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Supplemental Methods 

 

Child psychiatric symptom assessment 

The Child Behavior Checklist was used to assess a wide range of symptoms in children. At time 

1 the CBCL/1½-5 was used, and at time 2 the CBCL-6-18 was used. The items utilize a three-

point scale (“Not True”, “Somewhat or Sometimes True”, “Very or Often True”), and were filled 

in by the primary caregiver, which was most often the biological mother (92%). Examples of the 

affective problem scale items include, “Looks unhappy without good reason” and “Unhappy, 

sad, or depressed”, and examples of the anxiety problem items are, “Worries” and “Nervous, 

high-strung, or tense”. 

 

Non-verbal intelligence 

General intellectual functioning was assessed during the age-6 assessment wave using an 

abbreviated version of the Snijders-Oomen Niet-verbale Intelligentie Test – Revisie (SON-R 2½-

7) (1, 2). The SON-R 2½-7 is a measure of non-verbal intelligence for children between 2.5 and 

7 years of age and was selected in order to minimize language-dependent confounds that may be 

present in a large, ethnically diverse sample such as the Generation R Study. An intelligence 

quotient (IQ) was estimated from the two SON-R performance subtests that were administered 

(Mosaics and Categories), which is highly correlated with estimates resulting from the complete 

version (3). 

 

Maternal psychiatric symptoms 

Maternal psychopathology was assessed using the Brief Symptom Inventory (BSI), a 53-item 

self-report questionnaire (4). The full BSI was administered during pregnancy and a short 

version was administered again at roughly 3 months postnatally (1). A global severity index was 

computed by taking an average of the item scores. An average GSI was computed when data 

were available from both administrations, otherwise the single available GSI was used. 

 

Image Acquisition 

Structural MRI data were acquired using an IR-prepared Fast Spoiled Gradient Recalled 

sequence. For time 1, the following sequence parameters were used: TR = 10.3 ms, TE = 4.2 ms, 

TI = 350 ms, flip angle = 16°, Acquisition Matrix = 256 x 256, field of view (FOV) = 230.4 mm, 

slice thickness = 0.9mm, Asset Acceleration Factor = 2. For time 2, similar sequence parameters 

were used with the GE option BRAVO: TR=8.77ms, TE=3.4ms, TI=600ms, Flip Angle=10°, FOV 

= 220mm x 220mm, Acquisition Matrix = 220 x 220, slice thickness = 1mm, number of slices = 

230, voxel size = 1mm x 1mm x 1mm, ARC Acceleration = 2.  
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Diffusion MRI data were collected at time 1 with 3 b=0 volumes and 35 diffusion directions 

using an echo planar imaging sequence (TR = 11,000 ms, TE = 83 ms, FOV = 256 mm x 256 mm, 

Acquisition Matrix = 128 x 128, slice thickness = 2 mm, number of slices = 77, b = 1000 

s/mm2). For time 2, a similar 35-direction echo planar imaging sequence was utilized (TR = 

12,500 ms, TE = 72 ms, FOV = 240 mm x 240 mm, Acquisition Matrix = 120 x 120, slice 

thickness = 2 mm, number of slices = 65, Asset Acceleration Factor = 2, b = 900 s/mm2). 

 

Diffusion Image preprocessing 

Image preprocessing was conducted using the Functional MRI of the Brain’s Software Library 

(FSL, version 5.0.9, 5) and the Camino Diffusion Toolkit (6) via the Neuroimaging in Python 

Pipelines and Interfaces package (Nipype, version 0.92, 7). Details of the image processing have 

been described in detail elsewhere (8). Diffusion images were first corrected for eddy current-

induced artifacts and translations/rotations resulting from head motion, and non-brain tissue was 

removed (9). In order to account for rotations applied to the diffusion data, the resulting 

transformation matrices were used to rotate the diffusion gradient direction table. The diffusion 

tensor was fit using the RESTORE method (10), and common scalar metrics (e.g., FA, MD) 

were subsequently computed. 

 

Fiber tractography 

Probabilistic fiber tractography was run on each subject’s diffusion data using the fully 

automated, freely available FSL plugin, “AutoPtx”(11). The Bayesian Estimation of Diffusion 

Parameters Obtained using Sampling Techniques (BESTPOSTx) package from FSL was first 

used to estimate the diffusion parameters at each voxel, accounting for two fiber orientations 

(12). Next, a predefined set of seed and target masks, supplied by the AutoPtx software, were 

aligned to each subject’s diffusion data in native space using a nonlinear registration. The FSL 

probabilistic fiber tracking algorithm, Probtrackx, was then used to identify connectivity 

distributions for a number of large, commonly reported fiber bundles, based on the predefined 

seed and target marks. Connectivity distributions obtained from the fiber tracking process were 

then normalized based on the number of successful seed-to-target attempts, and then thresholded 

to remove voxels that were unlikely to be part of the true distribution. For each tract, average 

DTI scalar metrics (e.g., FA, MD), weighted by the connectivity distribution, were computed (8). 

Thus, compared to voxels with a lower probability, voxels with a high probability of being part 

of the true white matter bundle have a higher contribution to the average DTI scalar value 

computed across the entire tract. 

 

Image quality assurance 

FreeSurfer reconstructions were visually inspected using a protocol similar to previously defined 

methods and datasets not suitable for analysis were excluded (13). The white and pial surface 

representations were inspected for accuracy against the brain image at a number of slices in 

different planes (i.e., axial/coronal/sagittal).  

 

Diffusion image quality was assessed using two methods. First, the DTIPrep tool 

(https://www.nitrc.org/projects/dtiprep/) was used to automatically examine the data for 

slicewise variation, characteristic of artifact, in each diffusion-weighted volume. Second, the 

sum-of-squares error (SSE) maps from the diffusion tensor calculations were examined for 

structured signal that was indicative of artifact. Each SSE map was rated from 0 to 3 (0: “None”, 

https://www.nitrc.org/projects/dtiprep/
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1: “Mild”, 2: “Moderate”, 3: “Severe”). Any cases not excluded by the automated DTIPrep tool 

but still had a “Severe” score from the SSE rating were also excluded from analyses. Processed 

tractography data were also examined for problems in two ways. First, the registration of the DTI 

data to standard space was inspected for accuracy. Second, each tract was examined for grossly 

misclassified voxels in the connectivity distribution. The flow chart in Figure S1 outlines the 

number of datasets excluded for the above outlined quality assurance measures. 

 

Statistical Analysis 

Linear mixed-effects models were chosen to compliment analyses with cross-lagged panel 

models, as an explicit change term is available for interpretation.  Models were fit using the 

LME4 package (14) to assess the association between psychiatric symptom scores and 

longitudinal changes in white matter microstructure. Linear mixed-effects models have 

numerous appealing features, including modeling of random effects, flexibility in uneven 

durations between time-points and handling of missing time-points. Models 1 below outlines the 

general modeling strategy used.  

Model 1: Baseline psychiatric symptoms predicting changes in brain 

MRIij ~ Age-MRIij + Age-CBCLi  + Sexi + Ethnicityi + CBCLi + Age-MRIij x CBCLi  + (1 | 

Subject) 

 

The i subscript denotes subject, the j subscript denotes time-point, and models were adjusted for 

age at MRI, age at CBCL behavioral assessment, sex and ethnicity. The “1 | subject” term 

denotes the random intercept for subject (i.e., adjusting for the baseline value in longitudinal 

outcomes). The interaction term in bold is the coefficients of interest (e.g., CBCL score 

predicting change in MRI). Hypothesis testing on model estimates was made using the Anova 

function from the Car package. 

 

Multiple imputation of covariates 

For the supplementary follow-up analyses (see below), data were missing on the covariate (child 

IQ and maternal psychiatric problems) in some cases. To account for missingness, multiple 

imputation, as implemented in the R-package “mice” was utilized. 30 imputed datasets were 

generated using the predicted mean matching method. Linear mixed models were run on each of 

the 30 imputed datasets, and effect estimates and p-values were pooled across the analyses using 

the mice function ‘pool’. For analyses involving the structural MRI volumes, data on IQ were 

missing at time 1 in 71 children and data on maternal psychopathology were missing in 71 

mothers. For DTI analyses, data were missing on IQ at time 1 in 59 children and data on 

maternal psychopathology was missing in 63 mothers. 

 

Non-response Analysis 

A non-response analysis was conducted to compare characteristics of children with and without a 

time 2 assessment. A two-sample t-test showed a difference in age at time 1 between children 

with (M = 7.7 years) and without (M = 8.2 years) a time 2 assessment (t(713) = 5.9, p < 0.05). 

Chi-squared tests did not show a difference in distribution of sex (χ(1, 715) = 0.4, p = 0.53) or 

ethnicity (χ(2, 715) = 1.3, p = 0.51). The internalizing problems scores (t(713) = 1.3, p = 0.21) 

and externalizing problems scores (t(713) = 1.9, p = 0.06) did not differ between children with 

and without a time 2 MRI. Maternal education level was similar in participants with and without 
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a time 2 visit (p = 0.09), though family income tended to be higher in children with a time 2 visit 

(p = 0.049). 

 

Supplemental Results 

 

Adjustment for non-verbal IQ 

When non-verbal IQ was included in significant linear mixed effects models (i.e., for total 

subcortical volume), associations between checklist scores and changes in subcortical volume 

were highly similar for both externalizing (Est. = –0.010, p = 0.031) and for internalizing scores 

(Est. = –0.012, p = 0.012). For the DTI global FA data, results remained virtually unchanged for 

both externalizing (Est = –0.05, p = 0.036) and internalizing (Est = –0.06, p = 0.020). However, 

though IQ is related to both DTI data and to psychiatric problems, lower IQ is often considered 

part of a given psychiatric disorder and thus inclusion in the model may be over-adjustment. 

 

Adjustment of maternal psychopathology 

Given that in most cases the mother rated the child’s psychiatric symptoms, there is a potential 

for reporter bias if the mother herself has some level of psychiatric symptoms. For externalizing 

scores and subcortical volume, results remained similar (Est. = –0.01, p = 0.028), as were 

associations with internalizing scores (Est. = –0.011, p = 0.012) after adjusting models for 

maternal psychopathology.  For the DTI global FA data, results remained highly consistent for 

both externalizing (Est. = –0.05, p = 0.036) and internalizing (Est = –0.06, p = 0.018). 

 

Adjustment for motion 

To rule out results from the DTI data were affected by motion, we looked at the impact of adding 

the total percentage of affected slices to linear mixed-effects models. This number is derived 

from the automated DTIprep software. Slice-wise correlations in the diffusion signal are 

conducted, and a drop in correlation coefficient among slices largely reflects signal attenuation in 

diffusion-weighted volumes due to motion and other artifacts. Slices labeled by the software as 

‘affected’ were counted and the percentage of the total slices in the DTI series was computed. 

Results remained mostly consistent when the percent of affected slices was added for changes in 

global FA with externalizing problems (Est. = –0.052, p = 0.037) and with internalizing 

problems (Est. = –0.063, p = 0.019). 

 

Adjustment for socioeconomic factors 

When maternal education and income were added as covariates to models, results remained 

highly consistent for subcortical volume changes and changes in global FA for both internalizing 

and externalizing scores. 

 

Adjustment for psychiatric medication use 

When psychiatric medication status (yes/no) was added to models, results remained highly 

consistent for global FA and externalizing (Est. = -0.52, p = 0.04) as well as for internalizing 

(Est. = -0.063, p = 0.02). Similarly, results were consistent after adjusting for psychiatric 

medication use for externalizing and subcortical volume (Est = -0.011, p = 0.02) and for 

internalizing and subcortical volume (Est. = -0.011, p = 0.011). 
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Exclusion of clinical CBCL scores 

In order to determine whether the associations between psychiatric scores at time 1 were related 

to changes in brain metrics purely along a continuum or if the severe end of the continuum was 

driving the associations, additional sensitivity analyses were run where individuals surpassing 

the ‘clinical’ cutoff on the CBCL scale were excluded (15). Table S1 outlines the percentages of 

participants with a score in the clinical range. For externalizing scores, 7.7% of the children were 

excluded, and for internalizing scores, 13.1% of the children were excluded.   

 

Linear mixed models of externalizing symptoms at time 1 showed a similar association with 

changes in subcortical volume over time (Est = –0.10, p = 0.067) after excluding these children. 

This stable effect estimate and slightly increased p-value are consistent with a loss of power 

(7.7% of the subjects) rather than effects being solely driven by the extreme cases. Interestingly, 

results for internalizing scores at time 1 were even stronger after excluding cases in the clinical 

range, where scores predicted smaller increases in subcortical volume over time (Est. = –0.02, p 

= 0.001). 

 

After excluding scores in the clinical range, externalizing scores at time 1 showed a similar 

association with changes in global FA over time (Est = –0.05, p = 0.055). Again, a consistent 

effect estimate and slightly higher p-value are consistent with reducing the sample by 13%. 

However, for internalizing scores, in addition to a slight decrease in effect estimate, the p-value 

was considerably higher (Est. = –0.045, p = 0.20). Thus, it is possible that for internalizing, 

individuals in the clinical range may have a distinct pattern of change in global FA over time. 

 

 

 

Tables and Figures 

 

 

TABLE S1. Percentage of subjects meeting borderline and clinical cutoff for the different 

broadband and DSM-oriented CBCL scales. 

CBCL  Scale Borderline (%) Clinical (%) 

Broadband Externalizing 16.0 7.7 

 Internalizing 22.0 13.1 

    

DSM-Oriented ADHD 9.7 5.1 

 ODD 8.3 2.6 

 AFF 15.3 6.0 

 ANX 11.5 4.0 

Note: Values are percentages. Cutoffs based on data from Tick et al. 2007. Data are from time 1 

(baseline). CBCL = Child Behavior Checklist, ADHD = Attention deficit/hyperactivity disorder 

scale, ODD = oppositional defiant disorder scale, AFF = affective problems scale, ANX = 

anxiety problems scale.
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TABLE S2. Correlation matrix of global anatomical metrics and broadband CBCL scores at both time points 
  Time-1 Time-2 

 

 

Ext Int TBV Cortical WM Subcort Vent Ext Int TBV Cortical WM Subcort Vent 

T
im

e-
1
 

Ext 1 - - - - - - - - - - - - - 

Int 0.72 1 - - - - - - - - - - - - 

TBV –0.09 –0.10 1 - - - - - - - - - - - 

Cortical  –0.12 –0.11 0.96 1 - - - - - - - - - - 

WM –0.07 –0.09 0.94 0.82 1 - - - - - - - - - 

Subcort –0.08 –0.06 0.77 0.68 0.77 1 - - - - - - - - 

Vent 0.07 0.04 0.29 0.24 0.26 0.27 1 - - - - - - - 

T
im

e-
2
 

Ext. 0.64 0.44 –0.03 –0.07 0.00 0.03 0.07 1 - - - - - - 

Int. 0.45 0.55 –0.08 –0.08 –0.07 –0.04 0.08 0.56 1 - - - - - 

TBV –0.10 –0.09 0.85 0.77 0.86 0.79 0.30 0.03 –0.03 1 - - - - 

Cortical  –0.10 –0.07 0.78 0.76 0.72 0.69 0.24 0.03 –0.01 0.95 1 - - - 

WM –0.09 –0.09 0.82 0.69 0.91 0.76 0.25 0.02 –0.06 0.94 0.78 1 - - 

Subcort –0.10 –0.08 0.72 0.64 0.74 0.92 0.25 0.00 –0.05 0.79 0.70 0.76 1 - 

Vent. 0.05 0.04 0.28 0.22 0.24 0.26 0.96 0.07 0.06 0.30 0.23 0.25 0.25 1 

Note: Ext = CBCL broadband externalizing, Int = CBCL broadband internalizing, TBV = total brain volume, Cortical = cortical gray 

matter volume, WM = white matter volume, Subcort = subcortical volume, Vent = lateral ventricle volume. Values are Spearman’s 

rank coefficients.  
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TABLE S3. Correlation matrix of global DTI and broadband CBCL data at both time points 

  

Time-1 Time-2 

  

Externalizing Internalizing Global FA Global MD Externalizing Internalizing Global FA Global MD 

T
im

e-
1
 Externalizing 1 - - - - - - - 

Internalizing 0.72 1 - - - - - - 

Global FA 0.02 0.02 1 - - - - - 

Global MD 0.03 –0.01 –0.49 1 - - - - 

T
im

e-
2
 Externalizing 0.63 0.44 0.01 0.10 1 - - - 

Internalizing 0.45 0.55 0.01 0.07 0.52 1 - - 

Global FA –0.07 –0.10 0.64 –0.45 –0.02 0.00 1 - 

Global MD 0.05 0.05 –0.39 0.79 0.11 0.04 –0.54 1 

Note: FA = fractional anisotropy, MD = mean diffusivity. Externalizing and Internalizing are broadband CBCL problem scores. 

Values are Spearman’s rank coefficients. 
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TABLE S4. Linear mixed-effects models of psychiatric symptoms and global metrics of 

change in cortical morphology 

Time 1 Predictor Longitudinal Outcome Est. SE T χ2 p 

Externalizing Total Brain Volume 0.002 0.006 0.241 0.058 0.809 

 Cortical Volume 0.005 0.008 0.581 0.338 0.561 

 White Matter Volume –0.002 0.005 –0.446 0.199 0.655 

 Subcortical Volume –0.010 0.005 –2.184 4.769 0.029 

 Lateral Ventricle Volume –0.003 0.002 –1.245 1.549 0.213 

Internalizing Total Brain Volume 0.003 0.007 0.446 0.199 0.656 

 Cortical Volume 0.007 0.008 0.827 0.684 0.408 

 White Matter Volume –0.001 0.005 –0.255 0.065 0.799 

 Subcortical Volume –0.012 0.005 –2.502 6.260 0.012 

 Lateral Ventricle Volume –0.001 0.002 –0.375 0.140 0.708 

Note: Models adjusted for fixed effects, age at behavioral assessment, sex, and ethnicity, and 

random effects of subject. CBCL behavioral scores are square root transformed, and model 

estimates represent the association between psychiatric problems and change in MRI metric over 

time (i.e., the interaction between CBCL score and age). 

 

 

 

 

TABLE S5. Linear mixed-effects models of associations between psychiatric symptom 

scores and changes in white matter microstructure 

Longitudinal 

Outcome 

Time 1 

Predictor Estimate SE T χ2 p 

FA Externalizing –0.053 0.025 –2.100 4.409 0.036 

 

Internalizing –0.063 0.027 –2.353 5.539 0.019 

MD Externalizing 0.000 0.002 0.210 0.044 0.834 

 

Internalizing 0.002 0.002 1.090 1.189 0.276 

Note: Models adjusted for fixed effects, age at behavioral assessment, sex, and ethnicity, and 

random effects of subject. CBCL behavioral scores are square root transformed, and model 

estimates represent the association between psychiatric problems and change in global DTI 

metric (i.e., the interaction between CBCL score and age).  
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TABLE S6. Linear mixed-effects models of psychiatric symptoms predicting changes in FA 

for individual tracts 

Time 1 
Predictor Tract Hemisphere Estimate SE T χ2 p pFDR 

Externalizing CB L –0.011 0.011 –1.022 1.045 0.307 0.460 

 
CB R –0.021 0.011 –1.934 3.739 0.053 0.160 

 
CST L –0.004 0.011 –0.369 0.136 0.712 0.855 

 
CST R 0.002 0.012 0.135 0.018 0.892 0.974 

 
FMA - –0.015 0.010 –1.455 2.117 0.146 0.250 

 
FMI - 0.007 0.012 0.594 0.352 0.553 0.737 

 
ILF L –0.023 0.010 –2.413 5.823 0.016 0.087 

 
ILF R –0.017 0.010 –1.706 2.909 0.088 0.209 

 
SLF L –0.024 0.011 –2.294 5.261 0.022 0.087 

 
SLF R –0.036 0.011 –3.240 10.499 0.001 0.014 

 
UF L 0.000 0.010 0.003 0.000 0.998 0.998 

 
UF R 0.017 0.010 1.622 2.632 0.105 0.209 

Internalizing CB L –0.022 0.012 –1.843 3.397 0.065 0.196 

 
CB R –0.033 0.012 –2.850 8.124 0.004 0.026 

 
CST L –0.006 0.012 –0.514 0.264 0.607 0.686 

 
CST R 0.013 0.012 1.044 1.089 0.297 0.490 

 
FMA - –0.010 0.011 –0.871 0.759 0.384 0.511 

 
FMI - 0.001 0.013 0.078 0.006 0.938 0.938 

 
ILF L –0.014 0.010 –1.323 1.750 0.186 0.446 

 
ILF R –0.011 0.011 –0.981 0.962 0.327 0.490 

 
SLF L –0.030 0.011 –2.686 7.217 0.007 0.029 

 
SLF R –0.051 0.012 –4.322 18.679 0.000 0.000 

 
UF L 0.005 0.011 0.483 0.233 0.629 0.686 

 
UF R 0.012 0.011 1.108 1.227 0.268 0.490 

Note: Models adjusted for fixed effects, age at behavioral assessment, sex, and ethnicity, and 

random effects of subject. CBCL behavioral scores are square root transformed, and model 

estimates represent the association between psychiatric problems and change in MRI metric. 

Bold represents significant association after adjusting for multiple comparisons. CB = cingulum 

bundle, CST = corticospinal tract, FMA = forceps major, FMI = forceps minor, ILF = inferior 

longitudinal fasciculus, SLF = superior longitudinal fasciculus, UF = uncinate fasciculus. 
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TABLE S7. linear mixed effects models of DSM-oriented subscales predicting changes in 

MRI metrics 

Longitudinal Outcome Time 1 Predictor Est SE T χ2 p 

Subcortical Volume ADHD –0.013 0.007 –1.945 3.784 0.052 

 

ODD –0.012 0.007 –1.793 3.213 0.073 

 

Affective –0.008 0.008 –1.027 1.055 0.304 

 

Anxiety –0.011 0.007 –1.566 2.453 0.117 

       

Global FA ADHD –0.096 0.038 –2.501 6.254 0.012 

 

ODD –0.080 0.037 –2.123 4.507 0.034 

 

Affective –0.164 0.043 –3.834 14.697 0.000 

 

Anxiety –0.050 0.039 –1.293 1.671 0.196 

Note: Models adjusted for fixed effects, age at behavioral assessment, sex, and ethnicity, and 

random effects of subject. CBCL behavioral scores are square root transformed, and model 

estimates represent the association between psychiatric problems and change in global MRI 

metric (i.e., the interaction between CBCL score and age). CBCL = Child Behavior Checklist, 

ADHD = Attention deficit/hyperactivity disorder scale, ODD = oppositional defiant disorder 

scale. 
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TABLE S8. Main effects and model estimates for covariates from linear mixed effects 

models 

Longitudinal 

Outcome 

Time-1 

Predictor Model Term Estimate SE T χ2 p 

F
A

 
Externalizing Intercept –0.45 1.17 –0.39 0.15 0.70 

 

Externalizing –0.08 0.06 –1.28 1.64 0.20 

 

Age MRI 0.19 0.03 5.65 31.98 0.00 

 

Age CBCL 0.16 0.19 0.83 0.70 0.40 

 

Sex –0.33 0.16 –2.04 4.14 0.04 

 

Ethnicity 1 –0.16 0.31 –0.51 0.26 0.61 

 

Ethnicity 2 –0.59 0.21 –2.86 8.16 0.00 

Internalizing Intercept –0.67 1.16 –0.58 0.33 0.56 

 

Internalizing –0.01 0.06 –0.21 0.05 0.83 

 

Age MRI 0.19 0.03 5.64 31.81 0.00 

 

Age CBCL 0.16 0.19 0.86 0.74 0.39 

 

Sex –0.30 0.16 –1.83 3.36 0.07 

 

Ethnicity 1 –0.17 0.31 –0.56 0.31 0.58 

 

Ethnicity 2 –0.61 0.21 –2.94 8.67 0.00 

S
u
b
co

rt
ic

al
 V

o
lu

m
e 

Externalizing Intercept –0.42 0.44 –0.95 0.89 0.34 

 

Externalizing –0.07 0.02 –3.09 9.57 0.00 

 

Age MRI 0.02 0.01 3.35 11.23 0.00 

 

Age CBCL 0.17 0.07 2.34 5.48 0.02 

 

Sex –0.73 0.06 –11.43 130.62 0.00 

 

Ethnicity 1 –0.02 0.12 –0.13 0.02 0.90 

 

Ethnicity 2 –0.26 0.08 –3.23 10.46 0.00 

Internalizing Intercept –0.60 0.44 –1.37 1.87 0.17 

 

Internalizing –0.03 0.02 –1.07 1.14 0.28 

 

Age MRI 0.02 0.01 3.34 11.13 0.00 

 

Age CBCL 0.17 0.07 2.42 5.87 0.02 

 

Sex –0.70 0.06 –11.07 122.54 0.00 

 

Ethnicity 1 –0.02 0.12 –0.19 0.03 0.85 

 

Ethnicity 2 –0.28 0.08 –3.52 12.37 0.00 

Note: CBCL behavioral scores are square root transformed. The variable for sex in the model is 

for females coded as 1, males as 0. The variable for ethnicity was reference coded into 3 groups, 

with the Dutch group being the largest and thus the reference group, and group 1 coded for other 

Western and group 2 coded for non-Western. 
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FIGURE S1. Study Inclusion Flow Chart 

Note: Dotted lines represent data used in analyses. For cross-lagged analyses, only the complete 
Time-1/Time-2 data are used. For linear mixed models, all Time-1 data and Time-2 data were used. 

Brain MRI at Time-1
N = 1070

DTI Acquisition
N = 1033

Usable DTI Scan Time-1
N = 778

Poor DWI Quality
N = 255

DTI Acquisition Time-2
N = 432

No Time-2 Scan
N = 283

Poor DWI Quality
N = 71

CBCL + DTI Scan Time-1
N = 715

No Behavioral Data
N = 63

CBCL + DTI Scan Time-2
361

T1 Acquisition
N = 1070

Poor T1 Quality
N = 144

Usable T1 Scan Time-1
N = 926

CBCL + T1 Scan Time-1
N = 845

No Behavioral Data
N = 81

T1 Scan Time-2
N = 520

No Time-2 Scan
N = 325

Usable T1 Scan Time-2
N = 480

Poor T1 Quality
N = 40
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FIGURE S2. Depiction of standardized factor loadings for latent global FA factor in cross-

lagged models by time-point. 

 

 
 

CB = cingulum bundle, CST = corticospinal tract, FMa = forceps major, FMi = forceps minor, 

ILF = inferior longitudinal fasciculus, SLF = superior longitudinal fasciculus, UF = uncinate 

fasciculus.  
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FIGURE S3. Associations between early psychiatric problems and white matter 

microstructural changes: clinically-relevant vs. normal range problem scores 
 

 
Figure represents predicted model estimates derived from linear mixed effects models. The top panel 

shows broadband internalizing problems and the bottom panel shows broadband externalizing problems. 

Separate lines for those who score in the normal and in the clinical range on any CBCL domain, with the 

Y-axis representing the predicted global FA value based on model estimates. Note: Fractional anisotropy 

is a unit-less measure.  
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