TDC participants, whereas both BD and at-
risk participants had reduced FA in the bilateral superior lon-
gitudinal fasciculus.142 In another study, Pavuluri et al. com-
pared FA in children with (1) BD (N=13), (2) ADHD (N=13) 
and (3) TDC (N=15). No findings distinguished the BD partic-
ipants from either the ADHD or TDC groups.39 Additionally, 
one study using DTI to classify BD vs. TDC has been con-
ducted. A recent study by Mwangi et al. used FA and axial 
and radial diffusivity from BD and TDC participants (N=16 of 
each), to train a support vector machine algorithm that had 
87.5% specificity and 68.75% sensitivity for predicting group 
status, though this study did not use an independent sample 
of BD and TDC participants to test this algorithm.143

Pediatric BD: Functional MRI ( fMRI): FMRI studies of pe-
diatric BD participants have probed the brain and behavior 
interactions underlying a number of cognitive and emotion-
al processes, including emotional face processing, attention, 
and cognitive flexibility. Most of these studies have identi-
fied relative differences between BD and TDC youths. How-
ever, some have begun to address issues of specificity by 
multi-group comparisons or by pairing imaging with treat-
ment.

For example, Brotman et al. evaluated attention to emo-
tional faces by comparing youths diagnosed with: (1) BD 
(N=43), (2) ADHD (N=18), (3) SMD (N=29), and (4) TDC 
participants (N=37). Whereas prior studies had demonstrat-
ed that pediatric BD participants had altered PFC–amygda-
la–striatal neural activation vs. TDC children when viewing 
faces, including pictures of faces with happy, angry, or neu-
tral emotions 135,144,145, Brotman et al. did not find BD-specific 
findings. Instead, in addition to the ADHD-specific findings 
discussed in the ADHD-fMRI section, Brotman et al. found 
that SMD participants had significantly decreased amygdala 
neural activation vs. those either meeting Leibenluft et al. 
2003’s criteria for narrow-phenotype BD (i.e., having clear-
cut episodes of mania with elevated, expansive mood), or 
those with ADHD or TDC 56,124. 

Thomas et al. used an implicit face-emotion processing 
task to demonstrate that BD participants (N=20) had signifi-
cantly less amygdala activity in response to angry vs. neutral 
faces than either SMD (N=21) or TDC participants (N=16).146

Passarotti et al. employed an emotional valence Stroop 
task (i.e., requiring participants to match the color of a posi-
tive, negative or neutral word to a one of two presented col-
ored circles) to study children and adolescents with either 
(1) BD (N=17), (2) ADHD (N=15), and (3) TDC (N=14). Both 
BD and ADHD participants had greater DLPFC and parietal 
cortex activation than TDC when viewing negative vs. neu-
tral words. Despite these shared regions of hyperactivity, 
differences between the patient groups also emerged. Spe-
cifically, BD participants had greater activation in the VLP-
FC and ACC, whereas the ADHD group showed decreased 
VLPFC and ACC activity 57. 

psychopathology, it is interesting to note that the two that 
failed to find significant decreases in amygdala volume were 
multi-group studies. Specifically, Lopez-Larson et al. stud-
ied four groups of children: (1) those with BD plus comorbid 
ADHD (N=23), (2) those with BD without ADHD (N=30), 
(3) those with ADHD without BD (N=23), and (4) TDC par-
ticipants (N=29). Rather than finding BD-specific structural 
MRI differences, instead they found that ADHD youths had 
significantly smaller total amygdala volume as well as total 
caudate and putamen volume vs. BD with ADHD, BD with-
out ADHD, and TDC groups 137.

Frazier et al. also conducted a four-group, cross-sectional 
MRI study, including the following: (1) BD plus psychosis 
(N=19), (2) BD without psychosis (N=35), (3) schizophrenia 
(N=20), and (4) TDC (N=29). There were no significant dif-
ferences between the BD and schizophrenia groups with re-
spect to amygdala (or hippocampal) volume. However, they 
did identify a group X sex interaction, with schizophrenic 
males having the smallest left amygdala volume, while BD 
females having the smallest hippocampal volumes 136.

Two interesting multi-group morphometry studies have 
been conducted with BD and DMDD youth. The first by Ad-
leman et al. found that both BD (N=55) and SMD youth 
(N=78) had decreased gray matter volume of the pre-supple-
mentary motor area (pre-SMA), DLPFC, and insula vs. 
TDCs (N=68), while BD youth had increases in the globus 
pallidus vs. the other two groups. At a mean of approximate-
ly 2 years later, BD youth had abnormal increases of the 
right superior and inferior parietal lobule and precuneus 138. 
The second by Gold et al. from the same NIMH research 
group found specific changes in the left DLFPC, with BD 
youth (N=20) having decreased, and anxious youth (N=39) 
having increased volume compared to TDCs (N=53). Both 
BD and DMDD (N=52) participants had decreased gray mat-
ter volume vs. TDCs in the right DLPFC 139.

With respect to other multi-group comparisons, as dis-
cussed in the ADHD section, Liu et al. compared the follow-
ing four groups of children and adolescents: (1) BD plus co-
morbid ADHD (N=17), (2) BD without ADHD (N=12), (3) 
ADHD without BD (N=11), and TDC (N=24) 138. Although 
the ADHD-only findings have been discussed in the ADHD 
section, it is notable that Liu found that BD-only partici-
pants had larger caudate, putamen, and globus pallidus vol-
umes than the other groups 140.

Chiu et al. evaluated anterior cingulate gyrus volume in 
children with (1) BD (N=16), (2) ASD (N=24), and (3) TDC 
(N=15). Results showed that BD participants had signifi-
cantly smaller left anterior cingulate gyrus volumes com-
pared to both the ASD and TDC participants. There was no 
such difference in right anterior cingulate gyrus volume 141.

Pediatric BD: Diffusion Tensor Imaging (DTI): Few DTI 
studies have evaluated the specificity of white matter alter-
ations to pediatric BD by conducting multi-group studies. 
Separately, Frazier et al. compared children (1) with BD 
(N=10), (2) at-risk for BD by having a first-degree relative 
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had risen 10-fold from the year 1980 to the year 2000, affect-
ing as many as 1/68 children up to age 8 in the United States 
according to a 2016 article 157,158. As in other disorders, such 
as pediatric BD, it remains uncertain if this represents better 
awareness of ASD, over- or mis-diagnosis, or a combination.

Thus, there is a pressing need to understand the neural 
underpinnings of ASD. As in other disorders, studies have 
employed structural MRI, fMRI, and DTI to elucidate the 
underlying neurobiology associated with ASD. Most of these 
have examined brain changes in ASD children and adoles-
cents compared to TDC, with few examining the specificity 
of these findings by comparing sub-types of ASD partici-
pants to one another (i.e., autistic disorder vs. Asperger’s 
Disorder) or to those with other neuropsychiatric condi-
tions (i.e., those with primary ADHD or other non-ASD de-
velopmental delay [DD]).

A plethora of brain regions from every lobe have been im-
plicated in the neuropathology of ASD, from sub-regions of 
the PFC to temporal, parietal, and occipital cortex, as well as 
the cerebellum 159,160. One important finding in ASD research 
has been early brain overgrowth in those affected by ASD. 
This has been demonstrated not only in neuroimaging stud-
ies, but also in studies examining head circumference and 
post-mortem neuropathology in those affected by ASD 161-167. 
However, for individual children, such findings are not yet 
useful as diagnostic biomarkers of ASD, whereby a measure-
ment could rule in, or rule out, ASD.

It is beyond the scope of this piece to summarize the 
wealth of neuroimaging studies conducted with those af-
fected by ASD across the lifespan. Thus, what follows rep-
resents only a sampling of this work. However, to date, no 
replicated MRI neuroimaging biomarker for ASD has been 
identified that can improve the specificity or quality of ASD 
diagnosis or its treatment.

ASD: Structural MRI: Multi-group studies have begun to 
probe the specificity of structural MRI alterations associat-
ed with ASD. For example, Kaufmann et al. evaluated cere-
bellar vermis volume in 3-9 year-old boys with: (1) idiopath-
ic autism (N=10), (2) Down syndrome plus autism (N=16), 
(3) fragile X syndrome plus autism (N=13), or (4) TDC par-
ticipants (N=22). Results showed that the ratio of cerebellar 
vermis lobules VI-VII to total intracranial area was smaller 
only in those with idiopathic autism compared to the other 
groups, whereas increases in lobules VI-VII were seen in au-
tism associated with fragile X syndrome 168. In another ex-
ample, Petropoulos et al. failed to find specific alterations 
among 3–4 year olds with either (1) ASD (N=45), (2) TDC 
(N=26), or (3) DD (N=14), though they were examining a dif-
ferent brain region—the mid-sagittal corpus collosum—and 
also did not focus exclusively on boys 169. 

Other studies have begun to compare structural MRI al-
terations between participants with ASD and those with 
other forms of developmental delay. For example, Petropou-
los et al. compared 2–4 year olds with either (1) ASD (N=60), 
(2) TDC (N=10), and (3) developmental delay (DD; N=16). 

Passarotti et al. again compared youth with BD (N=23) or 
ADHD (N=14), and TDC (N=19) participants while watching 
faces. They found that BD participants had greater activity 
in regions implicated in emotional processing (e.g., left me-
dial PFC, subgenual ACC), while the ADHD group showed 
greater activity in regions implicated in prefrontal working 
memory (e.g., left DLPFC, pre-motor regions) 147.

There are several treatment/imaging studies involving 
pediatric BD participants. For example, Chang et al. have ex-
amined the brain activity of BD adolescents (N=8) treated 
with lamotrigine. Specifically, they evaluated brain activity 
while viewing negative and neutral emotional pictures at 
baseline and following eight weeks of treatment 148. They 
found a significant decline in depressive symptoms that was 
also associated with decreased right amygdala activity when 
viewing negative pictures.

Pavuluri and colleagues have conducted a series of im-
portant studies comparing fMRI activity in BD youths be-
fore and after treatment with several anti-manic medica-
tions, including lamotrigine, risperidone, and divalproex. 
These studies employ block-design methodology, which is 
very good at detecting between-group differences in neural 
activation though its ability to detect group-by-cognitive 
task differences is limited compared to event-related fMRI 
experiments. Taken as a whole, these studies corroborate 
the fact that anti-manic medications differentially influence 
the neurocircuitry underlying pediatric BD 149-152.

Such studies, pairing neuroimaging and treatment, are 
very important to advancing our understanding of potential 
bio-behavioral markers that would guide treatment, akin to 
what is commonplace in cancer treatment. However, it is 
early in this process, with need for replication to ascertain 
what, if any, neural markers can ultimately guide treatment 
decisions or predict outcome.

Pediatric Bipolar Disorder: Resting State Functional Con-
nectivity (RSFC): The number of RSFC studies among BD 
youth has grown over the past few years, with studies partic-
ularly interested in RSFC alterations in the PFC-amygda-
la-striatal circuit implicated in pediatric BD 153-155. However, 
there is a real need for studies to take the next step—i.e., to 
examine specificity. At present, one of the few examples that 
has done this is a study by Stoddard et al. who used a seed-
based analysis of sub-nuclei of the amygdala to show that 
BD youth (N=14) had significantly and specifically increased 
RSFC between the left basolateral amygdala and the medial 
aspect of the left frontal pole vs. both TDC (n=20) and SMD 
youth (N=19) with chronic severe irritability 156. 

Autism Spectrum Disorder (ASD)

ASD which includes autistic disorder, Asperger’s Disorder, 
and pervasive developmental disorder not otherwise speci-
fied (PDD-NOS) previously separated in DSM-IV, are among 
the most common and impairing psychiatric conditions af-
fecting children and adolescents today. The Centers for Dis-
ease Control (CDC) has shown that the incidence of ASD 
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Brieber et al. used voxel-based morphometry to evaluate 
whole-brain alterations between 10-16 year olds with (1) 
ASD (total N=15 including N=13 with Asperger’s plus N=2 
HFA) (2) ADHD (N=15), and (3) TDC (N=15). They found 
ASD-specific increases in gray matter volume of the right 
supramarginal gyrus, an area mediating mentalising and 
theory of mind abilities 19.

Several studies have begun testing the role of structural 
MRI parameters in confirming the clinical classification of 
ASD participants. For example, Akshoomoff et al. used dis-
criminant function analysis of MRI brain measures, includ-
ing cerebellar vermis volume, total brain volume, and gray 
and white matter volumes, to classify ASD (N=52) and TDC 
(N=15) participants. They found that 95.8% of ASD and 
92.3% of TDC participants were correctly classified. By add-
ing functional impairment measures, they correctly classi-
fied 85% of ASD cases as lower functioning and 68% of ASD 
cases as higher functioning 175.

Relatedly, Jiao et al. used machine-learning techniques to 
determine if thickness- and/or volume-based structural 
MRI parameters could accurately distinguish between chil-
dren with ASD (N=22) and TDC (N=16). They found that 
thickness-based models were more effective than vol-
ume-based methods in differentiating ASD from TDC par-
ticipants, with an 87% accuracy rate 176. In a separate, but 
related study, Jiao et al. 2011 used machine learning tech-
niques to test if thickness- and volume-based measures 
could differentiate between 6-15 year olds with either As-
perger’s Disorder (N=5) or high-functioning autism (HFA; 
i.e., autistic disorder with normal IQ; N=13). However, they 
found that neither of these was able to effectively distin-
guish between these two groups 177.

Although such results are promising, they require further 
study, as there is no consistent, replicated structural differ-
ence, or pattern of differences, that yet would serve as a bio-
marker to of ASD. Importantly, these studies have failed to 
consistently differentiate across the ASDs—i.e., to differenti-
ate among participants with autistic disorder, Asperger’s 
Disorder, or PDD-NOS—or to consistently differentiate par-
ticipants with either HFA, low-functioning autism (LFA, 
autistic disorder with IQ<70), or Asperger’s Disorder, in-
cluding studies examining the amygdala or hippocampus; 
cerebellum or cerebellar vermis; or total gray matter, white 
matter, or cerebral volume 178-181. The failure of neuroimag-
ing studies to reliably distinguish between ASD subtypes, 
coupled with similar concern about symptom assessments 
(i.e., diagnostic interviews and questionnaires) likely con-
tributed to DSM-5’s change to lump all ASDs together. 

ASD: Diffusion Tensor Imaging (DTI): Several recent DTI 
studies have begun to evaluate the specificity of white matter 
alterations among ASD participants. For example, Bar-
nea-Goraly et al. evaluated white matter integrity via DTI 
scans among children with ASD (N=13), their unaffected sib-
lings (N=13), and a separate group of unrelated TDC (N=11). 
They found that children with ASD and, to a lesser extent, 

For this study, DD participants’ delay was based upon im-
pairments in standardized intellectual and adaptive tests, 
but not meeting ASD criteria by the Autism Diagnostic Ob-
servation Schedule–Generic (ADOS-G) or clinical evalua-
tion. Covarying for age, they found that DD participants had 
prolonged cortical gray matter and white matter T2 relax-
ation vs. both ASD and TDC participants, whereas ASD par-
ticipants had prolonged cortical gray matter T2 relaxation, 
but not white matter T2 relaxation, compared to TDC par-
ticipants. They conclude that their data implicate a more 
general delay in neuronal maturation among DD partici-
pants, whereas ASD participants’ delay may involve gray, 
but not white, matter.170 Herbert et al. compared ASD partic-
ipants to those with developmental language delay (DLD). 
They found no significant differences in white matter vol-
ume between ASD and DLD participants, though both dif-
fered from TDC.171 A related study by Herbert et al. evaluat-
ed cortical asymmetry among boys with (1) ASD (N=16), (2) 
DLD (N=15), and (3) TDC (N=15). Compared to TDC partic-
ipants, those with either ASD or DLD had a greater aggre-
gate volume of significantly asymmetrical cortical parcella-
tion units (leftward plus rightward; 41.7% ASD, 32.6%, 
20.1%) and larger aggregate volume of right-asymmetrical 
cortex (28% ASD, 22% DLD, 7% TDC). This rightward bias 
was more pronounced in ASD participants than those with 
DLD. Moreover, DLD but not ASD participants had a small 
but significant loss of leftward asymmetry compared with 
TDC participants. From this, the authors conclude that the 
right-asymmetry increase may be a consequence of early ab-
normal brain growth trajectories in ASD and DLD, while 
higher-order association areas may be most vulnerable to 
connectivity abnormalities associated with white matter in-
creases.172

With respect to studies comparing ASD participants to 
those with other forms of psychopathology, Voelbel et al. 
compared boys with (1) ASD (N=38), (2) BD (N=12), and (3) 
TDC (N=13). They found that ASD participants had greater 
left and right caudate volume when covarying for intracra-
nial volume and stimulant use. Likewise, larger left and right 
caudate volumes in ASD predicted a riskier response strate-
gy in an attention task, while the inverse was significant in 
TDC participants.173

Similarly, Mostofsky et al. evaluated the relationship be-
tween motor cortex white matter volume and motor perfor-
mance among children with either (1) ASD (N=20), (2) TDC 
(N=36), or (3) primary ADHD (N=20). Motor impairments 
were evaluated using the Physical and Neurological Exam-
ination of Subtle Signs (PANESS). They found that the cor-
relation between PANESS score and left motor cortex white 
matter volume significantly differentiated ASD children 
from those with either ADHD or TDC, with increased white 
matter volume predicting poorer motor skill. From this, the 
authors concluded that these alterations in cerebral volume 
in ASD participants may be more representative of global 
patterns of brain abnormalities likely mediating other as-
pects of ASD, including social and communication deficits.174



FIRST ET AL. 

Am J Psychiatry 175:9, September 2018 ajp.psychiatryonline.org 33Data supplement for doi: 10.1176/appi.ajp.2018.1750701

in ASD and ADHD participants 185. Christakou et al. also 
used fMRI to examine sustained attention in boys with ASD 
(N=20), ADHD (N=20), and TDC (N=20). ASD boys had in-
creased cerebellar activation vs. ADHD and TDC partici-
pants, whereas ADHD boys had significantly reduced left 
DLPFC activation vs. ASD participants. They also found 
that ADHD and ASD boys had significantly reduced activa-
tion compared to TDC participants in bilateral striato-tha-
lamic regions, left DLPFC, and superior parietal cortex as 
well as significantly increased precuneus 50.

Kaiser et al. evaluated the brain response to biological 
motion—meaning motion that looks like that of an animate 
object (e.g., an animal walking, running, or sitting in contrast 
to random motion, like swirling dots)—in children and ado-
lescents with either (1) ASD (N=25), (2) their unaffected sib-
lings (N=20), or (3) TDC (N=17). ASD participants had spe-
cific decreases in neural activity in areas including the right 
amygdala, ventromedial PFC, and bilateral fusiform gyri. 
Interestingly, unaffected siblings had compensatory increas-
es in brain activity vs. either those with ASD or TDC in the 
right ventromedial PFC—anterior and inferior to their other 
finding—as well as the posterior superior temporal sulcus. 
Thus, Kaiser’s study suggests both state and trait neural al-
terations associated with ASD 186. 

Greimel et al. examined empathy in (1) ASD adolescent 
boys (N=15 including N=12 with Asperger’s syndrome plus 
N=3 HFA), (2) fathers of ASD participants (N=11), (3) TDC 
adolescent boys (N=15), and (4) fathers of TDC participants 
(N=9). Both ASD children and their fathers had significantly 
reduced activation of the right anterior fusiform gyrus com-
pared to their age-equivalent TDC participants 187.

Among the studies using fMRI brain activation to evalu-
ate diagnostic classification of participants, Lai et al. con-
ducted a two-stage study of neural activation in ASD. First, 
they evaluated brain activation while listening to human 
speech in ASD (N=12) and TDC (N=15) participants. Then, 
they collected additional fMRI data in ASD participants 
while sedated for clinically-indicated MRI scans (N=27). 
They correctly classified 26 of 27 (96%) of the sedated ASD 
participants from the second experiment using the mean 
amplitude and spread of neural activity in the superior tem-
poral gyrus from the first experiment 188. 

Autism spectrum disorders: Resting State Functional Con-
nectivity (RSFC): The number of studies examining specific-
ity of RSFC alterations in ASD is growing, thanks in part to 
data-sharing efforts such as “ABIDE”—the Autism Brain Im-
aging Database Exchange 189. For example, DiMartino et al. 
compared RSFC among children with ASD (N=56), ADHD 
(N=45), or TDCs (N=50). She found ASD-specific increases 
in RSFC in bilateral temporo-limbic regions, and also 
ADHD-specific increases in RSFC in right striatum and pal-
lidus 75. In another example, Chen et al. showed 79% accura-
cy using support vector machines to classifying analysis of 
low frequency fluctuations (ALFF) among with either ASD 
(N=112) or TDCs (N=128) ages 12-18 years 190.

their unaffected siblings, had reduced white matter FA in the 
right medial prefrontal white matter, right anterior forceps, 
corpus callosum, right superior longitudinal fasciculus, su-
perior temporal gyrus, and temporoparietal junctions 182. 

Lange et al. examined white matter measurements from 
the superior temporal gyrus (STG) and temporal stem in 
males with either HFA or TDC (N=30 of each). With respect 
to the STG, they found reversed hemispheric asymmetry of 
two measures of white matter diffusion coherence: tensor 
skewness, and FA. Specifically, HFA participants had great-
er STG tensor skewness on the right and decreased FA on 
the left compared to TDC participants. They also found in-
creased omni-directional, parallel, and perpendicular diffu-
sion in the right, but not left, temporal stem among HFA 
participants vs. TDC. Most interesting, these six measures 
had a very high rate of discriminating ASD from TDC partic-
ipants with 92% accuracy (94% sensitivity, 90% specificity) 
in their original sample as well as a replication sample of 
males with idiopathic autism (N=12) and TDC (N=7) 183.

Ingalhalikar et al. devised and tested a DTI-based classi-
fier system among ASD (N=45) and TDC (N=30) partici-
pants. Their model employed a high-dimensional non-lin-
ear support vector model to develop an abnormality score 
involving FA differences mainly in right occipital regions as 
well as in left superior longitudinal fasciculus, external and 
internal capsule while mean diffusivity (MD) discriminates 
were observed primarily in right occipital gyrus and right 
temporal white matter. Using this abnormality score, their 
ability to distinguish between ASD and TDC participants 
achieved 80% accuracy using leave one out (LOO) cross-val-
idation, with high significance p<0.001 (~74% sensitivity, 
~84% specificity) 184.

In sum, DTI research is clearly an emerging and promis-
ing tool in understanding neurodevelopmental alterations 
associated with ASD. However, there is a need to both repli-
cate the above findings, as well as to test their specificity by 
comparing ASD participants to those with other forms of 
developmental delay or other primary psychopathology.

ASD: Functional MRI ( fMRI): FMRI studies have probed 
numerous circuits implicated in ASD, including those with 
tasks probing cognitive and emotional processes as well as 
task-independent RSFC. However, like structural MRI stud-
ies, these studies are limited by small sample sizes, lack of 
replication, and an inability to consistently discern between 
ASD and other disorders. Presently, there are no fMRI neu-
ral biomarkers that can diagnose ASD.

Several multi-group studies have examined fMRI activa-
tion among ASD youth during cognitive processes, including 
attention, response to biological motion, and empathy. For 
example, Malisza et al. evaluated visual attention in children 
with (1) ASD (N=8), (2) ADHD (N=9), and (3) TDC (N=9). 
They found that the ASD group had greater activation in the 
occipital gyrus and less activation in the hippocampal gyrus 
than either ADHD or TDC participants, suggesting that at-
tentional processing relies on different neural mechanisms 
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