Data Supplement for Alegria et al., Meta-Analysis of fMRI Studies of Disruptive Behavior Disorders. Am J Psychiatry (doi: 10.1176/appi.ajp.2016.15081089)

Supplementary Methods: Estimation of the mean of the effect-sizes of the different functional tasks, and its variance accounting for the number of tasks and the correlation among them

Note: the following formulas would be separately applied to each voxel of the brain map.
In previous meta-analyses(47) we had calculated the effect size of the "mean brain response to the different functional tasks". However, it may be shown that the variance associated to this mean brain response is lower than the variance associated to one task (see demonstration below). And this increase in precision implies an increase of the effect size, which could be a source of meta-analytic heterogeneity. To overcome this artificial, methodological heterogeneity, this study has adopted a new approach, consisting in simply calculating the arithmetic mean of the effect size of the different functional tasks, but then adjusting its variance accounting for the number of tasks and the correlation among them in order that the combined study has the same statistical significance (z-value) as when using the effect size of the mean response. In other words, the effect size reflects the response of an individual to a task, and the fact that the combined study includes several tasks reduces the variance in a similar way than large samples do. This was applied when there was $50 \%$ or more sample overlap. This new simple approach will be included in the next version of SDM software to allow other researchers conduct repeated-measures meta-analyses. Please find steps below.

## Sample mean and variance of the mean brain response to different functional tasks in one group

The mean brain response of the $i^{\text {th }}$ participant to the different functional tasks is:

$$
m_{i}=\frac{1}{N} \sum_{j=1}^{N} x_{i j}
$$

where $N$ is the number of functional tasks, and $x_{i j}$ is the brain response of the $i^{t h}$ participant to the $j^{\text {th }}$ functional task.

The sample mean of the mean brain response to the different functional tasks is:

$$
\bar{m}=\frac{1}{n} \sum_{i=1}^{n} m_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{N} \sum_{j=1}^{N} x_{i j}\right)=\frac{1}{N} \sum_{j=1}^{N}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i j}\right)=\frac{1}{N} \sum_{j=1}^{N} \bar{x}_{j}
$$

where $n$ is the number of participants, and $\bar{x}_{j}$ is the sample mean of the brain response to the $j^{\text {th }}$ functional task.

The sample variance of the mean brain response to the different functional tasks is:

$$
\begin{aligned}
s_{m}^{2} & =\frac{n}{n-1}\left(\frac{1}{n} \sum_{i=1}^{n} m_{i}^{2}-\bar{m}^{2}\right) \\
& =\frac{n}{n-1}\left(\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{N} \sum_{j=1}^{N} x_{i j}\right)^{2}-\left(\frac{1}{N} \sum_{j=1}^{N} \bar{x}_{j}\right)^{2}\right) \\
& =\frac{1}{N^{2}} \frac{n}{n-1}\left(\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{N} x_{i j}^{2}+2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{i}+1}^{N} x_{i j_{1}} x_{i j_{2}}\right)-\left(\sum_{j=1}^{N} \bar{x}_{j}^{2}+2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{i}+1}^{N} \bar{x}_{j_{1}} \bar{x}_{j_{2}}\right)\right) \\
& =\frac{1}{N^{2}} \frac{n}{n-1}\left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{N} x_{i j}^{2}+2 \frac{1}{n} \sum_{i=1}^{n} \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{1}+1}^{N} x_{i_{1}} x_{i j_{2}}-\sum_{j=1}^{N} \bar{x}_{j}^{2}-2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{1}+1}^{N} \bar{x}_{j_{1}} \bar{x}_{j_{2}}\right) \\
& =\frac{1}{N^{2}} \frac{n}{n-1}\left(\sum_{j=1}^{N}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i j}^{2}-\bar{x}_{j}^{2}\right)+2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{1}+1}^{N}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i j_{1}} x_{i_{j}}-\bar{x}_{j_{1}} \bar{x}_{j_{2}}\right)\right) \\
& =\frac{1}{N^{2}}\left(\sum_{j=1}^{N} \frac{n}{n-1}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i j}^{2}-\bar{x}_{j}^{2}\right)+2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{1}+1}^{N} \frac{n}{n-1}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i j_{1}} x_{i_{j}}-\bar{x}_{j_{1}} \bar{x}_{j_{2}}\right)\right) \\
& =\frac{1}{N^{2}}\left(\sum_{j=1}^{N} s_{j}^{2}+2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{1}+1}^{N} s_{j_{1}, j_{2}}\right) \\
& =\frac{1}{N^{2}}\left(\sum_{j=1}^{N} s_{j}^{2}+2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{1}+1}^{N} s_{j_{1}} s_{j_{2}} r_{j_{1}, j_{2}}\right)
\end{aligned}
$$

where $s_{j}^{2}$ is the sample variance of the brain response to the $j^{\text {th }}$ functional task, $s_{j_{1}, j_{2}}$ is the sample covariance between the brain responses to the $j_{1}{ }^{\text {th }}$ and $j_{2}{ }^{\text {nd }}$ functional tasks, and $r_{j_{1}, j_{2}}$ is the sample correlation between the brain responses to the $j_{1}{ }^{\text {th }}$ and $j_{2}{ }^{\text {nd }}$ functional tasks. The specific $s_{j}$ and $r_{j_{j}, j_{2}}$ are usually unknown, but the expression may be greatly simplified under the general assumption that sample variances and correlations are similar across the different functional tasks and groups:

$$
\begin{aligned}
s_{m}^{2} & =\frac{1}{N^{2}}\left(\sum_{j=1}^{N} s_{j}^{2}+2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{i}+1}^{N} s_{j_{1}} s_{j_{2}} r_{j_{1}, j_{2}}\right) \\
& \approx \frac{1}{N^{2}}\left(\sum_{j=1}^{N} s^{2}+2 \sum_{j_{1}=1}^{N-1} \sum_{j_{2}=j_{i}+1}^{N} s^{2} r\right) \\
& =\frac{1}{N^{2}}\left(N \cdot s^{2}+2 \cdot \frac{N(N-1)}{2} \cdot s^{2} r\right) \\
& =\frac{1+(N-1) \cdot r}{N} \cdot s^{2} \\
& =V R_{N, r} \cdot s^{2}
\end{aligned}
$$

where $V R_{N, r}$ is the variance reduction associated to the specific $N$ and $r$. Note that if $r<1$ (i.e. the brain response is not identical between tasks), then $V R_{N, r}<1$, i.e. the variance associated to the mean brain response is lower than the variance associated to the response to one task.

Sample effect size of the difference in brain response to different functional tasks
The sample effect size of the difference in the mean brain response to the different functional tasks is:

$$
\begin{aligned}
d_{m}^{*} & =\frac{\overline{m_{p}}-\overline{m_{c}}}{s_{m}}=\frac{\frac{1}{N} \sum_{j=1}^{N} \bar{x}_{j, p}-\frac{1}{N} \sum_{j=1}^{N_{0}} \bar{x}_{j, c}}{\sqrt{\frac{\left(n_{p}-1\right) \cdot s_{m, p}^{2}+\left(n_{c}-1\right) \cdot s_{m, c}^{2}}{n_{p}+n_{c}-2}}} \\
& =\frac{\frac{1}{N} \sum_{j=1}^{N}\left(\bar{x}_{j, p}-\bar{x}_{j, c}\right)}{\left(\frac{\left.n_{p}-1\right) \cdot V R_{N, r} \cdot s_{p}^{2}+\left(n_{c}-1\right) \cdot V R_{N, r} \cdot s_{c}^{2}}{n_{p}+n_{c}-2}\right.} \\
& =\frac{\frac{1}{N} \sum_{j=1}^{N} d_{j}^{*} \cdot s_{j}}{\sqrt{V R_{N, r} \cdot \frac{\left(n_{p}-1\right) \cdot s_{p}^{2}+\left(n_{c}-1\right) \cdot s_{c}^{2}}{n_{p}+n_{c}-2}}} \\
& \approx \frac{\frac{1}{N \sum_{j=1}^{N} d_{j}^{*} \cdot s}}{\sqrt{V R_{N, r} \cdot s^{2}}} \\
& =\frac{1}{\sqrt{V R_{N, r}} \cdot \frac{1}{N} \sum_{j=1}^{N} d_{j}^{*}} \\
& =\frac{1}{\sqrt{V R_{N, r}} \cdot \bar{d}^{*}}
\end{aligned}
$$

where $d_{j}^{*}$ is the sample effect size of the difference in brain response to the $j^{\text {th }}$ functional task, subindexes " $p$ " and " $c$ " refer to patients and controls, and sample variances have been assumed to be similar.

The $z$-value for this effect size is:

$$
\begin{aligned}
& z\left(d_{m}\right)=\frac{d_{m}}{\sqrt{\sigma^{2}\left(d_{m}\right)}} \\
& =\frac{J_{d f} \cdot d_{m}^{*}}{\sqrt{\sigma^{2}\left(J_{d f} \cdot d_{m}^{*}\right)}} \\
& =\frac{J_{d f} \cdot d_{m}^{*}}{\sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+\left(1-\frac{d f-2}{d f \cdot J_{d f}^{2}}\right) \cdot\left(J_{d f} \cdot d_{m}^{*}\right)^{2}}} \\
& =\frac{J_{d f} \cdot \frac{1}{\sqrt{V R_{N, r}}} \cdot \overline{d^{*}}}{\sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+\left(1-\frac{d f-2}{d f \cdot J_{d f}^{2}}\right) \cdot\left(J_{d f} \cdot \frac{1}{\left.\sqrt{V R_{N, r}} \cdot \bar{d}^{*}\right)^{2}}\right)^{2}}} \\
& =\frac{J_{d f} \cdot \overline{d^{*}}}{\sqrt{V R_{N, r} \cdot\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+\left(1-\frac{d f-2}{d f \cdot J_{d f}^{2}}\right) \cdot\left(J_{d f} \cdot \bar{d}^{*}\right)^{2}}} \\
& =\frac{\bar{d}}{\sqrt{V R_{N, r} \cdot\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+\left(1-\frac{d f-2}{d f \cdot J_{d f}^{2}}\right) \cdot \bar{d}^{2}}} \\
& =\frac{\bar{d}}{\sqrt{\sigma_{\text {modifeed }}^{2}(\bar{d})}}
\end{aligned}
$$

where $d_{m}$ is the effect size of the difference in the mean brain response to the different functional tasks, $J_{d f}$ is the bias correction, $\sigma^{2}(d)$ is the estimated variance of $d$, and $\bar{d}$ is the simple arithmetic mean of the effect sizes.

Thus if, in order to keep the effect size in the range of the effect size of the remaining studies, we calculate the simple arithmetic mean of the effect sizes, the same $z$-value may be obtained using the modified variance:

$$
\sigma_{\text {modified }}^{2}(d)=V R_{N, r} \cdot\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)+\left(1-\frac{d f-2}{d f \cdot J_{d f}^{2}}\right) \cdot d^{2}
$$

SUPPLEMENTARY TABLE S1. Whole-brain fMRI studies of DBD/CP included in the main-analyses by type of task ${ }^{\text {a }}$

| Paper | DBD/CP group |  |  |  |  |  |  | HC group |  |  |  | Task and contrasts | Reduced activation (relative to HC ) | Enhanced activation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | Mean age | SD | Males <br> (\%) | Diagnosis (assessment tool) | ADHD (\%) | Med <br> (\%) | N | Mean age | SD | Males (\%) |  |  |  |
| 1a) Studies using hot EF tasks |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rubia (16) | 14 | 12.8 | 2 | 100 | CD (MDSI) | 0 | 0 | 16 | 13.1 | 3 | 100 | Rewarded> nonrewarded CPT targets | R OFC/vMOFC |  |
| Crowley (18) | $20^{\text {b }}$ | 16.5 | 1 | 100 | CD \& nonnicotine Substance abuse (DISC) | N/A | 30 | 20 | 16.5 | 1.6 | 100 | Colorado Balloon Game: Risky decision making> instructed response | Br/vMPFC, L OFc, B r/dACC, B insula, B precentral, L postcentral g, R pre-SMA, L claustrum, R caudate/putamen, R amygdala, R MTG/STG, L hippocampus, L precuneus, L PCC, , R IPL, R lingual g, L \& R Cb |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Risky win> no outcome | B rACC, B STG/R MTG/ITG, R precuneus, R fusiform $\mathrm{g}, \mathrm{B}$ Cb |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Risky loss > no outcome |  | B dMPFC, L OFC, B MTG;L ITG, L brainstem/ pons, L culmen, R paracentral g., R PCC , B MTG, L prec. |
| Kalnin (43) ${ }^{\text {c }}$ | 22 | 14.64 | 0.28 | 59 | DBD with aggressive features (KSADS, aggressive symptoms>1) | N/A | 27 | 22 | 14.86 | 0.34 | 59 | Emot. Stroop: Violent > nonviolent words |  |  |
| Cohn (39) ${ }^{\text {d }}$ | $22^{\text {e }}$ | 17.1 | 1.4 | 73 | DBD (DISC-IV) | 68 | N/A | 236 | 17.9 | 1.1 | 87 | MID task: Reward anticipation > neutral anticipation |  |  |


|  |  |  |  |  |  |  |  |  |  |  |  | Loss anticipation > neutral anticipation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | Reward hit > reward miss |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Loss miss> hit |  |  |
| White (19) ${ }^{\text {c }}$ | 15 | 14.4 | 2 | 73.3 | DBD (K-SADS) | 46.6 | 20 | 15 | 14 | 2.3 | 66.7 | Fear conditioning task: Choose not to open > choose to open door | L MPFC, L SFG |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Appetitive choice> physical threat choice during cue phase | L DLPFC, R IFG/precentral g |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Appetitive > contamination threat choice | R MPFC | - |
|  |  |  |  |  |  |  |  |  |  |  |  | Physical threat > appetitive stimuli feedback | R MTG |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Appetitive stimuli> contamination threat feedback | L Middle Occipital g |  |
| Marsh(40) ${ }^{\text {f }}$ | 14 | 14.4 | 1.9 | 57 | $\begin{gathered} \text { DBD + High CU } \\ \text { (K-SADS + } \\ \text { APSD-YV; } \\ \text { PCL-YV) } \end{gathered}$ | 64 | 42.8 | 14 | 13.5 | 1.7 | 79 | Moral judgement: categorizing legal > illegal words | amygdala |  |
| Finger (20) ${ }^{\dagger}$ | 14 | 13.8 | 1.3 | 64 | $\begin{gathered} \text { DBD + PT } \\ \text { (K-SADS + } \\ \text { APSD; PCL-YV) } \end{gathered}$ | 71 | 21.4 | 14 | 13.6 | 2.2 | 64 | Reversal learning: Punished reversal errors > rewarded correct responses | - | B MFC, R caudate |
| Finger (17) ${ }^{\dagger}$ | 15 | 14.1 | 1.8 | 60 | DBD + PT <br> (K-SADS + <br> APSD; PCL-YV | 66.6 | 46.7 | 15 | 13.2 | 1.1 | 60 | Passive avoidance task: Early > late trials | R OFC, L MFC, L SFC, B IFG, IPL, B MTG, L caudate, L Cb |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Rewarded correct hits p punished commission errors | OFC |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Punished commission errors > rewarded correct hits | L DLPFC, R parahippocampal g |  |
| White et al. $(41)^{f}$ | 17 | 15.5 | 2.3 | 76.5 | $\begin{aligned} & \text { DBD + PT } \\ & \text { (K-SADS + } \end{aligned}$ | 52.9 | 11.8 | 19 | 15.2 | 2.3 | 47 | Eye gaze task: Fearful congruent > fearful | B SPL, B IPL, L cuneus | - |


|  |  |  |  |  | APSD; PCL-YV) |  |  |  |  |  |  | incongruent |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| White et al. $(41)^{f}$ | 17 | 15.5 | 2.3 | 76.5 | $\begin{gathered} \text { DBD + PT } \\ \text { (K-SADS + } \\ \text { APSD; PCL-YV) } \\ \hline \end{gathered}$ | 52.9 | 11.8 | 19 | 15.2 | 2.3 | 47 | Eye gaze task: Angry congruent > angry incongruent | - |  |  |
| White et al. $(35)^{f}$ | 15 | 15.7 | 2.5 | 80 | DBD + PT <br> (K-SADS + <br> APSD; PCL-YV) | 53.3 | 26.7 | 17 | 14.5 | 2.1 | 52.9 | Emotion-attention bars task: Fear> neutral expression | L MTG |  |  |

1b) Studies using Cool EF tasks

| Rubia et al. (22) | 13 | 13 | 1 | 100 | CD (MDSI) | 0 | 0 | 20 | 14 | 2 | 100 | Stop task: <br> Failed Stop > Go | R PCC/precuneus, <br> L IPL, R postcentral/STG/IPL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | Successful stop > failed stop |  |  |  |
| Rubia et al. (16) | 14 | 12.8 | 2 | 100 | CD (MDSI) | 0 | 0 | 16 | 13.1 | 3 | 100 | Rewarded CPT: Nonrewarded targets > non-targets | R insula/hippoc./premotor, L dACC, B Cb/TL/ thalamus/occipital/ hippocampus/L PCC/precuneus |  |  |
| Rubia et al. <br> (21) | 13 | 12.9 | 2.2 | 100 | CD (MDSI) | 0 | 0 | 20 | 14 | 1.9 | 100 | Simon task: incongruent > oddball | R STG/MTG, R precuneus |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | oddball trial > congruent trial | R DLPFC |  |  |
| Rubia (23) | 14 | 12.6 | 2.3 | 100 | CD (MDSI) | 0 | 0 | 20 | 135 | 1.9 | 100 | Switch: <br> Switch > repeat | R IPL/ precentral g, L STL/IPL, L precuneus, cuneus |  |  |
| $\begin{gathered} \text { Marsh et al. } \\ (40)^{\mathrm{f}} \end{gathered}$ | 14 | 14.4 | 1.9 | 57 | $\begin{gathered} \text { DBD + High CU } \\ \text { (K-SADS + } \\ \text { APSD-YV; PCL- } \\ \text { YV) } \\ \hline \end{gathered}$ | 64 | 42.8 | 14 | 13.5 | 1.7 | 79 | IAT task: incongruent > congruent | - |  |  |
| White et al. $(41)^{f}$ | 17 | 15.5 | 2.3 | 76.5 | $\begin{gathered} \hline \text { DBD + PT } \\ \text { (K-SADS + } \\ \text { APSD) } \end{gathered}$ | 52.9 | 11.8 | 19 | 15.2 | 2.3 | 47 | Eye gaze task: fear versus neutral: Incongruent > congruent |  |  |  |
| White et al. $(41)^{f}$ | 17 | 15.5 | 2.3 | 76.5 | $\begin{gathered} \hline \text { DBD + PT } \\ \text { (K-SADS + } \\ \text { APSD) } \end{gathered}$ | 52.9 | 11.8 | 19 | 15.2 | 2.3 | 47 | Eye gaze task: angry versus neutral: Incongruent > congruent | R MTG, R thalamus |  |  |
| White et al. | 15 | 15.7 | 2.5 | 80 | DBD + PT | 53.3 | 26.7 | 17 | 14.5 | 2.1 | 52.9 | Emotion-attention | - |  |  |



| $(40)^{f}$ |  |  |  |  | (K-SADS + APSD-YV;PCL- YV) |  |  |  |  |  |  | negative valenced objects |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Jones et al. } \\ (27)^{\dagger} \end{gathered}$ | 17 | 11.9 | 0.69 | 100 | Conduct Problems + High CU (SDQ + CU scale APSD) | N/A | N/A | 13 | 11.3 | 0.92 | 100 | Incidental gender judgment: Fearful> neutral expression |  |  |
| White et al $(41)^{\mathrm{f}}$ | 17 | 15.51 | 2.33 | 76 | $\begin{aligned} & \hline \text { DBD + PT } \\ & \text { (K-SADS } \end{aligned}$ | 52.9 | 11.8 | 19 | 15.22 | 2.3 | 47 | Eye gaze task: Fear> Neutral expression |  |  |
|  |  |  |  |  | +APSD) |  |  |  |  |  |  | Neutral> Angry expression |  | LSFC,R MFC |
| 1d) Studie | us | g em | 1.7 | pa | tasks |  |  |  |  |  |  |  |  |  |
| Lockwood et al. (37) | 37 | 14.05 | 1.7 | 100 | Conduct <br> problems <br> (CASI-4R <br> conduct <br> disorder scale) | N/A | 0 | 18 | 13.7 | 1.7 | 100 | Images of hand/foot in painful situation: Pain > No pain | L STG/post insula, R Cb, R MTG, R caudate, GP, subst nigra, L thalamus, L SMA, L \& R IFC/insula, L DLPFC/IFC, R Cb, R SFC, L ACC, L precuneus | $\begin{array}{\|l\|} \hline \text { L } \\ \text { Parahippocampal } \\ \text { g., L Cb } \end{array}$ |
| $\begin{array}{\|c} \text { Marsh et al. } \\ (36)^{f} \end{array}$ | 14 | 15.4 | 2.3 | 57 | DBD + PT (K-SADS + PCL- YV; APSD) | 57.14 | 14.3 | 21 | 14.3 | 1.8 | 71 | Rating the level of pain in painful situation images: Other's > Own pain | L SFC, R insula, L amygdala/uncus |  |

a Only whole-brain results are reported for the studies. In addition, the results of the studies are summarized in this table for the benefit of the reader; the metaanalysis
is not based on these labels but on numerical voxel data.
${ }^{\mathrm{b}}$ Nineteen of 20 subjects met DSM-IV conduct disorder diagnostic criteria, and all met diagnostic criteria of substance use disorder.
${ }^{\text {c }}$ Results reported here were obtained through a personal communication with the author or through a data supplement.
${ }^{d}$ Results reported in the article were not statistically significant at the whole-brain level and thus were excluded from the meta-analysis.
${ }^{e}$ Sample recruited from a cohort of adolescents who were first arrested by the police before age 12.
${ }^{\text {f }}$ Study included only youths showing a high score for psychopathic traits or callous unemotional traits; hence, this was included in the subgroup meta-analysis of youths with DBD/CP with psychopathic traits.
$A C C=$ anterior cingulate cortex; ADHD= attention deficit and hyperactivity disorder; ant= anterior; APSD-YV= antisocial process screening device young version; $\mathrm{B}=$ bilateral; $\mathrm{CASI}-4 \mathrm{R}=$ child and adolescent symptom inventory; $\mathrm{Cb}=$ cerebellum; $\mathrm{CD}=$ conduct disorder; $\mathrm{CP}=$ conduct problems; CPT= continuous performance task; CU= callous unemotional traits; dACC= dorsal anterior cingulate cortex; DBD= disruptive behaviour disorder; DISC= diagnostic Interview schedule for children; DLPFC= dorsolateral prefrontal cortex; dMPFC= dorsomedial prefrontal cortex; EF= Executive functions; Emot = emotional; Ext= extending; g= gyrus; GP= globus pallidus; HC= Healthy controls; IAT= Implicit association test; IFG= Inferior frontal gyrus; IPL= inferior parietal lobe; ITG= inferior temporal gyrus; K-SADS= Kiddie scheduled for affective disorders and schizophrenia; L= left; MID= Monetary incentive delay; MDSI= Maudsley Diagnostic Structural Interview; MFC= middle frontal cortex; MTG= middle temporal gyrus; OFC= orbitofrontal cortex; $\mathrm{PCC}=$ posterior cingulate cortex; PCL-YV= psychopathy checklist-youth version; Post= posterior; Prec = precuneus; $\mathrm{PT}=$ psychopathic traits; $\mathrm{R}=$ right; $\mathrm{rACC}=$ rostral anterior cingulate cortex; rMPFC= rostral medial prefrontal cortex; $S D=$ standard deviation; SDQ= strengths and difficulties questionnaire; SFC= superior frontal cortex; SMA= supplementary motor area; Sup= superior; STG= superior temporal gyrus; SPL= superior parietal lobe; ToM= theory of mind; TL= temporal lobe; vMOFC=ventromedial orbitofrontal cortex; vMPFC=ventromedial prefrontal cortex YPI= youth psychopathic traits inventory

SUPPLEMENTARY TABLE S2. Jacknife analysis of the sub-domain meta-analysis of fMRI studies of Hot EF based on 22 different task contrast results from 10 independent samples.

|  | Studies and contrasts included in brain map | $\begin{aligned} & \text { Reduced } \\ & \text { r/dACC/ } \\ & \text { r/dMPFC/ } \\ & \text { SMA } \\ & (0,12,38)^{a} \end{aligned}$ | Increased right caudate $(18,0,26)^{a}$ |
| :---: | :---: | :---: | :---: |
| 1 | Cohn et al. (39): Monetary incentive delay task: Reward trial anticipation > neutral trial anticipation; Loss trial anticipation > neutral trial anticipation; Reward trail hit > reward trail miss; Loss trail miss> loss trail hit | Yes | Yes |
| 2 | Crowley et al. (18): Colorado balloon game: risky decision making > following instructions; Winnings > no outcome; Losing > no outcome | No | Yes |
| 3 | Finger et al .(17): Passive avoidance task: Early trials > non early trials; Rewarded correct hits > punished commission errors; Punished commission errors >rewarded correct hits | No | No |
| 4 | Finger et al. (20): Reversal learning: Punished reversal errors >rewarded correct responses | Yes | No |
| 5 | Kalnin et al. (43): Emotional Stroop: Violent word> nonviolent word | Yes | Yes |
| 6 | Marsh et al. (40): Categorizing illegal words > categorizing legal words | Yes | Yes |
| 7 | Rubia et al. (16): Rewarded CPT: Rewarded > non-rewarded target trials | Yes | Yes |
| 8 | White et al. (41): Eye gaze task: Fear vs neutral: congruent > incongruent trials; Angry vs neutral: congruent> incongruent trials | Yes | Yes |
| 9 | White et al. (35) Emotion-attention bars task: Fear > neutral expressions | Yes | Yes |
| 10 | White et al. (19): Choose not open > Choose to open appetitive door; Appetitive choice> physical threat choice; Appetitive choice> contamination choice; Physical threat > appetitive stimuli feedback; Appetitive stimuli> | Yes | Yes |


|  | Total | $8 / 10$ | $8 / 10$ |
| :--- | :--- | :--- | :--- |

${ }^{a}$ Yes = brain region remains significantly reduced/increased in the jacknife analyses; No = brain region is no longer significantly reduced/increased in jacknife analyses. $r / d=$ rostral/dorsal; ACC= anterior cingulate cortex; MPFC= medial prefrontal cortex; EF= executive functions; SMA= supplementary motor area

SUPPLEMENTARY TABLE S3. Jacknife analysis of the sub-domain meta-analysis of fMRI studies of Cool EF based on 10 different task contrast results from 4 independent samples

|  | Studies and contrasts included in brain map | Reduced R STG/MTG/ <br> insula/putamen <br> $(40,-12,-8)^{\text {a }}$ |
| :--- | :--- | :--- |
| 1 | Marsh et al. (40): Incongruent > congruent trials. | Yes |
| 2 | Rubia et al. (16): Rewarded CPT: Non-rewarded target > <br> non-target trials. <br> Rubia et al. (22): Stop task: Failed Stop > Go trials; successful <br> stop > failed stop. <br> Rubia et al. (23): Visual-spatial Switching task: Switch > <br> repeat trials <br> Rubia et al. (21): Simon task: Successful incongruent trial > <br> successful oddball trials; Successful oddball trial > successful <br> congruent trial. | Yes |
| 3 | White et al. (41) : Eye gaze task Fear vs neutral: Incongruent <br> $\gg$ congruent trials (interference effect); Eye gaze task Angry <br> vs neutral: Incongruent > congruent trials (interference <br> effect) | Yes |
| 4 | White et al. (35) : Emotion-attention bars task: High <br> attentional load > low attentional load |  |

${ }^{a}$ Yes = brain region remains significantly reduced in the jacknife analyses; No= brain region is no longer significantly decreased in jacknife analyses.
$E F=$ executive functions; MTG= middle temporal gyrus; $\mathrm{R}=$ right; $\mathrm{STG}=$ superior temporal gyrus

SUPPLEMENTARY TABLE S4. Jacknife analysis of the sub-domain meta-analysis of fMRI studies of emotion processing based on 17 different task contrast results from 8 independent samples.

|  | Studies and contrasts included in brain map | $\begin{aligned} & \text { Reduced L } \\ & \text { MTG/ITG } \\ & (-48,-8,-26)^{\text {a }} \end{aligned}$ | $\begin{aligned} & \text { Reduced R DLPFC } \\ & (48,26,34)^{\mathrm{a}} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 1 | Cohn et al. (38): Fear Conditioning task: Conditioned > unconditioned stimuli | Yes | Yes |
| 2 | Fairchild et al. (29): Angry > neutral expression; Sad > neutral expression | Yes | Yes |
| 3 | Herpertz et al.(31): Negative > neutral valence images; Positive > neutral valence images | Yes | Yes |
| 4 | Jones et al. (27): Fearful > neutral expression | Yes | Yes |
| 5 | Marsh et al. (28): Fearful > neutral expression; Angry > neutral expression Marsh et al. (41): Positive valenced objects > negative valenced objects | Yes | Yes |
| 6 | Sebastian et al. (32): (Fearful eyes: (fear/eyes > calm/eyes) > (fear/face> calm/face) <br> Sebastian et al. (44): Affective ToM > cognitive ToM; <br> Affective ToM > physical causation <br> O'Nions et al. (26): Tom > physical causation | Yes | Yes |
| 7 | Passamonti et al. (30) : Angry > neutral expression; Sad > neutral expression | No | No |
| 8 | White et al. (41) : Eye gaze task: Neutral > anger expression; Fear > neutral expression | Yes | Yes |
|  | Total | 7/8 | 7/8 |

${ }^{a}$ Yes = brain region remains significantly decreased in the jacknife analyses. No = brain region is no longer significantly decreased in jacknife analyses.
DLPFC= Dorsolateral prefrontal cortex; ITG= inferior temporal gyrus; L= Left; MFG= middle frontal gyrus; $R=$ right; ToM= theory of mind.

SUPPLEMENTARY TABLE S5. Jacknife analysis of the subgroup meta-analysis of DBD/CP+PT in all tasks based on 19 different task contrast results from 7 independent samples

|  | Studies and contrasts included in brain map | Reduced (hypo) thalamus/ vMPFC/VS $(0,0,0)^{a}$ | Increased <br> rostral <br> DLPFC $(24,48,12)^{a}$ | Increased <br> dorsal <br> caudate $(18,0,26)^{a}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Finger et al. (20): Reversal learning: Punished reversal errors > rewarded correct responses | No | No | No |
| 2 | Finger et al. (17): Passive avoidance task: Early trials > non early trials; Rewarded correct hits > punished commission errors; Punished commission errors > rewarded correct hits | Yes | No | No |
| 3 | Jones et al.(27): Fearful > neutral expression | Yes | Yes | Yes |
| 4 | Marsh et al. (28): Fearful > neutral expression; <br> Angry > neutral expression <br> Marsh et al. (40): Positive valenced objects > negative valenced objects; categorizing illegal words > categorizing legal words; Incongruent > congruent trials. <br> Marsh et al. (36): One's > Other's pain; Other's > One's pain | Yes | Yes | Yes |
| 5 | O'Nions et al. (26): Tom > physical causation | Yes | Yes | Yes |
| 6 | White et al. (41): Eye gaze task: Neutral > anger expression; Fear > neutral expression; Fear congruent > fear incongruent trials; Incongruent > congruent trials (interference effect) | Yes | Yes | Yes |
| 7 | White et al. (35): Emotion-attention bars task: <br> Fear > neutral expressions; High attentional load $>$ low attentional load | No | Yes | Yes |
|  | Total | 5/7 | 5/7 | 5/7 |

[^0]DBD/CP= disruptive behaviour disorder/severe conduct problems; DLPFC= dorsolateral prefrontal cortex; $\mathrm{HC}=$ healthy controls; $\mathrm{PT}=$ psychopathic traits; vMPFC= ventral medial prefrontal cortex; VS = ventral striatum

Figure S1.

Effects of medication in DBD/CP: highly medicated DBD/CP compared to minimally medicated DBD/CP samples


Axial slices showing brain regions that are associated with medication. Red clusters indicate increased activity and Blue clusters indicate decreased activity in highly medicated DBD/CP compared to minimally/not medicated DBD/CP samples. The right side corresponds to the right side of the brain.


[^0]:    ${ }^{a}$ Yes = brain region remains significantly increased/reduced in the jacknife analyses; No = brain region is no longer significantly increased/reduced in jacknife analyses.

