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Technology is ubiquitous in society and is now being ex-
tensivelyused inmental health applications. Both assessment
and treatment strategies are being developed and deployed
at a rapid pace. The authors review the current domains of
technology utilization, describe standards for quality evalu-
ation, and forecast future developments. This review ex-
amines technology-based assessments of cognition,
emotion, functional capacity and everyday functioning, vir-
tual reality approaches to assessment and treatment, eco-
logical momentary assessment, passive measurement
strategies including geolocation, movement, and physio-
logical parameters, and technology-based cognitive and
functional skills training. There are many technology-based
approaches that are evidence based and are supported

through the results of systematic reviews andmeta-analyses.
Other strategies are less well supported by high-quality ev-
idence at present, but there are evaluation standards that are
well articulated at this time. There are some clear challenges
in selection of applications for specific conditions, but in
several areas, including cognitive training, randomized
clinical trials are available to support these interventions.
Some of these technology-based interventions have been
approved by the U.S. Food and Drug administration, which
has clear standards forwhich typesof applications, andwhich
claims about them, need to be reviewed by the agency and
which are exempt.
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Technology is ubiquitous in society and now mediates
many forms of interpersonal and societal communication.
It is no surprise that the numbers of technology-based
interventions and strategies for treating psychiatric dis-
orders are rapidly increasing. These technologies include
evaluation of nearly all features of psychiatric disorders,
including symptoms, cognitive performance, and everyday
functioning. In fact, while technology-based assessments
and intervention strategies initially were administered
in-person at office visits, many of these strategies are now
administered remotely using cloud-based applications.

Current technology allows for the structured delivery of
material used for assessment and training in cognitive,
social cognitive, and functional domains; two-way com-
munication with video, short message services (SMS), such
as Twitter and other software platforms, including remote
therapy applications; paging using various technologies for
assessment and intervention purposes using ecological
momentary assessment (EMA) strategies; continuous
passive monitoring of location and behavior (including
activity and physiological signals such as heart rate and skin
conductance); and presentation of reality-based computer

simulations. These simulations include both immersive
virtual reality (VR) simulations andmore static simulations
that allow performance assessment and, in some cases,
training on veridical representations of technology-based
tasks such as shopping, banking, traveling, and placing online
orders. The devices on which such applications are now
delivered range from computers to tablets to smartphones to
wearable devices. Thus, technology in the context of this
review refers to an array of different functions (messaging,
monitoring) across a number of different platforms and
operating systems (Windows, iOS, and Android).

In this review, we describe technology relevant to mental
health applications, including both assessment and inter-
vention applications. In the assessment domain, we focus on
assessment of cognitive abilities, emotion regulation capacity,
functional skills, and clinical symptoms, including thorough
sampling of individual symptoms and activities through
structured queries or observed experiences. Assessment
technologies involve observational strategies, including
EMA, paging, and passive measurement, and cues to engage
in performance-based assessments in cognitive, social cog-
nitive, or functional domains. We generally focus here on
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adult populations, with some mention of interventions for
attention deficit hyperactivity disorder (ADHD) in children
that may also apply to adults.

In the treatment domain, we present information on ap-
plications designed to deliver interventions as well as ap-
plications that are designed to augment other treatments.
Examples of direct treatment delivery include performance-
based training in cognition and functional skills, which are
available across conditions ranging from ADHD to mild cog-
nitive impairment to substance use disorders. Other thera-
peuticapplications include immersiveVRsimulationsaswellas
cognitive-behavioral therapy applications. Technology-based
augmentation strategies include tools for self-monitoring be-
tween therapy sessions, delivery of reminders to reinforce
therapeutic goals, and various ways to track adherence to
treatments.This leadstoaverybroad-basedreview,whichitself
is only a shadow of the field of mental health assessment and
treatment and technological interfaces.

Our review of these applications and technologies in-
cludes data on their efficacy (when they are employed as
treatments or assessment tools) as well as data on user tol-
erability. Any disparities between clinical trial results obtained
with digital health technologies and outcomes arising from
traditional in-person clinical trials require reconciliation and
interpretation, and are likely related to factors of 1) real-world
engagement challenges for patients and 2) workflow chal-
lenges for clinicians (1, 2). Considering data on real-world
effectiveness beyond just efficacy datawill be critical to ensure
that the field makes optimal use of emerging technologies (3).

TECHNOLOGY-BASED ASSESSMENTOFCOGNITION
AND EVERYDAY FUNCTIONING

Cognitive Assessments
Computerized cognitive assessment strategies have been
used for several decades. Multiple testing batteries are cur-
rently available, and these have been reviewed in detail
elsewhere (4–6). Computerized assessments are appealing
for several reasons, including systematic delivery of in-
structions and collection of responses, as well as automated
scoring and norming of response data.

Computerized cognitive testing has been used in multiple
clinical trials, and its use in routine clinical practice is also
becoming more common. Certain tests have always been
available exclusively in a fully computerized format (7).Other
assessments, initially developed for administration using
paper and pencil (e.g., the Brief Assessment of Cognition [8]
and the Wechsler Intelligence Scales) were subsequently
released as computerized applications (9, 10) developed to be
convergentwith thewidely usedpaper versions. A significant
advantage offered by many of these computer-based as-
sessment tools is that the tester does not have to be a licensed
professional; indeed, subprofessional clinical trainees can
acquire the skills required to administer most computerized
assessments and collect valid data. However, evaluation of
whether results from computer-based cognitive assessments

are convergent with the results of traditional in-person as-
sessments remains an important consideration (11). Some
recent data suggest substantial challenges with certain tasks,
particularly if there isanattempt tosustainfidelity topaper-and-
pencil assessments while performing a remote assessment (12).
As a result, there is a need for careful consideration of whether
all legacy cognitive assessments can be performed remotely.

Functional Capacity Assessments
A variety of computer-based strategies examine the ability to
perform skills that are critical for everyday functioning, re-
ferred to as functional capacity. Available assessment tools
evaluate performance on a range of tasks through structured
simulations of everyday activities, veridical simulations of
everyday tasks, and VR-based simulations. The stand-alone
task batteries usually have a structured assessment sequence
with individually scorable tasks and are normable in a
manner similar to that applied to responses on neuro-
psychological tests. While the VR assessments (described
below) are commonly more realistic and more flexible, they
are, in many cases, less amenable to normative standards. In
the stand-alone tests, such as the Virtual Reality Functional
Capacity Assessment Tool (VRFCAT) (13), touch-screen
responses are used to assess the subject’s ability to per-
form a sequence of skilled acts using simulation formats (e.g.,
looking in cabinets for specific target items, developing a
shopping list, utilizingpublic transportation, andnavigating a
shopping experience in a virtual retail store). In another, the
computerized functional skills assessment and training sys-
tem (CFSAT) (14), the specific components of skilled acts are
examined, such as entering a personal identification number
on an automatic teller machine screen, selecting the correct
ticket choice on a computer kiosk, and using the keypad on a
simulated mobile phone to enter responses to a telephone
voice menu. Data have consistently shown that performance
on these computerized simulations of everyday activities is
correlated with cognitive function (12, 13) measured with
standard or digital strategies. These assessments have a va-
riety of functions, including use in clinical trials of cognitive
enhancement where evidence of functional relevance is re-
quired and in clinical settings to directly measure improve-
ments in functional skills in individuals receiving rehabilitative
interventions (15, 16).

REMOTE DELIVERY OF TECHNOLOGY-BASED
COGNITIVE AND FUNCTIONAL ASSESSMENTS

As the assessment technology reviewed here is already
available for either remote or in-person assessment settings,
we briefly address the feasibility of remote delivery of cog-
nitive assessments. Several different formats are used for
remote assessment, including tester administration of tasks
over a videoconferencing application and remote, exclu-
sively self-administration of all assessments by the subject.
There are several challenges inherent in each approach.
For exclusively remote, self-administered assessments, the
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participant needs to be comfortable with, and capable of
using, the required technology.

Videoconference administration of tests that were
designed to be administered in-person requires consider-
ation of the technological demands of the conferencing ap-
plication and the ability of participants to use the technology
as well as to perform the critical skills. It is certainly possible
to perform certain types of cognitive assessments over the
telephone (e.g., measurement of verbal responses in tests of
working memory or episodic memory, and measurement of
auditory processing speed on tasks such as the Oral Trail
Making Task [17]). For videoconferencing applications in
caseswhere theparticipant is asked toperformcognitive tests
on the device while simultaneously receiving remote in-
structions and supervision, the participant need only be able
to manage the technology-based delivery of the assessment
program, which can possibly be facilitated by another person
who is on-site with the participant at the time of testing (18).
These challenges may be difficult to eliminate entirely.

In the case of assessments designed for fully remote self-
administration, there are other potential challenges. Several
such studies have found significantly more missing data than
observed with in-person, paper-and-pencil assessments (19,
20). One possibility is that some participants, particularly
those with severe mental illness or other forms of cognitive
impairment, find the computerized assessments difficult to
comprehend and/or are less motivated, particularly without
another person present to receive instructions and facilitate
subject engagement. We recently validated methods for re-
motedeliveryofneurocognition (21) and social cognition (i.e.,
emotion recognition) (22) testing embedded in an EMA
application. Participants were seen in person and trained on
the use of the technology at the start of participation. In a
sample that demonstrated the baseline ability to utilize this
technology, we found that subsequent adherence to the EMA
cognitive assessments (75% for neurocognition [N5168] and
80% for emotion recognition [N586]) was high and data
quality was on average excellent. Adherence was not cor-
related with diagnosis (major depression, bipolar disorder,
schizophrenia), age, sex, or presence of psychosis, negative
symptoms, or suicidal ideation. Although these data are quite
positive, strategies for determination of an individual’s ca-
pacity to be assessed remotely seems to be an important
clinical topic.

CLINICAL VIRTUAL REALITY

Over the past 25 years, researchers and clinicians have
pursued theuse ofVRas a tool to advance clinical assessment,
intervention, and scientific research (23–31). This effort was
inspired by the intuitively obvious opportunity for VR en-
vironments to address specific challenges inherent in the
provision of usual clinical strategies for mental health, re-
habilitation, and general medical care. At its core, VR tech-
nology, along with other related simulation-based formats
(e.g., augmented/mixed reality), offers new capabilities that

did not exist a decade ago. Many recently developed
VR-based testing, training, teaching, and treatment ap-
proaches would be difficult, if not impossible, to deliver
without leveraging the power of modern computing, three-
dimensional (3D) graphics, body tracking sensors, novel user
interfaces, gaming/narrative principles, big data analytics,
and artificial intelligence. Such VR-enabling technologies
allow for thecreationofhighly realistic, interactive, engaging,
and systematically controllable digital simulation environ-
ments. Users can be immersed inVR simulations and interact
with content for the purposes of clinical assessment and
intervention. VR technology is thus well matched to the
requirements of various clinical targets and psychiatric
contexts.

Defining Virtual Reality
Since the inception of VR, a large and evolving scientific
literature has emerged regarding the outcomes and effects
associated with what we now refer to as clinical VR appli-
cations that target psychological, cognitive, motor, and
functional impairments or symptoms across a wide range of
health conditions. Continuing advances in the underlying
enabling technologies for creating and delivering VR appli-
cations have resulted in their widespread availability as
consumer products, sometimes at avery lowcost (e.g., Oculus
Quest 2).

The concept and definition of VR has been debated over
the years. VR has been very generally defined as a way to
visualize, manipulate, and interact with technology and
complexdata inamorenaturalistic and intuitivemanner (32).
Fromthisbaselineperspective,VRcanbeseenasanadvanced
form of human-computer interaction that allows a user to
interact with computers beyondwhat is typically afforded by
standard mouse–keyboard–touchscreen interface devices.
An engaged VR user experience can be created through
unique combinations of interaction devices, sensory display
systems, and the type of content presented in the virtual
environment. Thus, there are two common types of VR. The
automated observation of these interactions constitutes the
assessment components of VR therapies.

NonimmersiveVR is themost basic format and is similar to
the experience of playing a video game. Virtual content is
delivered on a standard computer monitor, tablet, mobile
phone, or television as users interact with 3D computer
graphics using a game pad, joystick, mouse, keyboard, or
specialized interface devices (e.g., other handheld devices,
data gloves, treadmills). Modern computer games that sup-
port user interaction and navigation within 3D graphics can
be considered to be VR environments. Tasks such as the
VRFCAT described above are nonimmersive VR assessment
strategies.

Immersive VR integrates head-mounted displays, body-
tracking sensors, specialized interface devices, and 3D
graphics (33). Users operatewithin a simulated environment
that changes in a natural or intuitive way based on the user’s
motion and interaction. The head-mounted display occludes
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the user’s view of the outside world while head- and body-
tracking technologysenses theuser’spositionandmovement.
These user movement data are rapidly sent to a computing
system, which uses the movement and interaction data to
update the sensory stimuli, which are presented to the user
via the head-mounted display. When users are immersed in
computer-generated visual imagery and sounds of a simu-
lated virtual scene, their interaction produces an experience
that corresponds towhat theywould see and hear if the scene
were real.

Regardless of the technical approach, the key aim of these
immersive systems is to perceptually replace the outside
world with the virtual world to psychologically engage users
with simulated digital content designed to create a specific
user experience. Immersive VR is typically the choice for
applications where a controlled stimulus environment is
desirable for constraining a user’s perceptual experience to a
synthetic world. This format has been often used in clinical
VR applications for assessment of anxiety disorder or PTSD
severity and subsequent exposure therapy, as distraction for
patients undergoing acutely painful medical procedures, and
in the physical/cognitive assessment/rehabilitation domain.
The research potential—for example, studying neural pro-
cesses during brain imaging or neurosurgery—are also clear.

In a related domain, recentwork has involved the creation
of virtual human characters (sometimes called avatars or
autonomous agents) that allow users to engage in clinical
interactions within both nonimmersive and immersive
simulations. The creation of virtual humans has evolved from
research showing their clinical usefulness as stimuli for ex-
posure therapy for social phobias (34, 35), for role-play
training for social skills in people on the autism spectrum
(36–38), for activities for addressing intimate partner vio-
lence (39), and for teaching self-compassion in persons with
depression (40). More complex virtual humans infused with
varying levels of natural language processing and artificial
intelligence have shown effectiveness in the role of virtual
patients that novice clinicians can use in practicing the skills
required for challenging diagnostic interviews (41) and
motivational interviewing (42). They have also been created
to produce online virtual human health care guides (43, 44)
and as clinical interviewers, with automated sensing of facial,
gestural, and vocal behaviors that are useful for inferring the
state of the user interactingwith these virtual human entities
(45) and for assessing clinician empathetic behavior (46).

Current VR Clinical Treatment Areas
The field of clinical VR has expanded dramatically as the
technology has evolved. Clinical VR has been shown to be
effective in fear reduction in persons with specific phobias
(e.g., 47, 48), treatment for posttraumatic stress disorder (e.g.,
49–52), and cue exposure for addiction treatment and relapse
prevention (53–55). VR has also been effective in treating
depression (40), paranoid delusions (56), and body image
disturbances in patients with eating disorders (27, 28).
Cognitive and physical rehabilitation research using VR has

produced promising results when applied to navigation and
spatial training in children and adults with motor impair-
ments (57), functional skill training and motor rehabilitation
in patients with central nervous system dysfunction (e.g.,
stroke, traumatic brain injury, cerebral palsy, multiple scle-
rosis) (58), and for the rehabilitation of attention, memory,
spatial skills, and other cognitive functions (59, 60).

VRAssets for Advancing Clinical Interventions: Expose,
Distract, Motivate, Measure, and Engage
On a very general level, VR leverages core processes that are
relevant across a variety of clinical domains. These processes
can be summarized as the capacity to expose, distract, mo-
tivate, measure, and engage users. Expose refers to clinical
applications designed to provide exposure therapy for anx-
iety disorders and PTSD, to practice social interactions in
order to reduce paranoid delusions, and cue-exposure ap-
proaches for addiction treatment and relapse prevention. VR
used for exposure therapy offers strong evidence, with a
recent meta-analysis suggesting efficacy across a wide range
of phobias, anxiety, and trauma- and stressor-related disor-
ders (61). Further meta-analysis supports the efficacy of
virtual reality for anxiety-related disorders, although the
research base is still relatively small (62). Distract refers to
methods for distracting attention from painful medical
procedures to reduce pain perception, promote reduction of
discomfort, and provide respite from bleak hospital settings.
A recent systematic review supported the potential of VR for
painmanagement but noted that the studied effects are often
for acute pain, and less is known about longitudinal analgesia
for chronic pain (63). Motivate refers to the practice of
promoting patient adherence to repetitive and sometimes
boring or frustrating training tasks that need to be performed
for cognitive or physical rehabilitation and chronic pain
management by embedding these activities within game-like
contexts. Measure underscores the capability that VR sim-
ulations provide for quantifying activity and/or performance
in response to controlled simulations of fearful experiences.
Finally, engage is generally seen as the end result of capturing
attentionor action that is useful for encouragingparticipation
with clinical applications where users relate to and interact
with virtual content as if it were physically real—sometimes
referred to as the sense of presence (64). For example,
learning the “skill” of achieving a “mindful” state typically
requires multiple sessions before the user perceives a re-
warding change in their mental or emotional state. VR has
been used to create engaging experienceswithinwhich users
may be more compelled to practice and learn this skill.

The Future of Clinical VR
Scientific support for the clinical use of VR for mental health
and rehabilitation has evolved as the costs and complexity of
developing VR applications have gone down and the capacity
of the technology has increased. A complex VR headset and
hand controllers that might have cost tens of thousands of
dollars in 2000 now cost well under $800. This trend should
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be accelerated by recent developments in “standalone” VR
headsets (e.g., OculusQuest, PicoNeo, Vive Focus, etc.). Such
low-cost VR display systems do not require a tethered
computer, as all the graphic and interaction processing take
place onboard the device. These lower-cost devices will
promote adoption andenable larger-scale clinical studies that
canhelp build the effectiveness datanecessary forVR tobuild
out a solid evidence base for guiding future clinical imple-
mentation. As we look to the future, we also see growing
clinician awareness, acceptance, and adoption of clinical VR
methods. For example, Norcross et al. (65) surveyed
70 psychotherapy experts regarding interventions they
predicted to increase in the next decade; VR was ranked 4th
out of 45 options, with other computer-supported methods
(teletherapy, mobile apps, online cognitive-behavioral ther-
apy self-help) occupying three of the other top five positions.
Moreover, the COVID-19 crisis has certainly accelerated the
exploration and acceptance of these technologies to amplify
access to care, and that interest will likely continue after the
pandemic has passed (66). Thus, in view of the current en-
thusiasm for VR generally across society, and specifically in
the clinical community, coupled with emerging scientific
support and lower system costs, it is likely that clinical VR
applications have the potential to become standard tools for
psychiatry researchers and possibly to be utilized more
widely by practitioners.

ECOLOGICAL MOMENTARY ASSESSMENT (EMA)

Ecological momentary assessment (EMA), also referred to as
the experience sampling method (ESM), has been a tool for
understanding fluctuating phenomena and within-person
dynamics, and the ubiquity of the smartphone has greatly
accelerated the accessibility of this method for clinical ap-
plications (67). Programs for the delivery of EMA surveys
have becomemorewidely available, and the tools for analysis
of intensive longitudinal data have proliferated. At the earlier
stages of EMA, the focus was typically on the recording of
behaviors (e.g., activity, sleep, smoking) or daily life experi-
ences, such as stressors, through diaries (68–70). The data
gathered enabled examination of within-person change, but
required user input and did little to reduce the biases in-
herent to self-report (70). These older assessment strategies
had no way to accurately time-stamp the reports that were
collected. Anecdotal reports of people arriving 20 minutes
early for their appointments andcompleting 14days’worthof
assessments are confirmed by the results of research studies
comparing reported and observed adherence to paper diary
assessments (71).

Personal digital assistants such as early Palm Pilot–like
devices automated these processes (72, 73). Moreover,
prompts to complete surveys could now be timed and mo-
mentary responses could be time-stamped (74). With the
translation of EMA to smartphones, surveys could be de-
livered according to different contexts experienced by the
individual (and indexed by the geolocation features of the

device), thus enabling more personalized information to be
gathered.Theability to tailorprobes basedon the individual’s
momentary state generated a new field of ecological mo-
mentary intervention (75), and several trials have evaluated
personalized automated interventions that leverage mo-
mentary data (76, 77). Some researchers have moved beyond
self-reports to intensively repeated objective measures, in-
cluding brief cognitive tests embedded in the EMA pro-
grams as described above (21, 22).

The kinds of questions that researchers have been able to
ask with these new tools have led to new insights in funda-
mental questions in mental health. Sometimes these findings
are at odds with prevailing theories. It is commonly believed
that smokers relapse because of nicotine withdrawal
symptoms. Shiffman et al. (78) evaluated smoking behavior in
non-daily smokers and found that negative affect was more
important than withdrawal symptoms in relapse, which is
critical for understanding which factors to target to sustain
smoking cessation. It is commonly believed that suicidal
ideation arises from feelings of hopelessness. Kleiman et al.
(79) found that suicidal thoughts variedmarkedly throughout
the day and that variation in candidate predictors (e.g.,
hopelessness) did not predict the emergence of this ideation,
a finding that had been produced previously in a hospitalized
sample (80). Depp et al. (81) found that social isolation and
number of social interactions did not predict onset of suicidal
ideation in people with schizophrenia, but that the antici-
pation of being alone later was associated with an increase in
ideation. Granholm et al. (82) found that people with
schizophrenia (N5100) spent considerably more time home
and alone than healthy control subjects (N571) and, even
when home and alone, engaged in fewer productive behav-
iors. In a follow-up analysis of this sample, Strassnig et al. (83)
found that people with schizophrenia reported fewer ac-
tivities, spent considerably more time sitting and less time
standing, and were considerably more likely to sleep during
the daytimehours. However, listening tomusic andwatching
television were not differentially common in healthy and
schizophrenia participants, suggesting that activities less
productive than passive recreation are among the things that
were more common in participants with schizophrenia.

More general lifespan questions can also be addressed by
EMA. Using a measurement burst design in which bouts of
EMA are integrated with a longitudinal follow-up period,
Koffer et al. (84) found that older age was associated with
greater ability to buffer against the effect of stress on affect.

These are just a few examples from a burgeoning field,
highlighting the degree to which active EMA paradigms can
be used to advance understanding of the dynamic processes
underlying psychiatric diagnoses, extending and sometimes
challenging prevailing theories. EMA is a useful strategy to
identify targeted features of different conditions on a mo-
mentary basis. For example, repeated assessment can identify
the proportion of prompts that are answered at home versus
away and in the presence of other people versus alone. As
these are the central indices of social isolation and social

Am J Psychiatry 179:12, December 2022 ajp.psychiatryonline.org 901

HARVEY ET AL.

http://ajp.psychiatryonline.org


avoidance, the socially relevant impact of negative symptoms
in schizophrenia (85) and current depression in mood dis-
orders can be directly indexed. Research suggests excellent
correlations between clinical ratings of symptoms from
structured interviews and EMA data, while identifying
fluctuations in symptoms that are missed by more widely
spaced assessments (86, 87). These strategies can also be used
to examine health-relevant behaviors in mental health
populations, as described above. Given the reduced life ex-
pectancy associated with severe mental illness and the high
prevalence of metabolic syndrome, EMA can be used to es-
timate the amount of time spent sitting versus standing or
otherwise engaged in active behaviors. Given that contem-
porary EMA can collect the occurrence of multiple different
activities since the last survey, it is quite easy to see whether
only one activity has occurred since the last survey or
whether participants are engaging in multiple concurrent
activities, including physical activities (88). When paired
with the passive digital phenotyping described below, a
comprehensive EMA assessment can examine location and
social context, refine measurements of activity (exercise vs.
agitation), detect sleeping during the daytime and not at
night, and assess concurrent subjective emotional responses
to these activities.

Passive Digital Phenotyping
A more recent breakthrough involves quantifying clinical
outcomes using “passive” digital phenotyping (i.e., unob-
trusively collecting data via the internal sensors of a smart-
phone, a wrist-worn smart band, or another device). Passive
measures can reduce certain limitations associated with
interview- and questionnaire-based clinical assessments
(e.g., cognitive impairment, social desirability, cultural biases
[89]). Numerous passive measures have been evaluated in
psychiatric populations (e.g., geolocation, accelerometry,
ambient speech recorded from the environment, phone call
and text logs, screen on/off time, social media activity,
Bluetooth-basedproximity social sensing) (90–96).However,
the validity of these passive measures is only beginning to be
established. Goldsack et al. (97) proposed the V3 framework
for determining the validity of passive digital biomarkers,
which involves three components: verification, analytical
validation, and clinical validation. These components, as
reviewed below, provide a useful heuristic for determining
whether the level of validity achieved for various passive
measures meets clinical standards.

The first component of the V3 model, verification (i.e.,
efficacy), is a quality-control step for the device of interest
that is performed by the manufacturer. It occurs before
testing is conducted on human subjects. The goal is to de-
termine whether the sensor captures data accurately and to
verify that the software accurately outputs data within a
predetermined range of values. For example, accelerometry
could be verified by placing a smart band on an object pro-
grammed to accelerate at a prespecified rate. Verification is
typically done by device/software manufacturers against a

reference standard. However, the results of these tests and
the analytic methods supporting the devices are typically not
published or made available for evaluation, which presents
replication challenges. Additionally, common standards do
not exist for verifying passive digital phenotyping sensors of
interest, and sensors embedded in differentmodelswill often
be different. Since devices and sensors may require differing
levels of verification (e.g., required accuracy) for various
clinical purposes, evaluating verification data is a critical step
that should occur before passive digital phenotyping mea-
sures are applied in studies in clinical populations. For
medical devices, such as medical decision-making software,
this process may be handled by the U.S. Food and Drug
Administration (FDA) as part of Good Manufacturing
Practice (GMP) standards. Making test results and analytic
methods underlying devices accessible to researchers will
help disentangle whether failures of replication are true
problems with reproducibility across clinical populations or
simplydifferences in the technical quality of different devices
used in studies.

The second component, analytical validation (i.e., effec-
tiveness), involves behavioral or physiological validation of a
device in human subjects in the real world. A key first step in
this process is determiningwhether sample-level data output
by the device is properly received and that algorithms cal-
culated on that data perform as expected. The metric
resulting from the algorithm, applied in real time or post hoc,
should be evaluated against a relevant reference. Although
agreed-upon reference standards have not been determined
for validatingpassivedigital phenotypingmeasures, therehas
been initial analytical validation of some passive measures.
For example, phone-based geolocation and accelerometry
recorded on the ExpoApp have been validated in relation to a
reference wrist-worn actigraph and a travel/activity diary;
time in microenvironments and physical activity from the
diary demonstrated high agreement with phone-based geo-
locationandaccelerometrymeasures (98).HuangandOnnela
(92) analytically validated a phone accelerometer and gy-
roscope using a ground-truth standard. They had human
participants engage in specific physical activities (e.g., sitting,
standing, walking, and ascending and descending stairs) with
a phone in their front and back pockets. Behavior was filmed
throughout as an objective reference. The sensors accurately
predicted video-recordedbehavior in the reference standard.
One ongoing challenge is that as smartphones are updated
withnewsoftware andphonemodelswithnewsensors, prior
validation efforts cannot be assumed to be valid.

The third component, clinical validation (i.e., imple-
mentation), involves determiningwhether the passive digital
phenotyping variable of interest adequately predicts a spe-
cific clinical outcome within the population of interest.
Preliminary evidence for clinical validation exists for several
passive measures—although at times results have also been
contradictory (99). For example, in bipolardisorder, incipient
depressive symptoms have been predicted by changes in the
number of outgoing text messages, the duration of incoming
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phone calls, geolocation-based mobility measures, and vocal
features extracted during phone calls. Manic symptoms of
bipolar disorder have been predicted by more outgoing texts
and calls, acoustic properties of speech extracted during
phone calls (e.g., standard deviation of pitch), and increased
movement detected via accelerometry (100, 101). Clinically
elevated and subthreshold depressive symptoms have been
predicted by geolocation-derived measures of circadian
rhythm, normalized entropy, and location variance, aswell as
phone usage frequency and speech-derived audio volume
(102–105). Social anxiety has been predicted by reduced
movement on accelerometry and fewer outgoing calls and
texts (106). Relapse of psychotic disorders has beenpredicted
by geolocation mobility metrics and text/call behavior (90).
Negative symptoms of schizophrenia measured via EMA or
clinical ratings have been predicted by geolocation-based
mobility metrics, voice activity, and actigraphy-based met-
rics of gesture and activity level (99, 107–110). Combining
passive measures with EMA surveys may further enhance
clinical validation. For example, Raugh et al. (111) found that
the combination of geolocation and EMA surveys was a
stronger predictor of clinically rated negative symptoms in
schizophrenia than either measure alone. Similarly,
Faurholt-Jepsen et al. (101) found that combining vocal
acoustic features extracted from phone calls with EMA
reports improved the correct classification of mixed or
manic mood states in bipolar disorder beyond either
measure alone. Henson et al. (112) reported that a com-
bination of EMA and passive data, when analyzed for
congruence with anomaly detection methods, was asso-
ciated with early warnings of relapse in people with
schizophrenia. Thus, studies suggest that passivemeasures
are promising tools for measuring clinical outcomes.
However, there are numerous inconsistencies regarding
the predictive value of specific metrics and measures for
classifying individual disorders or symptom states, in-
cluding geolocation, accelerometry, ambient speech, and
ambulatory psychophysiology (113–116). For example,
clinical data on sleep did not match sensor report in one
study (94), and results are not comparable across studies
because of differences in sensors utilized, in the clinical
targets, in time frames for calculating associations across
assessment modalities (e.g., daily or monthly), and in the
populations studied. There are also fundamental differ-
ences across studies in methods and analyses, such as
controlling for multiple comparisons when examining
correlational data.

Clinical validation (i.e., implementation) is of particular
concern for using passive measures as outcomes for clinical
interventions.Unlike traditional interview-orquestionnaire-
based clinical outcome measures, standards for the level of
psychometric evidence needed to say that a measure is
clinically validated have not yet been determined for passive
digital phenotyping. Proprietary data collection via devices
(e.g., a custom wearable device [117]) and proprietary
methods for analysis (e.g., a custom machine learning

algorithm [118]) offer both innovation and a challenge to
reproducible clinical research. Further complexity arises
from the trend toward usingmore complex analytic methods
with passive digital phenotyping because of the multilevel
nature of the data. For example, machine learning is an in-
creasingly common tool in the clinical validationprocess, and
studies have employed various algorithms to predict a range
of clinical outcomes (e.g., classification, regression, unsu-
pervised clustering) (119). However, common standards for
judging the level of psychometric evidence that constitutes
clinical validation formachine learning are not yet uniformly
applied across thefield. Is predictive accuracy of 70%enough
to declare clinical validation, or should a higher standard be
set (e.g., 90% accuracy) (104, 106)? Similar considerations
affect simpler analytic methods, such as simple correlations
forpassivedataaggregatedacross a rangeof time(e.g., 1week)
to form a single value that can be correlated with clinical
outcomes. It seems important that such aggregated values be
adjusted for the extent of daily or time of day variation. These
adjusted correlations tend to be statistically significant but
lower (r values ;0.3–0.5) than typical standards for con-
vergent validity that would be applied within clinical rating
scales or questionnaires (e.g., r values.0.80) (103, 104, 111).
Do these lower correlations reflect inadequate convergent
validity, even though they are statistically significant? Or is
the lower correlation to be expected (and therefore ac-
ceptable) because of the fact that it averages across differ-
ences in temporal variation across measures or method
variance? We suggest that common guidelines for judging
what constitutes clinical validation are clearly needed for
passive digital phenotyping. There should also be an effort to
ensure that clinical validation studies include a representa-
tive samplewithdiverse individuals to ensure that algorithms
are not primarily trained to be accurate in populationswhose
demographic and personal characteristics do not overlap
with the clinical populations of interest and that methodo-
logical and analytic approaches are valid and consistent
throughout the population.

Feasibility of implementation is the next consideration,
and barriers and facilitators such as cost, accessibility, tol-
erability, ease of use, and data failure rates are among the
relevant factors. Few studies have evaluated user experience
of interactions with passive measures. However, qualitative
studies employing interviews designed to assess patient
perceptions have indicated that while many see these tech-
nologies as holding promise for clinical detection and self-
management, there may also be unintended barriers to use,
such as increased stigma or anxiety (120, 121). One would
expect that most passive measures would not be viewed by
participants as burdensome, given that they are collected
unobtrusively by the background sensors of their device and
do not require direct participant action. However, there may
be some instanceswheredevice interface proves problematic
in clinical populations. For example, in a study on outpatients
with chronic schizophrenia, the participants had consider-
able difficultywith remedyingBluetooth unpairing of a smart
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band and smartphone (112). Peoplewith schizophrenia found
this pairing issuemoreburdensome thandid control subjects.
It is also unclear whether certain clinical symptoms interact
with the willingness to consent to participating in digital
phenotyping studies. For example, by their nature, contin-
uous geolocation and ambient speech monitoring raise
questions about privacy and agency. It is unclear whether
clinical populations, such as individuals with schizophrenia
who have delusions of suspicion, experience such technol-
ogies as intrusive and whether they exacerbate symptoms or
result in the individual not consenting to participate out of
fear of being monitored. Some data suggest that the preva-
lenceof answeringpromptswhile acknowledgingconcurrent
psychotic symptoms is reasonably high (86) and that
EMA reports of location have been validated using GPS
coordinates (108). More generally, issues of systemic racism
and mistrust of how passive digital phenotyping information
could be (mis)used by the law enforcement or other systems
of power may influence implementation of these methods in
participants who are racial minorities. Thus, user experience
should be carefully evaluated when administering these
technologies in clinical populations. Aswemention below, the
general issue of access to the Internet andexperiencewith any
technology is a barrier that will need continuous attention.

Combinations of EMA and passive digital phenotyping
seem likely to improve interventions and assessment. GPS
location coordinates provide information aboutwhere one is,
but notwho iswith them. Proximity detection can determine
whether another individual with a device is present, and
ambient sound sampling can tell whether individuals are
interacting or are simply in proximity to each other. Smart
bands can detect activity but not the motivation for the ac-
tivity (exercise vs. agitation). Combiningmood samplingwith
geolocation information and EMA can help determine
whether social isolation is due to depression or lack of mo-
tivation, and facial and vocal affect assessment from
participant-captured samples can provide validation infor-
mation for mood reports. A recent example (122) suggested
that the combination of passive phenotyping and EMA
prompts was feasible, with multiple different prompted re-
sponses collected, in conjunction with data regarding loca-
tion, psychophysiological responses, andambulatoryacoustics
(44 participants with schizophrenia and 19 with bipolar dis-
order). Thus, an array of different elements of functioning can
be captured simultaneously and used to generate a wide-
ranging picture of momentary functioning.

A challenge in the domain of passive digital phenotyping is
that application developers and scientific utilizers are com-
monly at the mercy of the manufacturers, who can restrict
access to phone features for applications or push out oper-
ating system upgrades that cause software to fail. Further,
applications that monitor access to social media may also
encounter restricted access or requirements that access be
granted for each time the application attempts to capture
data. This is an areawhere collaborationwithmanufacturers
will be required.

Adherence Monitoring
One of the major approaches using technology in mental
health treatment is in adjuncts to therapies. In particular,
treatment adherence monitoring is a clear area of need and
has been a focus of both clinical trials and clinical treatments.
For example, several studies have used mobile monitoring to
check in with patients at high risk for nonadherence, in-
cluding early-course psychosis patients (123) and patients
with bipolar disorder (124). Some applications have been
approved as medical devices by the FDA. For example, an
application that monitors adherence to aripiprazole was
approved by the FDA in 2017 (125) and involves an embedded
sensor in a pill. Other strategies used in clinical trials include
the use of digital photography to capture the moment of pill
taking or other chemical tags that can be detected after a
medication is taken(126). Systematic studies areunderway to
examine the usefulness of these strategies for real-world
adherence support.

One of the issues with adherence monitoring is that this
cannot be a passivemeasurement strategy. Individualswhose
adherence is monitored, in either research or clinical
treatment, need to be fully informed and to agree to this
monitoring, and their consent must be valid.

SMARTPHONE THERAPEUTIC APPLICATIONS

There are many mobile apps designed around the principles
of cognitive-behavioral therapy (CBT) or other evidence-
based interventions but few randomized controlled trials
demonstrating their efficacy for any disorder. There are a
huge number of applications available that attempt to pro-
mote mindfulness or induce relaxation. As many of these
applications are not tested empirically at all, we have focused
on the translation of CBT strategies into applications. AsCBT
has a long history of being systematically manualized, the
comparison of efficacy of applications to legacy in-person
treatment is facilitated. The majority of existing data on the
efficacy of mobile app-based interventions comes from
randomized controlled trials assessing symptoms associated
with adefineddisorder or othermental health outcomes such
as stress levels, well-being, and quality of life. There are some
data to suggest that smartphone interventionscanbeeffective
in reducing depressive symptoms. A 2017 meta-analysis by
Firth et al. (127) identified a small number of randomized
controlled trials (N518) that examined the efficacy of
smartphone-based interventions in improving symptoms of
depression. They found a significant reduction in depressive
symptoms with smartphone interventions compared with
waiting list or inactive control conditions (g50.56) and a
smaller effect in comparison to active control conditions
(g50.22). The use of interventions based on cognitive-
behavioral techniques offered greater benefits for depres-
sion than computerized cognitive training applications. In a
2019 meta-analysis of randomized controlled trials assessing
the efficacy of app-supported smartphone interventions for
mental health disorders, Linardon et al. (128) found that
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smartphone interventions significantly outperformed con-
trol conditions in improving depressive symptoms. Similar to
the Firth et al. meta-analysis, the effect size was larger when
waiting list (g50.32) or informational resources (g50.39)
were used as control conditions compared with attention or
placebo control conditions, such as checking the weather on
the phone (g50.12). Of the 54 comparisons (smartphone vs.
control) analyzed, 26 involved a CBT-based app; however, a
subgroup analysis did not show them to be associated with
larger effect sizes. CBT is an empirically and meta-
analytically supported treatment for depression, but some
researchers have suggested a low level of adherence to the
core principles of CBT models and identified highly variable
usability among CBT-based smartphone interventions as
reasons for their lack of superiority (129). A 2021 review of
studies of CBT smartphone apps for depression featuring a
control groupreported that results remain tooheterogeneous
to recommend for front-line care (130).

Similarly, a small but growing body of data suggest that
smartphone interventionsmaybeefficacious in the treatment
of anxiety symptoms. Another meta-analysis from 2017
(131), focused on randomized controlled trials involving
smartphone-supported interventions to reduce anxiety
symptoms and found significantly greater reductions in
anxiety scores from smartphone interventions compared
with control conditions across nine eligible randomized
controlled trials. Effect sizes were significantly greater when
studies made use of a waiting-list or inactive control con-
ditions (g50.45) compared with those that used active
control conditions (g50.19). This discrepancy in effect
sizes—like that seen in studies assessing depressive symp-
toms, as noted above—suggests the complexity of conducting
digital mental health research and the possibility of a digital
placebo effect bywhich use of a digital device in itself confers
a degree of psychological benefit. The Linardon et al. meta-
analysis (128) found 29 studies assessing efficacy in treating
generalized anxiety symptoms,with eight studies specifically
designed to target generalized anxiety symptoms. Across the
39 comparisons within the identified studies, the pooled
effect size (g)was found to be 0.30 and statistically significant
across all sensitivity analyses. Subgroup analyses again
showed a smaller effect size for comparisons using an active
comparison intervention (g50.09) and a larger effect size
with studies that used aCBT-based app,which included 16 of
the 39 comparisons analyzed.

An intervention strategy that combines EMA principles
with interactive smartphone technology is referred to as
“just-in-time adaptive interventions” (132). These strategies
involve consistent monitoring of behavior, activities, moods,
and symptoms, using EMA strategies, but they also inter-
actively offer interventions in real time. An example of such a
strategy is the FOCUS intervention (133), which uses amix of
prompts directed to the participant and self-activated tools.
The goal of this class of interventions is to sustain engage-
ment while offering interventions in real time. As noted in
several reviews, this strategy is being widely used, but the

data are not yet at the stage where global statements about
efficacy can be made.

Two other examples of smartphone-based interventions
that have FDA-approved elements are recently introduced
devices to promote smoking cessation and to reduce opioid
abuse. PIVOT is a digital smoking cessation app that in-
cludes human coaching with text messages, combined with
smartphone-based carbon monoxide (CO) monitoring (134).
The CO sensor is an FDA-cleared medical device, and the
program includes a multistage intervention following stan-
dardhuman-delivered smoking cessation strategies aswell as
nicotine supplementation.

R-Set-O (135) is an application that is designed to bepaired
with buprenorphine treatment for opioid addition. In a
randomized clinical trial, 82% of participants who were
randomized to the device remained in treatment, compared
with 68% of those in treatment as usual.

Abstinence was also higher in the active treatment group
(77% vs. 63%). Given the typical attrition rates for opioid use
disorder treatment (about 50% or more) (136), these are
encouraging results. One of the challenges in these inter-
ventions is adherence and engagement. For example, in a
naturalistic study of the R-Set-O intervention inwhich data
from 3,144 individuals with opioid use disorder were
evaluated, 80% completed at least eight of the 67 possible
therapeutic modules, 66% completed half of all modules,
and 49% completed all modules (137). Although abstinence
rates were quite good (about 65%), there is a clear differ-
ence in adherence compared with the randomized con-
trolled trials that led to FDA approval. In a large-scale
review of device-based interventions, Linardon and Fuller-
Tyszkiewicz (128) reported that adherencewas challenging
in many of these interventions. The types of strategies that
succeeded in increasing adherence were clearly associated
with attempts to promote engagement at the outset of the
intervention. Interventions that used online enrollment
were particularly susceptible to poor adherence and
dropout, while in-person and telephone recruitment
strategies were better.

COMPUTERIZED COGNITIVE TRAINING AND
COGNITIVE REMEDIATION THERAPY

The core of computerized cognitive training (CCT) is soft-
ware designed to engage and practice cognitive functions.
Cognitive functioning is commonly defined in these appli-
cations as the set of abilities that would be measured with
neuropsychological assessments and relate consistently to
everyday functional outcomes. Some programs are explicitly
aimed at a single cognitive domain, while others target an
array of domains. A central feature of successful CCT pro-
grams is adaptive presentation of training stimuli, such that
the level of difficulty tracks the participant’s current per-
formance.Thegoal is to train increasinglymoredifficult tasks
while ensuring a success rate of about 80% of the target
stimuli.
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Computerized cognitive training has been widely studied
in the past two decades, along with concurrent advances in
computer technology, which has allowed for great strides
forward in terms of control over the learning environment.
Multiple studies have demonstrated CCT’s efficacy for im-
provement of cognition in multiple populations, with the
bulk of the evidence in severe mental illness (138, 139) and
supported by large-scale studies of healthy older people
(140–142). There is considerably less information outside of
schizophrenia, but studies inbipolar disorder (143) andmajor
depression (144) have been published. For evaluation of CCT
as a mental health treatment, there are several central con-
siderations. These include the range of efficacy expected,
howthe interventionneeds tobedelivered, thedose required,
and whether there are specific subpopulations who stand to
make the most treatment gains. Further, there are several
considerations about concurrent treatments that may be
required to translate cognitive gains into improvements in
everyday functioning. Finally, remote delivery of cognitive
training has been studied in the past with some success.

As described in the meta-analyses, cognitive changes in-
duced with CCT have generally been shown to have minimal
efficacy for the improvement of everyday functioning in the
absence of a targeted intervention aimed at functional skills.
When CCT is combined with structured intervention pro-
grams, the term cognitive remediation therapy (CRT) is gen-
erally applied. CRT has been shown in meta-analyses to
produce both cognitive and functional gains (139). There are
multiple approaches to delivering CRT, but they all share
common features. The intervention is delivered in person by a
trainer, and other skills training is delivered as well, typically
with a focus onvocational or social functioning.CCTcombined
with supported employment programs has proven in multiple
studies to provide considerable benefits (e.g., 145), even in
previous nonresponders (146). Hence, when delivered in a
structured CRT program, the range of expected efficacy in-
cludes cognition and everyday functioning. Some studies have
also trained social cognitive abilities, leading to improved social
outcomes (15), and some have found that combined CCT and
computerized social cognitive training (CSCT) lead to more
substantial gains thanCCTalone (147).However, a recent study
using compensatory cognitive training combined with sup-
ported employment did not find employment gains (148).

Dosing of CCT has varied considerably across studies. In
studies of severe mental illness, doses ranging from 15 to
135 training sessions have been delivered. One factor that may
mediate the effect of dose is the extent of training engagement.
Several studies have suggested that training engagement
predicts the extent of training gains in CCT (149, 150). Even
large doses of CCT may be ineffective if participants are not
actually participating in the procedure (151). Thus,monitoring
of engagement, easily accomplished through the software in
most training programs, is clearly recommended. There are
insufficient data to draw conclusions regarding the likelihood
that training engagement will either improve in poorly en-
gaged patients or worsen in those who are initially engaged.

In terms of specific subpopulations with potential to
benefit from CRT, prodromal (152), first-episode (153), and
chronic (154) schizophrenia patients show equivalent cogni-
tive gains when trained with a single CCT system. In a re-
analysis of a larger randomized trial, patients with a shorter
illnessdurationhada greater cognitive and functional response
to a comprehensive CRT program (155). In contrast, several
studies of patients with extended institutional stays (156, 157)
have suggested that benefits are common and include both
cognitive and functional improvements. Similarly, in mood
disorders, patients with a history of major depression and
treatment resistance, both older and younger, have received
benefits fromCRT(158, 159).Thus, therearenoclear indicators
for illness characteristics that define which patients will
achieve maximum benefit. Engagement has a much stronger
signal than age in research to date.

Some rehabilitation facilities may not have access to
computers for all participants, and some participants may
prefer to train at home. Although the majority of structured
CRThasbeen studiedwith in-person training, several studies
suggest that home-based CCT can be accomplished with
reasonable levels of adherence (70%) and with cognitive and
social cognitive benefits (15, 152, 153). Train-at-home studies
with nonpsychotic community-based populations have also
been conducted (160). A sample of 2,912 older community
dwellers participated in an entirely online training program,
with evidence of gains in both composite scores on cognitive
performanceandeveryday functioning.Thedropout ratewas
considerably larger than seen in the studies noted above,with
rates exceeding 50% at the 6-month follow-up.

A treatment for ADHD recently approved by the FDA,
EndeavorRx (generic name, AKL-T01), also used a train-at-
home performance-based training intervention (161). In a
large-scale trial, AKL-T01 was delivered to children with
ADHD in a video game–like interface via at-home play for
25minutes per day, 5days perweek for4weeks.Theoutcome
measure was performance on an ADHD-relevant cognitive
task, the Test of Variables of Attention (TOVA) (162). The
treatment was significantly superior to a video game control
condition. AKL-T01 thus received approval to improve at-
tention function as measured by computer-based testing in
children ages 8–12 with primarily inattentive or combined-
type ADHD who have a demonstrated attention issue. The
sponsors of the treatment clearly state that it is designed to be
usedas augmentation therapy inaddition toother treatments.
One reason for this suggestion is that scores on ADHD rating
scales did not show improvement after training. Thus, this
intervention is very similar in terms of strategy to previous
studies using CRT to improve cognitive functioning in other
conditions, such as schizophrenia.

PHARMACOLOGICAL AUGMENTATION OF CRT

An important recent development been systematic studies of
pharmacological augmentation of cognitive training (163).
These augmentation strategies have been found to be
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successful for the use of stimulants (164), guanfacine (165),
alertness promotion agents (166), and memantine (167) in
schizophrenia, and for vortioxetine in age-related cognitive
decline (168). Interestingly, modafinil and memantine have
been much less effective as monotherapies for cognitive
impairments (169, 170). Other studies are examining com-
pounds thathave shownpreliminary efficacyasmonotherapy
treatment to improve cognition in schizophrenia (171) and as
an adjunct to CRT (172), and these therapies may have
promise as augmentations.

An additional important recent finding in the area of
pharmacological augmentation of cognitive training is that of
the combination of long-acting injectable antipsychotic
medications and CRT. In a study of first-episode patients
randomized to either oral or long-acting medications as well
as to either CRT or another augmented psychosocial inter-
vention, an important interaction effect was found (173). The
combination of long-acting medication and CRT led to
considerably greater cognitive gains than seenwith CRT and
oral medications. Further, the cognitive changes directly
translated into functional gains, including work function. As
this intervention also included vocational rehabilitation for
all participants, the effects of cognitive gains associated with
CRT on work outcomes in more chronic patients was
reproduced. This is, to our knowledge, the first study dem-
onstrating that clinical stability may be a factor that is as-
sociated with the efficacy of CRT.

LEVEL OF EVIDENCE AND APPROVAL

As digital mental health technologies evolve, so do questions
regarding the level of evidence to support their claims of
efficacy. In response, some have proposed that digital health
technologies may benefit from alternative endpoints and
novel study designs in order to best capture their efficacy
(174). The FDA’s Digital Health Software Precertification
(Pre-Cert) Pilot Program is an attempt to reenvision how it
approves such technologies (175), although questions remain
about the real-world practicality of this approach, given that
it remains a pilot project. In short, Pre-Cert seeks to expedite
approval of software as a medical device through pre-
approving technology developers and using real-world data
to assess the performance of the software after approval. Still,
as noted above, there are smartphones apps, computer
programs, and devices that have all been granted FDA
marketing approval through more traditional pathways
(section 510(k) and de novo) and trial designs.

There are other levels of FDA clearance for approvable
technology. Under FDA guidelines, many technology-based
interventions are viewed as general wellness applications,
and this isoutside the focusof regulation.These interventions
include technology targeting adherence to scheduled ther-
apeutic activities other than the act of taking medication,
exercise, andcertainelementsof everyday functioning.These
applications are generally similar to CCT applications in that
they are not aimed at diagnosing and treating a disease. The

FDA explicitly states that devices can be exempt from review
because “when not associated with the diagnosis, cure,
mitigation, treatment, or prevention of a disease the claim
falls outside the scope of the definition of a medical device”
(176, p. 8). Further, the FDA has a process referred to as
enforcement discretion, in which the FDA considers the
device to be a medical device but does not require that it
receive a formal approval for use. Example 1 in the FDA
guidance states that they do not intend to require approval
for:

Software functions that help patients with diagnosed psy-
chiatric conditions (e.g., post-traumatic stress disorder
(PTSD), depression, anxiety, obsessive compulsive disorder)
maintain their behavioral coping skills by providing a “Skill of
theDay”behavioral techniqueor audiomessages that theuser
can access when experiencing increased anxiety (176, p. 23).

Thus, devices that do not attempt to replace an approved
treatment or attempt to eliminate the need for medical care
fall under this heading. Clearance of technology under
general wellness applications or medical devices that fall
under enforcement discretion are not likely to be eligible for
direct insurance reimbursement, although they could be part
of other bundled services.While inmany clinical settings this
would not be relevant because therapeutic activities are not
billed on a session-by-session basis, in some practice settings
this would be more of a challenge. For example, computer-
ized cognitive training is covered by some insurance plans for
neurological conditions, such as persistent traumatic brain
injury, but not for psychotic or depressive disorders. Simi-
larly, certain adherence applications have been approved by
the FDA, but they are linked only to a single medication
because the software actually detects the presence of a chip
that is ingested alongwith the pill. Finally, as noted above, the
AKL-T01 application for ADHD was approved only as an
adjunctive treatment, not a stand-alone.

As regulation seeks to catch up to the mental health
technology space, clinicians and patients must make choices
today. Various frameworks have been proposed for such
evaluation, including one endorsed by APA (177). Several
score-based databases have also emerged, although research
suggests low rates of concordance between such scoring
systems as well as an inability to update at the rate of tech-
nology changes (178). Newer educational initiatives offer to
help patients and clinicians make informed decisions based
onavailabledata (179).TheFederalTradeCommission (FTC)
continues to sue technology vendors for false marketing
claims (notably Lumosity, in relation to brain training in
2016 [180] and a menstrual period tracking app in 2021 [181])
and offers consumer guidance as well.

CONCLUSIONS

Technology-basedassessmentand interventionstrategiesare
proliferating, and the COVID-19 pandemic has accelerated
the process. These strategies are based on technology that is
newly developed and continuing to evolve. Technological
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strategies are likely to allow for expansion of clinical as-
sessment and intervention potential and for clinicians’ ability
to deliver more service in the same time frame. Even pur-
portedly nontechnological interventions involve technology
today, including electronic health records and video con-
ferences, but this review addresses some of the ways that
technology will continue to expand in the immediate future.

Development is faster than validation, and advertisements
are less expensive than research. A reasonable idea would be
to consider the evidence for using applications, keeping in
mind that exaggerated claims are common in the technology
area. While some of these claims have been the target of
investigations by the FTC, the more common challenge is
applications that are marketed without extravagant claims
but alsowithout adequate data. As a field, we need to develop
our standards forwhatweutilize nowandwhatwewait until
later for.

There are several issues to follow into the future. One is
the research–clinical deployment gap. Clearly, many tech-
nologies are well validated in research settings but are not as
actively used in the clinic. Over time, this situation can
change; the case for CCT is a perfect example: the advent of
better computer technology and the feasibility of remote
administration of training has enabled the expansion of
general community access to CCT. This process may have
been kicked off by CCT providers who made exaggerated
efficacy claims, as described above, but the result is that the
general community is quite aware of CCT now.

Another critical issue is access. While both age and so-
cioeconomic status used to be barriers to technology access,
many more older people have access to the Internet and use
smartphone technology. The lack of access on the part of
lower-income and rural populations was clearly highlighted
during the COVID-19 pandemic, and until the access dis-
parity is resolved, many people will not be reachable with
these interventions. Importantly, these are the same factors
that create access barriers tomental services in general; given
the promise of technology increasing access to mental health
services, increasing access to technologywill be a criticalfirst
step.

In summary, these technological developments are ex-
citing, and they show efficacy in controlled studies and are
increasingly designed to be acceptable to patients. There is
likely more to come in this broad area, and assessments and
interventions that would have seemed like science fiction in
the past are entirely commonplace now.
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Examination Questions for 
Technology and Mental Health: State of the Art for Assessment and Treatment

1. The construct of “functional capacity” refers to:

A. Cognitive defi cits seen in serious mental illness

B. Social functioning in the real-world environment

C. Critical skills for everyday functioning

D. Interfering eff ects of depression on social outcomes

2.  The critical features of virtual reality interventions include Expose, Distract, 

Motivate, Measure, and

A. Engage

B. Sustain

C. Introduce

D. React

3. The FDA recently approved a cognitive training application as an adjunctive 

treatment for:

A. Schizophrenia

B. Major depression

C. Posttraumatic stress disorder

D. ADHD
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