SUPPLEMENTAL DATA

S1.1 Excluded subjects

From the initial set of 45 medication-free OCD patients, 39 healthy comparison subjects and 17 unaffected siblings that participated, four patients and two comparison subjects were excluded. Reasons for exclusion were the following: excessive head movement during scanning (>3mm; N=2 patients), behavioral outlier removal (SSRT > 3 SD above group mean, N=1 patient), data-loss due to technical problems (N=1 comparison subject), and brain pathology accidentally discovered on the structural scan (N=2, one comparison subject and one patient). Twenty-eight patients gave permission for contacting their sibling(s), which resulted in the inclusion of 17 patient-sibling pairs (four siblings did not meet the inclusion criteria and seven siblings declined).

S1.2 Stop-signal task and data acquisition and analysis

The horse-race model of response inhibition states that performance on stop trials is decided by the race between an excitatory Go-process and an inhibitory Stop-process. The fastest process will determine the outcome (i.e. Stop-Error or Stop-Success). Subjects indicated the direction of an arrow with a button-press of their right or left index finger respectively, as fast and accurate as possible. The stop-signal delay started at 250ms and was updated online by a tracking algorithm which subtracted 50ms from the delay after a Stop-Success-trial or added 50ms after a Stop-Error-trial. The subject-specific duration of the Stop-process (stop-signal reaction time; SSRT) was then calculated by subtracting the critical stop-signal delay (the mean delay when stop success is 50%) (4) from the median reaction time on Go-trials. Since the stop-signal delay had a fixed starting point, delay values of the last 75% of stop trials were averaged to give a stable stop-signal delay estimate for each subject. Trials were presented pseudo-randomly with the restriction that the first 12 trials were Go-trials and that Stop-trials did not succeed each other. Go-trials started with a fixation cross (500ms) followed by an arrow (1000ms). Stop-trials were identical to Go-trials, except that the arrow was superimposed by the stop-signal, a cross, after the stop-signal delay. The inter-trial interval jittered randomly between 1500-2500ms. Each subject

1

performed 252 trials. Task duration was around 16 minutes. The task was programmed in E-Prime 1.2 (Psychology Software Tools, Pittsburgh, PA, USA). To familiarize participants with the procedure, subjects performed a practice run of the task prior to scanning.

Stimuli were presented on a beamer screen visible through a mirror mounted on the 8-channel head coil. An MRI-compatible response box (Current Designs, Philadelphia, PA, USA) was used to collect the button-presses. To reduce motion artifacts in the imaging data, the subject's head was immobilized with foam pads. To ensure steady-state magnetization equilibrium, 3 dummy scans were made before data-acquisition (1). Coordinates of selected *inhibition*-related and *error*-related regions-of-interest are similar to previous reports (2;3)

S2.1 Co-morbid diagnoses

Twenty-two OCD patients (54%) met criteria for one or more current axis-I diagnosis aside from their primary diagnosis of OCD: specific phobia (N=10), mood disorder (N=9), social phobia (N=5), panic disorder (N=3), eating disorder (N=2), agoraphobia (N=1), somatoform disorder (N=1) and Tourette's Syndrome (N=1).

Siblings had no current axis 1 psychiatric diagnosis apart from one sibling meeting criteria for an anxiety disorder not otherwise specified and one having moderate claustrophobia that did not interfere with the scanning session.

S2.2 Demographic, clinical and behavioral results of the subjects in the analysis with 17 patient-sibling pairs and 17 matched comparison subjects.

The three groups included in the fMRI three-group ANOVA (N=51) did not differ from each other on demographic or behavioral data (see Supplemental Table S1), except from gender showing a near-trend effect. Post-hoc tests showed that the percentage males in the sibling group was significantly higher as compared to patients [χ^2 =4.25, p=.039, two-tailed], while comparison subjects did not differ from patients and siblings in gender ratio [χ^2 =.48, p=.486, two-tailed; and χ^2 =1.94, p=.16, two-tailed, respectively]. As in the analysis including the complete samples, post-hoc tests showed that patients had significantly higher scores on the Yale-Brown Obsessive-Compulsive Scale, Obsessive-Compulsive Inventory-Revised and Montgomery Åsberg Depression Rating Scale compared with both comparison subjects and siblings (all p<.05), while there was no difference between siblings and comparison subjects on these clinical variables (all p>.60).

The subsets of OCD patients and comparison subjects included in the three-group comparison also did not differ from the complete samples of OCD patients and comparison subjects in demographic, clinical or behavioral measures (all p>.17).

Table S1. Demographic, clinical and behavioral measures from 17 patient-sibling pairs and 17 matched healthy

comparison subjects included in the fMRI three-group comparison

	OCD patients (N=17)		Sib (N	lings =17)	Comj sub (N	oarison ojects =17)	Statistical analysis		
	Mean	SD	Mean	SD	Mean	SD	F (df=2, 48)	p-value	
Demographic measures									
Age (years)	37.9	10.7	38.3	13.4	38.9	12.4	0.03	0.972	
Gender (men:women, (% men))	6:11	(35%)	12:5	(71%)	8:9	(47%)	$\chi^{2} = 4.4$	0.111	
Handedness (right:left, (% right))	16:1	(94%)	13:4	(77%)	13:4	(77%)	$\chi^2 = 2.4$	0.297	
Educational level (years) ^a	5.7	1.4	5.7	1.3	5.8	2.4	0.2 ^b	0.891	
Clinical measures									
Yale-Brown Obsessive-							45.8 ^b	~ 001	
Compulsive Scale (points)	21.4	6.4	0.1	.1 0.2 0.0	0	45.0	<.001		
Obsessive-Compulsive Inventory-							28 7 ^b	~ 001	
Revised, total score (points)	25.0	12.7	4.1	1.1	4.4	6.1	20.7	<.001	
Obsessive-Compulsive Inventory-							11 7 ^b	003	
Revised, washing score (points)	3.8	4.5	0.2	0.4	0.4	0.8	11.7	.000	
Obsessive-Compulsive Inventory-							26 9 ^b	< 001	
Revised, checking score (points)	6.2	3.5	0.6	0.8	0.8	1.1	20.0	2.001	
Obsessive-Compulsive Inventory-							13 1 ^b	001	
Revised, symmetry score (points)	4.8	4.1	0.8	1.3	1.2	2.0	10.1 h	.001	
MADRS score (points)	11.2	8.4	1.9	3.5	0.9	1.6	23.4 °	<.001	
Behavioral measures									
SSRT (ms)	200.4	47.0	198.4	37.2	196.0	34.5	0.07	0.933	
Mean Go-trial reaction time (ms)	679.4	125.2	738.9	160.0	679.8	152.2	0.9	0.403	
Errors on Go-trials (%)	1.5	1.7	1.8	2.4	0.9	1.2	1.6 ^b	0.444	

SD, standard deviation; χ^2 , Chi-square test (df=2); MADRS, Montgomery Åsberg Depression Rating Scale. ^a Educational level was recorded in 9 levels ranging from 1 (no finished education) to 9 (university training). ^b Kruskal-Wallis test; H(df=2, 48).

Region	BA	Side	k _e	Region-of- interest*	Coo	ordinat	es ^a	Z	P _{FWE}
					х	у	Z		
Occipital, parietal,	19	R	3036	Ν	39	-85	-5	>8	.000
temporal cortex	37			Ν	42	-61	-17	>8	.000
	39			N	48	-73	-8	>8	.000
	40			Y	42	-55	43	>8	.000
Occipital, parietal,	19	L	2354	N	-36	-88	-5	>8	.000
temporal cortex	37			N	-42	-64	-17	>8	.000
	19			N	-42	-79	-5	>8	.000
	40			Y	-51	-55	43	>8	.000
Prefrontal cortex,	47	R/L	3387	Y	33	23	-11	>8	.000
subcortical areas	9			N	45	11	37	>8	.000
(including sub-	46			N	51	17	19	>8	.000
thalamic nucleus)	6			Y	9	17	67	>8	.000
	NA			Y	3	-15	-2	5.34	.000
Frontal cortex,	47	L	1153	Y	-33	23	-8	>8	.000
subcortical areas	9			N	-42	17	-8	>8	.000
	NA			N	-39	23	40	7.58	.000
Caudate nucleus	NA	L	123	N	-9	11	1	>8	.000
Mid-cingular cortex	23	R	74	Ν	3	-28	31	6.07	.000
Hippocampus	NA	R	37	Ν	24	-28	-8	5.97	.000
Hippocampus	NA	L	4	Ν	-24	-28	-8	4.96	.006
Brainstem	NA	R	3	Ν	3	-22	-20	4.75	.014
Mid-cingular cortex	24	R	5	Ν	3	-4	34	4.71	.017
Pre-supplementary motor area	6	L	1	Y	-15	14	67	4.58	.029

Table S2A. Main effect	t of inhibition over all	subjects in whole-brain	analysis (N	√ =95)
------------------------	--------------------------	-------------------------	-------------	---------------

 Table S2B. Main effect of error over all subjects in whole-brain analysis (N=95)

Region	BA	Side	k _e	Region-of- interest*	Co	ordina	tes	Z	p _{FWE}
					х	у	Z		
Cerebellum	NA	L/R	1992	Ν	-24	-61	-26	7.60	.000
				Ν	-15	-58	-17	7.55	.000
				Ν	18	-58	-20	7.37	.000
Insula, postcentral	13	L	534	Ν	-51	-22	16	6.82	.000
gyrus, superior and	22			Ν	-51	-1	4	6.71	.000
middle temporal	21			Ν	-45	-28	-19	6.53	.000
gyrus									
Postcentral gyrus,	43	R	291	N	60	-16	16	6.06	.000
insula, superior	13			N	51	8	1	5.85	.000
temporal gyrus	22			N	45	-28	19	5.59	.000
Anterior cingulate	32	R/L	104	Y	0	20	34	5.99	.000
cortex									
Pre-supplementary	6	R	13	Ν	9	8	70	5.60	.000
motor area									
Precentral gyrus	4	R	35	Ν	54	-16	43	5.32	.001
					45	-19	43	4.97	.005
Precentral gyrus	4	L	10	N	-54	-22	43	5.01	.001
Thalamus	NA	L	4	N	-15	-22	4	4.66	.039

BA, Brodmann Area; k_e, cluster size; Z, Z-score; p_{FWE}, Family-Wise Error corrected p-value for search volume; R, right; L, left; *Peak used for Region-of-Interest analysis; Y, yes, N, No. Coordinates are in MNI space. *Inhibition*-contrast: Stop-Success-trials>Go-trials; *Error*-contrast: Stop-Error-trials>Stop-Success-trials.

		OCD patients (N=41)						Siblings (N=17)							Comparison subjects (N=37)					
Region-of-interest	Side	Co	ordina	tes	k _e	Z	p_{FWE}	Co	ordinat	esa	k _e	Z	p_{FWE}	Co	ordinat	es ^a	k _e	Z	p_{FWE}	
		х	У	Z				х	У	Z	-			х	у	Z				
Inhibition																				
Inferior frontal	R	33	23	-11	132	6.87	.000	36	20	-8	119	6.89	.000	36	23	-14	131	7.46	.000	
gyrus	L	-30	20	1	123	6.24	.000	-33	23	-8	137	5.45	.000	-33	23	-8	151	7.17	.000	
		-30	23	-11		6.12	.000													
		-39	17	-8		6.05	.000													
Pre-supplementary	R	9	17	67	85	5.34	.000	6	17	64	112	4.75	.000	6	20	58	76	4.63	.000	
motor area		6	17	58		5.29	.000	18	14	67		4.45	.000	9	17	57		4.31	.001	
	L	-9	20	64	39	4.05	.001	-12	23	64	42	3.79	.003	-						
								-15	8	70		3.58	.012							
Inferior parietal	R	39	-55	43	162	6.18	.000	51	-58	46	169	5.41	.000	45	-55	40	171	7.02	.000	
cortex		48	-55	37		5.72	.000	33	-58	46		5.38	.000	45	-58	52		6.44	.000	
	L	-51	-55	43	90	6.05	.000	-54	-52	37	80	3.91	.004	-51	-58	49	159	6.96	.000	
														-57	-61	37		6.28	.000	
Sub-thalamic	R/L	0	-16	-2	35	3.62	.006	6	-10	7	1	3.00	.050	9	-10	4	71	4.14	.005	
nucleus		9	-10	4	1	3.07	.032							3	-19	1		3.49	.011	
Error																				
Anterior cingulate	R/L	-3	20	34	46	3.59	.007	0	23	25	7	3.29	.020	3	20	34	117	4.31	.001	
cortex		1						3	29	31	1	3.08	.036							

Table S3. Main effect of *inhibition* and *error* per study group per region-of-interest.

BA, Brodmann Area; k_e, cluster size; Z, Z-score; FWE, Family-Wise Error corrected for search volume; R, right; L, left. Coordinates are in MNI space. *Inhibition*-contrast: Stop-Success-trials>Go-trials; *Error*-contrast: Stop-Error-trials>Stop-Success-trials.

Supplemental References

Reference List

1. Calhoun VD, Adali T, Pearlson GD, Pekar JJ: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp 2001; 13(1):43-53

2. Chikazoe J: Localizing performance of go/no-go tasks to prefrontal cortical subregions. Curr Opin Psychiatry 2010; 23(3):267-272

3. Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM: The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage 2010; 50(3):1313-1319

 Logan GD: On the ability to inhibit thought and action: A users' guide to the stop signal paradigm, in Inhibitory processes in attention, memory, and language. San Diego, CA, USA, Academic Press, 1994, pp 189-239.