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Supplemental Methods 

Samples and magnetic resonance imaging 

Patients with DSM-IV diagnoses of schizophrenia, schizophreniform or schizoaffective disorders 

and healthy comparison subjects from the Utrecht Schizophrenia Project and the First-Episode 

Schizophrenia Research Program at the University Medical Center Utrecht (sample 1
1,2,3

) and the 

Genetic Risk and Outcome of Psychosis (GROUP) study (sample 2
4,5

) participated after written 

informed consent was obtained. All subjects were between the ages of 16 and 70 years. Subjects 

with a major medical or neurological illness including migraine, epilepsy, hypertension, cardiac 

disease, diabetes mellitus, endocrine disorders, cerebrovascular disease, alcohol or other drug 

dependence, head trauma in the past, or an IQ below 80 were excluded. The presence or absence 

of psychopathological abnormality was established in all subjects using the Comprehensive 

Assessment of Symptoms and History
7
 and Schedule for Affective Disorders and Schizophrenia 

Lifetime Version
8
 assessed by trained and experienced psychologists and psychiatrists in the 

Department of Psychiatry, University Medical Center, Utrecht. All healthy comparison subjects 

met Research Diagnostic Criteria
9
 of "never [being] mentally ill." To evaluate severity of 

symptoms in patients, the Positive and Negative Syndrome Scale (PANSS
10

) was performed. 

Age at onset of illness was defined as the first time patients had been seeking medical or 

psychological help for their psychotic symptoms. Most patients (see Table 1) had received 

antipsychotic medication in the past and received antipsychotic medications at the time of the 

MRI scan. Medication included typical and atypical (clozapine, risperidone, olanzapine, or 

sertindole) antipsychotic agents. 

The study was approved by the Medical Ethics Committee for Research in Humans (METC) of 

the University Medical Center Utrecht. 

MRI acquisition and processing 

All subjects were scanned on a 1.5 T Philips NT or Achieva scanner using the same acquisition 

protocol. Baseline and follow-up scans of each subject were aquired on the same scanner. Three-

dimensional T1-weighted, fast field echo scans with 160 to 180 contiguous coronal slices (echo 

time [TE], 4.6 ms; repetition time, 30 ms; flip angle, 30°; field of view, 256 mm; 1 × 1 × 1.2 

mm
3
 voxels) were made. 

All scans were processed on the computer network of the Department of Psychiatry at the 

University Medical Center Utrecht. The T1-weighted images were transformed into Talairach 

orientation (no scaling), after which they were corrected for scanner RF-field nonuniformity with 

the N3 algorithm
11

. Using a partial volume segmentation technique
12

 the brain was segmented 

into gray matter, white matter and cerebrospinal fluid. The gray matter segments were blurred 

using a three-dimensional Gaussian kernel (full-width half-maximum (FWHM) = 8 mm). The 

voxel values of these blurred segments reflect the local presence, or concentration, of gray matter 

and will be referred to as gray matter „densities‟ (GMDs). In order to compare GMDs at the same 

anatomical location between all subjects, the GMD images were transformed into a standardized 

coordinate system using a two step process. First, the T1-weighted images were linearly 

transformed to a model brain
13

. In this linear step, a joint entropy mutual information metric was 

optimized
14

. In the second step nonlinear (elastic) transformations were calculated to register the 
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linearly transformed images to the model brain up to a scale of 4 mm (FWHM), thus removing 

global shape differences between the brains, but retaining local differences (ANIMAL
15

). The 

GMD maps were now transformed to the model space by applying the concatenated linear and 

nonlinear transformations. Since the density maps have been blurred to an effective resolution of 

8 mm, it is not necessary to keep this information at the 1-mm level. Therefore, the maps were 

resampled to voxels of size 2 × 2 × 2.4 mm
3
, i.e., doubling the original voxel sizes. These 

resampled GMD maps were used as feature vectors for the SVM/SVR analyses. 

For further details on the samples and MRI processing we refer to
1,2,3,4,5,6

. 

 

Brain-age model (MBA) 

The brain-age model (MBA), was built on all HC baseline GMD images (N=386). A support 

vector regression (SVR) machine was trained to predict a subject‟s chronological age from the 

GMD values in that subject‟s image. In a formula: 

MBA(x) = wBA∙x + bBA          (1), 

where x is the subject‟s feature vector, containing the GMD values of all voxels within the 

intracranial mask; wBA and bBA are the model‟s weight vector and offset respectively. During the 

training phase of the model, their values are optimized to yield the best age predictions, i.e. 

MBA(x) ≈ age, for all subjects. The model‟s performance is assessed by the amount of 

chronological age variance explained by the predicted age (R-squared (R
2
)) and the mean 

absolute error (MAE) between predicted and chronological age. Following earlier works
16,17

, the 

predicted age will be called the brain-age (BA) and its deviation from the chronological, or true, 

age, the brain-age gap
16

: 

GBA = BA – age          (2). 

The brain-age gap, GBA, reflects whether a subject‟s brain appears older or younger than 

expected from its age. 

When applied to a follow-up scan of the same subject at age‟, the model predicts a brain-age BA‟ 

and we can calculate the brain-age gap G‟BA = BA‟ – age‟. The change in BA is ΔBA = BA‟ – 

BA, and the change in GBA is ΔGBA = G‟BA - GBA. The (annual) rates of change are: ΔGBA/Δage 

= ΔBA/Δage – 1, with Δage = age‟ – age, the scan interval. While ΔBA/Δage reflects the relative 

aging speed of the brain, ΔGBA/Δage provides the excess brain aging speed, telling whether the 

brain is aging progressively or regressively. We will call ΔGBA/Δage the brain age acceleration 

rate. 

The model‟s performance is tested both in the training phase (goodness of fit) and in the test 

phase, using leave-one-out (LOO) cross-validation. During this phase, each subject is 

subsequently left out of the sample. The SVR is trained on the remaining N-1 subjects and the 

resulting model is applied to the subject that was left out, predicting this subject‟s (brain)age. If a 

subject‟s follow-up (brain-)age has to be predicted, the brain-age model that was built leaving 

out this subjects‟ baseline image was applied. 
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The weight vector wBA describes the GMD pattern of the aging brain. Positive and negative 

values reflect in which locations (voxels) in the brain increasing or decreasing GMD contributes 

to predicting an older age, respectively. The larger the absolute value of a voxel‟s wBA, the more 

important it is for predicting age. 

A subject‟s GMD pattern can be decomposed into a part coinciding with the aging pattern and 

the remaining part, perpendicular to it. This is done by projecting the subject‟s feature vector x 

on to the weight vector wBA: 

x = x//BA + xBA, with 

x//BA = (x∙wBA/||wBA||)wBA, and        (3) 

xBA = x – x//BA. 

The brain-age gap in terms of GMD is then: 

GxBA = x//BA - x//age = GBA / ||wBA||        (4). 

This decomposition allows us to represent the brain-age (gap) in terms of gray matter densities. 

We will call x//BA the subject‟s neuroanatomical fingerprint of his/her brain-age, and GxBA the 

fingerprint of his/her brain-age gap. Via GxBA the brain-age gap and changes in it can be 

compared to (changes in) other measures, such as the size of the GMD differences between 

subjects along the HC/SZ discrimination pattern (the SZ fingerprint; see next section). 

SVR parameter optimization 

Two parameters, the complexity parameter C and the sparsity parameter , need to be specified 

for SVR. Since it has been shown (Franke et al, 2010) that tuning these parameters can increase 

the model‟s performance, a grid search in the (C, ) parameter space was carried out to find the 

optimal settings. R-squared (R
2
), the fraction of variance in age explained by the model in a 

cross-validation (LOO) loop, was used as measure of performance. The figure below shows the 

results. There is a plateau in performance for C>0.0001 and  >0.1, where all combinations of C 

and  yield the same performance of R
2
=0.79. Apparently, in this part of parameter space we 

have reached a stable model that is not further dependent on changes in C or . We chose =0.5 

and C=0.01 for our model. 



Page 5 of 17 

 

 

For an unbiased estimation of the generalizability of our brain-age model we also carried out a 

nested cross-validation procedure. This double cross-validation consisted of an outer and inner 

loop. For the outer loop the sample of healthy baseline images was split into 20 partitions which 

were subsequently held back to validate the age prediction model built in the inner loop. In the 

inner loop the age prediction model was optimized with respect to the parameters  and C using 

a leave-one-out cross-validation procedure. The procedure yielded no significantly different 

results as compared to the grid search: (=0.5,C=0.01) lay in a part of the parameter space with 

accuracies closely around the one found from the grid search: 0.791+0.010. Optimal prediction 

accuracy from the nested cross-validation procedure was 0.798, thus somewhat higher than our 

reported value. 
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HC-SZ Classification model 

A classification model was built following the same procedures as published before
18,19

. A 

support vector machine (SVM) was trained to predict patient status (ySZ=1: SZ, ySZ=-1: HC) 

from a subject‟s GMD image (feature vector x). In a formula: 

ySZ = MSZ(x) = wSZ∙x + bSZ         (5), 

where wSZ and bSZ are again the model‟s weight vector and offset, respectively. During the 

training phase their values are optimized to give the best possible prediction of ySZ. In the LOO 

cross-validation phase, the model‟s performance is tested by assessing the percentages of 

correctly classified subjects: sensitivity = number of true positives / number of patients; 

specificity = number of true negatives / number of healthy subjects; total accuracy = number of 

correctly classified subjects / total number of subjects. (See
18

 for details on LOO.) 

The weight vector wSZ can be used to split the feature vector x in a part coinciding with the 

weight vector and the part perpendicular to it: 

x = x//SZ + xSZ, with 

x//SZ = (x∙wSZ/||wSZ||)wSZ, and         (6) 

xSZ = x - x//SZ. 

Taking the mean ySZ value of the healthy subjects from the LOO procedure as the healthy 

reference value, <ySZ>HC, we can calculate a subject‟s “SZ gap” by subtracting this value from 

the subject‟s ySZ: 

GSZ = ySZ - <ySZ>HC          (7a). 

However, since the values of y have no absolute meaning, it is more useful to calculate this gap 

in terms of GM densities. Dividing eq. (7a) by the length of wsz, ||wSZ||, gives: 

GxSZ = x//SZ - <x//SZ>HC         (7b), 

which will be referred to as the SZ fingerprint of the brain. It may be directly compared to the 

brain-age gap on the same scale (eq. 4). 

A rererence model was built from „raw‟ GMD images, uncorrected for age, gender and 

handedness. Then a model was built from GMD images corrected for brain-age, i.e. using the 

component of the GMD pattern not coinciding with the brain-age pattern (xBA in eq. 3). 

 

Comparing and combining outputs from different models using fingerprints 

The brain-age gap, GBA, can be used to split HCs from SZs using a threshold gap value, i.e., if a 

subject‟s GBA exceeds this GBA-threshold, then this subjects will be classified as SZ patient, 

otherwise as HC subject. 
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The representation of brain-age gap and schizophrenia gap in terms of GMD fingerprints (eqs. 4 

and 7b) allows us to compare them statistically and to use them together as features in a linear 

SVM, to separate HC and SZ subjects. The resulting decision function is: 

y = w1GxBA + w2GxSZ + b         (8), 

where subjects with y>0 will be classified as SZ and if y<0 as HC. The weights w1 and w2 reflect 

the relative importance of the brain-age gap and SZ gap, respectively. 

 

Visualization of the accelerated aging in schizophrenia 

To illustrate that the progressive increase in brain-age gap in SZ truly reflects changes in GMD 

that are qualitatively the same as those in healthy aging – but at an augmented pace, we test 

whether the changes in GMD with time in HC subjects can be scaled using a single scaling factor 

(>1) to obtain the GMD changes with time in SZ patients. This scaling, formally an accelerated 

increase of the length of the brain-age fingerprint (||x//BA||), will be visualized in the brain areas 

most prominently related to aging. These main regions of interest (ROI) of the neuroanatomical 

pattern related to aging were found by selecting the voxels with|w| ≥ 0.00050 from weight map 

wBA, while setting a lower limit of size at 100 voxels or more. This resulted in 24 main ROIs, 

consisting of 2.4% of the features, but representing 8.0% of the summed absolute weights. The 

mean rate of change in GMD in each ROI was calculated for all subjects and averaged per group 

(HC, SZ). To determine the relationship between the rate patterns of the two groups, robust 

regression with Tukey‟s biweight function
20

 was used. Robust regression is, in contrast to 

standard least squares fitting, less sensitive to outliers in the data, caused by ROIs involved in 

both the aging and the SZ-specific pattern. To find the scaling factor that best fitted the HC rates 

(RHC) to the SZ rates (RSZ) for all ROIs simultaneously, first a full linear fit was tried: RSZ = 

ARHC + B, with A the acceleration factor in SZ and B an offset, independent of the HC aging 

pattern. If the offset (B) was not significantly different from zero, it was dropped from the fitting 

procedure and the pure acceleration factor A in SZ was calculated. 

 

Methodological Considerations 

Our brain-age model is based on the features that are the default output from our image 

processing pipeline (1), making it possible to relate the machine learning results to published 

group-statistical results, in particular those related to progressive brain changes (2,3,5). Although 

a full, technical, investigation of brain-age methodology falls beyond the scope of this work, the 

difference between the brain-age gap in SZ patients found by us (3.4 year) as compared to that of 

the only other study that investigated brain-age in SZ (17) (5.5 year) should be viewed in light of 

differences in sample and image acquisition and methodology. Our features are the set of all 

voxels in which gray matter density was measured, which had been smoothed with an 8-mm 3D 

Gaussian kernel, nonlinearly transformed to a template, and resampled to a resolution of 2×2×2.4 

mm
3
. The choice to use gray matter (density) was made because of the abundant evidence of 

(group) differences between SZ patients and HC subjects; moreover, GMDs processed this way 

were also the basis of our previous machine learning studies on schizophrenia (18,19). The 

following choices regarding further processing of GMD could be made: the use of GM densities 
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or volumes; smoothing (with different kernel widths) or not; linear (affine) or nonlinear 

transformations; resampling (to different voxel resolutions) or not; feature reduction or not. The 

choices that are expected to be of most influence are (i) GM densities or volumes and (ii) feature 

reduction or not. We thus built the following models: 

M1: MBA(GMD|smooth|nonlin|resa), i.e. the brain-age model MBA in our study 

M2: MBA(GMD|smooth|nonlin|resa|pca), i.e. MBA, but using the scores on the principal 

components (feature reduction) 

M3: MBA(GMV|nonlin|resa), i.e. based on (unsmoothed) GM volumes instead of densities 

M4: MBA(GMV|nonlin|resa|pca), i.e. M3, but using the scores on the principal components 

(feature reduction) 

In order to come as close as possible to the approach of Koutsouleris et al, who combined PCA 

scores of affinely transformed GMDs and PCA scores of nonlinearly transformed GM volumes 

(unsmoothed), we also built: 

M5: MBA(GMD|affine|resa|pca  GMV|nonlinear|resa|pca) 

The image processing steps were carried out using our standard tools (MNI minc tools and in-

house developed software); the principal component analysis was done in Matlab). Parameters 

were optimized as before, including, for the models involving PCA, the number of components. 

The performance of the models was assessed, again, by calculating mean absolute error (MAE) 

and R
2
. The results: 

Brain-age model #features MAE (year) R
2
 

M1 = ref. 157256 4.31 0.791 

M2 200 4.76 0.750 

M3 157256 5.22 0.695 

M4 150 5.50 0.666 

M5 300 4.92 0.726 

 

The reference model, the brain-age model of our study, clearly outperforms the other models on 

both MAE and R
2
. The models based on GMV only (M3 and M4) perform poorest. Brain-age 

gaps were 3.4 year for M2, the same as for M1, 2.9 year for M3, 4.5 year for M4, and 4.6 year 

for M5. Although different baseline brain-age gaps are thus found, this variation concurs with 

variations in performance. For our training sample and MRI acquisition, the set of unreduced 

GMDs appears to produce the best age predictions in terms of MAE and R
2
. 

 

Reverse brain-age modeling 

To illustrate the fact that the brain-age model is really picking up the chronological aging of the 

brain in healthy subjects and an accelerated, but normal, aging in schizophrenia patients, we did 

the reverse experiment: We built a brain-age model on the set of baseline scans of the SZ 

patients (N=341), and applied this model to the scans of the healthy subjects (N=386). The 
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performance of the SZ-based brain-age model was assessed, again, by measuring the mean 

absolute error (MAE) and R
2
. Results: MAE = 4.36 year, very comparable to MBA‟s (4.31 year); 

the fraction of explained variance in age = 0.70, somewhat lower than that of MBA (0.79). ). The 

mean brain-age gap was GBA(SZ) = 0.0145 year = 5 days, so, about zero. Application of the SZ-

based brain-age model to the healthy subjects yielded a mean brain-age gap of GBA(HC) = -4.83 

year. The predicted age of the controls is lower than the true age, indicating that the brains of the 

controls appear about 4.8 years younger than they really are –from the point of view of the ill-

brain-age model. Although of the right sign and order of magnitude, the fact that it is about 40% 

larger than the gap of SZ patients found by the normal brain-age model (3.36 year), might seem 

surprising at first sight. There is, however, a simple explanation for it. In the presence of non-

age-related progressive brain changes, that is, brain changes that increase with time (thus age) 

but are non-specific for healthy aging, the SZ-based brain-age model will be fooled: it will 

interpret the age-related changes as (normal) aging: a higher age will be predicted based on both 

the healthy-aging and the ill-aging patterns in the brain; the predicted age in healthy individuals 

will thus be lowered by both the absence of accelerated aging and the absence of disease-related 

progressive brain changes. Note that application of the normal brain-age model to SZ patients 

does not have this “problem”, since the patterns of healthy aging and ill-aging are, by definition, 

orthogonal. 

 

 

 

Supplemental Results 

Visualization of the accelerated aging pattern in schizophrenia  

The 24 main ROIs of the neuroanatomical pattern related to aging are listed in Table S2. The 

ROIs have been sorted according to decreasing size and sign of the weights (1–17, negative; 18–

24, positive). Figure S1 shows their locations. Figure S2 shows the mean annual GMD change 

rates for HC and SZ subjects. The fitting procedure indicated that there was no significant offset 

(B=-0.00031; t=0.96; p=0.3) and that the SZ pattern was a scaled version of the HC pattern with 

scaling factor A=1.29 (t=9.63; p<0.0001), close to the 1.36 year/year found from the full brain-

age model. SZ and HC had very different rates in ROI 12: the left occipital pole, which also was 

part of the SZ pattern. 

 

TABLE S1. Mean (SD) output values of predictors in GMD space 

Model / 
   group: 

baseline follow-up change 

mean(sd) dif / t mean(sd) dif / t mean(sd) dif / t 

BA  -HC:  .047 (.976) .501 / 
  4.59

*
 

-.021 (1.034) .652 / 
  5.39

*
 

-.068 (.481) .151 / 
 2.35

†
       -SZ:  .548 (.978)  .631 (1.120)  .083 (.639) 

SZ  -HC: -.329 (.585) .496 / 
  7.54

*
 

 .094 (1.237) .628 / 
  3.73

#
 

 .423 (1.261) .132 / 
   .77       -SZ:  .167 (.592)  .722 (1.686)  .555 (1.718) 

‘dif’ refers to SZ minus HC (with t-value); ‘change’ refers to follow-up minus baseline; *p<0.00001; 
#
p<0.001; 

†
p<0.01. Information in this table is for subjects with a baseline and follow-up scan. 
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TABLE S2. Main ROIs of the brain-age pattern 

index w(mean) size side structure 

1 -0.690 269 L Inferior temporal gyrus 

2 -0.609 236  R Superior occipitofrontal fasciculus 

3 -0.613 204  R Middle frontal gyrus 

4 -0.642 185 L Cerebellum, tuber/declive of vermis 

5 -0.661 184  R Angular gyrus 

6 -0.668 167  R Cuneus 

7 -0.676 145  R Caudate 

8 -0.682 143  R Cingulate gyrus 

9 -0.663 133 L Middle frontal gyrus 

10 -0.670 126 L Superior occipitofrontal fasciculus 

11 -0.638 118 L Superior longitudinal fasciculus 

12 -0.660 115 L Occipital pole 

13 -0.625 115 L Superior temporal gyrus 

14 -0.580 113  R Middle cerebellar pedunculus 

15 -0.606 111  R Superior temporal gyrus / temporal plane 

16 -0.659 110  R Superior frontal gyrus 

17 -0.612 100  R Lingual gyrus 

18 0.766 237 L Thalamus 

19 0.765 210  R Thalamus 

20 0.648 210 L Middle temporal gyrus 

21 0.743 177 - Cisterne laminae tecti/venae cerebri magnae 

22 0.557 164 - Aquaduct/fourth ventricle 

23 0.623 140 L Inferior parietal lobule 

24 0.598 119 L Angular gyrus 

ROIs sorted by size (number of voxels) for negative (index 1-17) and positive (index 18-24) separately. 

W(mean) is the mean value (1000) of the weights from weight map wBA in the ROI. L=left, R=right. See 
Figure S1 for the locations by index. 

 

TABLE S3. Associations between clinical parameters and BA/SZ gap (changes) 

 GBA        GSZ   (df) 
(baseline) 

GBA        GSZ   (df)                         
(follow-up) 

ΔGBA/Δage    ΔGSZ/Δage (df) 
 (acceleration rate) 

PANSS Total            baseline -0.20     -1.75 (202)   1.98              0.48        (113) 

GAF                               ,, -0.15  -   1.40 (110)  -0.72             -2.08        (50) 

PANSS Total            follow-up   1.10     -0.59 (145)  3.44              0.41        (145) 

GAF                               ,,  -3.49     -0.85 
(118) 

-3.31             -1.93        (118) 

hospitalizations #      /interval    5.88              2.36        (129) 

hospitalizations dur.  /interval    3.76              2.50        (128) 

cum. antipsychotics  /interval    3.31              4.89        (68) 

antipsychotics dose  follow-up  3.33        1.61 (93)  1.95              0.41        (93) 

t-values (degrees of freedom (df)) of the association between GBA, GSZ and their change rates, and a 
number of clinical parameters: PANSS Total and GAF scores; number of hospitalizations (#), 
hospitalization duration and cumulative antipsychotics dose, all divided by the scan interval, and 
antipsychotics dose at follow-up. Bold values are significant after Bonferroni-correction for multiple 
comparisons (i.e., at p<0.0025). 
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FIGURE  S1. Design of the study: Use of the different (sub)samples 
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(A) The main sample (samples 1, 2 and 3, combined – see Methods) consists of baseline scans (left 
column) and follow-up scans (right column) and includes healthy control (HC) subjects (upper part); and 
schizophrenia patients (SZ; lower part). The horizontal dashed lines divide the subjects into a part that 
has one or more follow-up scans and a part that does not have any follow-up scan. 

(B) The brain-age model (MBA) is trained on the healthy control baseline scans (gray area). The 
performance of the model is tested within the training sample by leave-one-out (LOO) cross-validation. 
The horizontal white line indicates the left-out subject; the vertical dashed white arrow reflects that each 
of the training subjects is subsequently left out during the LOO operation. The model is also tested 
(TEST) the training subjects’ follow-up scans (with the baseline scan of a tested subject left-out, as 
indicated by the extension of the white line into the follow-up sample) and applied to independent 
subjects: the schizophrenia baseline and follow-up scans. 

(C) The schizophrenia model (MSZ) is trained on a subsample of matched healthy control (N=267) and 
schizophrenia (N=274) baseline scans (gray area). The performance of the model is applied in the 
baseline scans using leave-one-out (LOO) cross-validation within the training sample and to the unused 
baseline subjects (TEST). The model is also applied to the follow-up scans (with, again, the baseline scan 
of a tested subject left-out, as indicated by the extension of the white line into the follow-up sample). 

(D) The analysis of the influence of age and duration of illness on the brain-age gap in schizophrenia 
patients (see Figure 2) is carried out in all baseline and follow-up scans of schizophrenia patients for 
whom this information is available (gray area). 

(E) The validity of the brain-age model (MBA) is tested in an independent sample 4 including healthy 
subjects and schizophrenia patients scanned at 3 tesla. 

(F) The reliability of the brain-age model (MBA) is tested in an independent sample 5 including five healthy 
volunteers scanned twice within a short period of time.  
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FIGURE S2. 

 

Locations of the 24 main ROIs of the brain-age pattern (see Table S2) in four axial slices of the brain. 
ROIs in which a lower GMD leads to a younger age prediction are shown in blue, whereas ROIs in which 
a higher GMD leads to an older age prediction are shown in yellow. Each ROI is labeled with its index 
(Table S2). Note that most regions are much larger than the part visible in these slices. 
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FIGURE S3. 

 

Mean annual changes in GMD (R = ΔGMD/Δt) in the 24 main ROIs of the brain-age pattern (see Table 
S2 and Figure S2), for healthy subjects (HC, black circles) and schizophrenia patients (SZ, red squares). 

The pattern for SZ is best matched by a scaled version of the HC pattern: RSZ = 1.29RHC. The proportion 
of explained variance of 0.81 is calculated without the ROI (no. 12) that is shared with the SZ prediction 
pattern (see Results section). 
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FIGURE S4.

 

Separation of HC and SZ subjects by a linear SVM using brain-age gap and schizophrenia gap 
information in GMD space. Applying a GBA = 1.55 year threshold value, GBA can be used to separate 
HCs and SZs with an accuracy of 60.2% (sensitivity 59.5%, specificity 60.9%). The performance at follow-
up, with the same threshold, did not change significantly. Training a two-feature SVM on the (xBA, xSZ) 
data resulted in a HC/SZ classification model with 71.5% accuracy. At follow-up this accuracy was 64.1%. 
Weight values were 0.50 (brain-age) and 1.57 (SZ), indicating a larger weight for the SZ feature. At 
follow-up the weight values were 0.59 and 0.36, respectively. The relative importance of brain-age in the 
classification of SZ has increased. 
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