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We ascend, in science, by tugging one another’s bootstraps
(p. ix).
Remotely plausible theories are better than no theories at all
(p. 27).

—Jerry Fodor, The Language of Thought, 1975

As recently summarized in a consensus statement of 208
evidence-based conclusions (1), the hallmarks of the syn-
drome now known as attention deficit hyperactivity disorder
(ADHD) were first described by the German physician
Melchior AdamWeikard nearly 250 years ago. Progress since
has come in fits and starts, but in someways, ADHD enjoys an
enviable position among common psychiatric disorders.
The diagnostic criteria for ADHD, albeit still explicitly provi-
sional, obtained “very good” test-retest reliability (intraclass
kappa50.61), the sine qua non of scientific inquiry, in the
DSM-5 field trials (2). Effective short-term alleviation of
symptoms with stimulant medications was first reported in
1937 (3), decades before the emergence of antimanic, antipsy-
chotic, and antidepressant compounds, with large effect sizes
that remain among the highest in the psychiatric pharmaco-
poeia. Nonpharmacologic, behavioral treatments boast a volu-
minous evidence base, and produce even greater symptom
amelioration when they precede medication treatment (4).

AlthoughADHDwas long thought to exclusively affect ele-
mentary-school-age boys, it is now recognized in both sexes
and throughout adulthood.The substantial familiality and her-
itability of ADHD is comparable to complex traits such as
height, intelligence, and obesity (5). Breathtaking drops in
genotyping costs, along with adoption of an open science
data-sharing culture, have facilitated aggregation of a suffi-
ciently large sample to yield the first genome-wide significant
loci in ADHD (6), in addition to eight previously identified
genes (ADGRL3, ANKK1, BAIAP2, DAT1, DRD4, LRP5,
LRP6, and SNAP25) supported to varying degrees by meta-
analyses, but not yet confirmed by genome-wide studies (1).
As with all complex conditions, each of the probable genetic
factors contributing to ADHD accounts for minuscule propor-
tions of the phenotypic variance. Accordingly, genetic discov-
eries are unlikely to yield novel druggable targets in the near
future. Still, genome-wide studies provide polygenic risk
scores that succinctly capture broad genetic risk as a causal
mediator (e.g., 7–9), at least for people of European ancestry.

In MRI studies of the brain in ADHD, the field in which I
serendipitously landed nearly three decades ago, magnetic
field strength has doubled from 1.5 to 3 tesla, bringing moder-
ate improvements in spatial and temporal resolution.The unit
costs of imaging have, unfortunately, remained stubbornly
high (10), and this contributes to insufficient sample sizes
and inadequate statistical power for most efforts (11). Accord-
ingly, in this selective and admittedly biased overview, I focus
on open science initiatives designed to take on this challenge
and on emerging notions of mesoscale brain networks in psy-
chiatric dysfunction with relevance to ADHD.

BRAIN IMAGING IN THE ERA OF BIG DATA

A revolutionary and elegant response to the challenge of sam-
ple size was formulated just over a decade ago by Paul
Thompson and colleagues in launching ENIGMA (Enhancing
Neuro-Imaging Genetics Through Meta-Analyses) (12). As
befits the original aim, the ENIGMA consortium identified
genome-wide significant loci relating to hippocampal volume
in a discovery sample of more than 9,000 healthy participants,
confirmed in independent replication samples exceeding
9,000more (13). In a companion paper including both healthy
and psychiatrically ill participants (N5�21,000), another
common intergenic variant was associated with bilateral hip-
pocampal volume, and a variant withinHMGA2 (HighMobil-
ity Group AT-hook 2, a nonhistone chromosomal protein
increasingly implicated in various cancers [14]) was associated
with increased intracranial volume (15), although this clue has
yet to be incorporated into neuropsychiatric pathophysiolog-
ical models.

Beyond leveraging the unassailable test reliability of struc-
tural MRI data (intraclass correlations reaching 0.98–1.00
[16]) to identify associated genomic loci, ENIGMA projects
have transformed psychiatric neuroimaging. ENIGMA stud-
ies, conducted by volunteering workgroups, avoid the ethical
and practical challenges of sharing raw structural imaging
data, which are as uniquely identifiable as fingerprints.
Instead, contributing sites process their brain images locally
with the same freely available software, FreeSurfer (17). Free-
Surfer computes subcortical volumes (18) as well as areas and
thickness of 34 Desikan-Killiany cortical parcels per hemi-
sphere, along with average thickness and area for each
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hemisphere and intracranial volume (19). These derived val-
ues, or features, can be aggregated without risking violations
of confidentiality or privacy. This innovation has made it pos-
sible to amass samples in the tens of thousands for mega-
analyses, in which individual participants’ values are entered
into statistical analyses, instead of meta-analyses that combine
groupmeans and standard deviations or summary effect sizes.
ENIGMA papers are currently emerging at the rate of more
than one per week, encompassing a vast range of topics (20).

The first ENIGMA effort in ADHD focused on subcortical
regions (accumbens, amygdala, caudate, hippocampus, pal-
lidum, putamen, and thalamus) and intracranial volume, con-
trasting 1,713 patients with a categorical diagnosis of ADHD to
1,429 age-matched healthy comparison participants shared by
23 sites (18). Participants ranged in age from 4 to 63 years. To
stratify by age, children (53% of the sample) were defined as
being age 14 or younger, adolescents (18%) were ages 15–21,
and adults (29%) were age 22 and older. In mega-analyses
encompassing the entire sample, patients had significantly
smaller intracranial volume (Cohen’s d520.10) after adjust-
ing for sex, age, and site. Other analyses, adjusting for sex,
age, site, and intracranial volume, found smaller volumes
in the ADHD group for amygdala (d520.19), accumbens
(d520.15), caudate (d520.11), hippocampus (d520.11),
and putamen (d520.11) (18). In age-stratified analyses, these
differences were all present in children, whereas adults did
not differ on any measure. Adolescents differed significantly
only in the hippocampus (d520.24) while also exhibiting
the widest confidence intervals on all measures. Though
intriguing, the age differences cannot be interpreted defini-
tively given the cross-sectional nature of ENIGMA studies
(21). Additional analyses did not find any evidence that the
observed effects could be ascribed to past or current exposure
to stimulant medications; although results differed by sex, sex
differences did not interact with diagnosis (18). Lessons from
this first ADHD ENIGMA study include 1) confirmation that
the categorical diagnosis of ADHD in children is associated
with reduced intracranial volume, consistent with an overall
reduction in total brain volume, which we first noticed in
1996 in the National Institute of Mental Health (NIMH)
ADHD sample (22, 23); 2) confirmation of smaller volumes
in basal ganglia structures (caudate, putamen, and accum-
bens), long linked to models of ADHD (24); 3) surprising find-
ings of smaller amygdala and hippocampus volumes, which
have been generally neglected in ADHD (with a rare excep-
tion [25]), and which may relate to increasing awareness
that emotional dysregulation (26), although not included in
the diagnostic criteria, is a major contributor to poor out-
comes in ADHD (27); and 4) the humbling observation that
effect sizes are small (Cohen’s d values ,0.20), confirming
the underpowered nature of most prior work (11).

The next ADHD ENIGMA initiative examined cortical
surface area and thickness in an expanded sample from
36 cohorts comprising 2,246 patients with ADHD and 1,934
comparison participants, with the same covariates, including
intracranial volume (19). Case-comparison differences were

observed exclusively in children and were most pronounced
in the youngest third. The largest case-comparison difference
was in mean cortical surface area (d520.21 for all children;
d520.35 in the youngest tertile, ages 4–9 years). Among
the 34 parcels examined, smaller surface areas in children
with ADHD were found in 24, whereas thinner cortex in
ADHD was observed only in four regions (temporal pole
and in fusiform, precentral, and parahippocampal gyri). Anal-
yses of familiality incorporated 211 patients with ADHD, their
175 unaffected siblings, and 120 healthy comparison partici-
pants from two NeuroIMAGE study sites (28). Several frontal
features were significantly smaller in unaffected siblings than
in healthy comparison participants, consistent with familial
effects. The expanded ENIGMA sample again produced 1)
whole brain reductions in mean cortex surface area even after
adjusting for significantly smaller intracranial volume; 2)
strongly age-related effects, with the strongest results in the
youngest children; 3) relatively few differences in cortical
thickness, in contrast to widespread smaller surface areas
(cortical surface area and thickness differ in their genetic
determinants [29], validating the importance of distinguishing
them in studies of cortical volume [30]); and 4) once again,
small effect sizes.

One of the major benefits of the promulgation of the
NIMH Research Diagnostic Criteria (RDoC) project (31), to
which I will return, has been to free investigators from rigid
allegiance to diagnostic categories in the name of scientific
rigor. Contrasts and comparisons across diagnoses are
now not just “allowed,” but actively encouraged. ENIGMA
has examined group case-comparison interregional differ-
ences in cortical thickness in six disorders: ADHD, autism
spectrum disorder, bipolar disorder, major depressive disor-
der, obsessive-compulsive disorder, and schizophrenia
(N5�28,000), drawn from 145 ENIGMA cohorts, ranging
from ages 2 to 89 years (32). Principal component analysis
applied to the interregional variations in cortical thickness
across the 34 Desikan-Killiany cortical parcels (averaged
across the hemispheres) explained 48% of the variance.
“Virtual histology” was then conducted by filtering data
from the gene-expression data of six donors in the Allen
Human Brain Atlas, mapped to the same 34 regions. To opti-
mize interdonor similarity, two-stage filtering reduced the
number of genes interrogated from 20,737 to 2,511. The inter-
regional profile of the first principal component in cortical
thickness was associated with pyramidal-cell gene expression
patterns (explaining 56% of interregional variation). Coex-
pression analyses showed two clusters enriched with genes
associated with all six disorders: a prenatal cluster of genes
involved in neurodevelopmental processes such as axon guid-
ance, and a postnatal cluster of genes involved in synaptic
activity and plasticity-related processes (32). This innovative
approach suggests that the increasingly recognized common-
alities among psychiatric disorders derive from shared genetic
factors affecting processes during early brain development,
highlighting the neurodevelopmental nature of most psycho-
pathology (33, 34).
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The substantial genetic overlap among psychiatric disor-
ders (35, 36) was confirmed by an analysis of 25 brain disor-
ders utilizing genome-wide association studies of 265,218
patients and 784,643 comparison participants in relation to
17 phenotypes from 1,191,588 individuals. Psychiatric disor-
ders exhibited common risk variants, in contrast to neurolog-
ical disorders,whichweremore distinct from one another and
from the psychiatric disorders. The Brainstorm Consortium
also identified significant genetic correlations among psychi-
atric disorders and a number of brain phenotypes, including
cognitive measures. They concluded that their results
“indicate that the clinical boundaries for the studied psychiat-
ric phenotypes do not reflect distinct underlying pathogenic
processes” (37). Supportivefindings fromENIGMAdata, based
on 24,360 patients and 37,425 comparison participants, also
found that correlations among psychiatric disorders, including
ADHD, “were correlated with the corresponding pairwise cor-
relations among disorders derived from genome-wide associa-
tion studies (r50.494)” (38).

These commonalities at the levels of genomics and brain
structure parallel the hypothesis that a common factor under-
liesmuch of psychopathology—the “p factor” (39). Parkes et al.
tested the hypothesis that the p factor involves neurodevelop-
mental deviations by examining age-related decreases in brain
regional volumes (40) across 400 cortical parcels in the
Philadelphia Neurodevelopmental Cohort (41) in relation to
six orthogonal dimensions, including overall psychopathology
(p factor), anxious misery, and positive psychosis symptoms
(42). They confirmed that analyses of volumetric deviations
from normality outperformed analyses using raw cortical val-
ues; that overall psychopathology was associated with lower
than normative cortex volumes in three of their four hypoth-
esized areas (ventromedial prefrontal/medial orbitofrontal
cortex, inferior temporal, and dorsal anterior cingulate cor-
tex); and that correlations in deviation from normative neuro-
development in case-control contrasts of individuals with
ADHD versus those with major depressive disorder dimin-
ished markedly when overall psychopathology was controlled
for (42).

So, how do these observations fit with the RDoC agenda?
RDoC was launched in 2010 based on the conclusion that
the enhancements in psychiatric nosological reliability
obtained by incorporating the Research Diagnostic Criteria
(43) into DSM-III and its subsequent editions had failed to
provide an adequate framework to incorporate potential
insights from genetics and neuroscience.This eloquent decla-
ration, announced in the Journal (31), was built on three
assumptions: “First, the RDoC framework conceptualizes
mental illnesses as brain disorders. In contrast to neurological
disorders with identifiable lesions, mental disorders can be
addressed as disorders of brain circuits. Second, RDoC classi-
fication assumes that the dysfunction in neural circuits can be
identified with the tools of clinical neuroscience, including
electrophysiology, functional neuroimaging, and newmethods
for quantifying connections in vivo. Third, the RDoC
framework assumes that data from genetics and clinical

neuroscience will yield biosignatures that will augment clini-
cal symptoms and signs for clinical management” (31).

The primary focus for RDoC is on neural circuitry, and the
workhorse for identifying neural circuitry remains functional
neuroimaging, particularly functional MRI (fMRI) methods.
What remains an open question is whether fMRI methods
are sufficiently precise to delineate the putative neural circuits
underlying interindividual differences in behavior and psychi-
atric symptoms.Considering the sheermagnitude of the prob-
lem—86 billion neurons interacting with and influencing each
other throughout the lifespan, adapting to a limitless number
of stimuli and settings—concluding that brain function
remains inscrutable would not be surprising. To compound
the problem, the universal phenomenon of effect sizes deflat-
ing over time as scientific fields mature (44) has also held
here, accompanied by incontrovertible evidence of vastly
inflated false positive rates in many fMRI studies (45, 46).

SOHOWDOES AN INVETERATEOPTIMIST RESPOND?

I begin by celebrating the first major neuroscientific discovery
of the 21st century, the default mode network (47–49). In
2001, Marcus Raichle and colleagues described a baseline
brain state during quiet rest by measuring the brain oxygen
extraction fraction with positron emission tomography,
which, unlike fMRI, is quantitative (50). Despite the lack of
active tasks, the investigators observed consistent patterns
of deactivation in the posterior cingulate and precuneus and
in the medial prefrontal cortex (47). Independently, Bharat
Biswal and colleagues had earlier reported that task-free
fMRI data could yield correlational maps—that is, evidence
of “functional connectivity” (51)—that aligned with task-
based activation maps in the sensorimotor cortex (52, 53).
However, these two lines of investigationwere not joined until
Michael Greicius, then a neurology resident, and Vinod
Menon and colleagues accomplished the feat for the first
time (54). Their key innovation was to identify default mode
network regions of interest from task-associated deactiva-
tions, in a paper handled by Raichle as editor (54). From
that moment on, Raichle’s colleagues at Washington Univer-
sity in St. Louis, led by Steve Peterson, became leading propo-
nents of what has come to be known as resting-state
functional connectivity (55). Still, the approach evoked sub-
stantial resistance (56). In response, Michael Milham and
Biswal collected 1,414 de-identified data sets from 35 imaging
centers and made them easily downloadable on the Neuroim-
aging Tools and Resources site (https://www.nitrc.org/), even
before the manuscript describing the effort was accepted for
publication (57). Within 3 months, Nora Volkow and Dardo
Tomasi had tested this novel method, mapping functional
connectivity density, on these data (58). As they confirmed
independently, this collection of unharmonized data from
throughout the world, obtained on multiple types of magnets,
exhibiting every form of demographic heterogeneity, still
illustrated profoundly universal aspects of the brain’s intrinsic
functional architecture (57).
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Those were exhilarating days, as it briefly seemed that
reclining in a scanner for just a fewminutes could yield stable
indices of interindividual variations in traits across nearly all
conditions and throughout the brain (59) as well as providing
robust indices of brain age (60). That resting-state fMRI cor-
relations are exquisitely sensitive to the effects of even minor
head motion in the scanner was first noticed by Jonathan
Power and colleagues, and almost immediately confirmed by
colleagues at the University of Pennsylvania and our group
(61–63). Ever since, the field has had to work to minimize
the effects of in-scanner head motion, a particular challenge
for ADHD, a disorder characterized by excessive motoric
activity (64).

With regard to the effect of scan duration on test-retest
reliability, data from a single individual who was scanned
twice weekly for nearly a year have provided a benchmark,
suggesting that about 27 minutes of blood-oxygen-level-
dependent (BOLD) data is adequate for obtaining reliable
indices of brain function, with returns diminishing after 100
minutes (65). A similar estimate of 25 minutes emerged
from scanning 13 individuals for 12 sessions, each including
four types of scans, including resting state (66, 67). Fortu-
nately, it is feasible to concatenate multiple sessions to
improve reliability, although some caveats pertain (68).
Between resting-state and task-based scanning, movies pro-
vide an intermediate alternative that improves tolerability,
reduces motion, and can be combined with other forms of
BOLD data to obtain individually relevant indices of connec-
tivity (69). Still, most studies do not come close to obtaining
the requisite quantity of data.

Besides longer scan durations with less motion, multiecho
acquisition of the BOLD signal facilitates removing artifactual
effects of motion from non-motion sources (70, 71). This
method was implemented in an accelerated longitudinal
design that differentiated two modes of developmental trajec-
tories across adolescence: “conservative development” was
characteristic of the primary cortex, which was strongly con-
nected at age 14 and became even more strongly connected
from ages 14 to 26; “disruptive development” was found in
the association cortex and subcortical regions,where connec-
tions that were weak at 14 became stronger, and connections
that were strong at 14 became weaker (72). Application of this
type of approach to conditions such as ADHD would be of
great interest. Unfortunately, the logistics of implementing a
novel acquisition sequence across multiple types of scanners
prevented it from being included in the Adolescent Brain Cog-
nitive Development (ABCD) study.

ABCD represents the new model of prospectively harmo-
nized data collection by consortia addressing a broad major
issue such as adolescent development (73) rather than testing
a specific hypothesis (74), thereby lending itself to multiple
analytical strategies and scientific aims. A total of 11,875 par-
ticipants have been enrolled, at ages 9–10, with the expecta-
tion of longitudinal follow-up for a decade. In an initial
examination relevant to ADHD, dimensional analysis of
ADHD symptoms used the attention problems scale of the

Child Behavior Checklist, which has been shown to converge
on the clinical syndrome (75). In this case, Owens and col-
leagues studied 8,596 participants with analyzable structural
MRI data and between 5,020 and 5,959 data sets for three
fMRI tasks (76). A rigorous approach found that only the N-
back working memory task was able to predict ADHD symp-
tomatology even when accounting for potential confounders
(age, sex, race, pubertal status, handedness, internalizing
score, parental education, and family income), accounting
for just 2.0% of the variance in out-of-sample prediction
(76). As the authors noted, such small effects are consistent
with ENIGMA results and are often meaningful in daily life.
At any rate, the features that best predicted ADHD symptom-
atology were decreases in activations in task-positive regions
(dorsolateral prefrontal cortex, posterior parietal cortex, and
caudal anterior cingulate cortex) and increased activations
in task-negative regions (ventromedial prefrontal cortex, pos-
terior cingulate cortex, lateral temporal cortex, and precentral
and postcentral gyri). These results are wonderfully conver-
gent with hypotheses implicating the default mode network
and task-positive regions in ADHD (77). Structural features
were mostly consistent with functional results and the pub-
lished literature, although at best they accounted for 1% of
the out-of-sample variance and did not survive adjustment
for covariates (76).

These small advances will not yield biomarkers, biosigna-
tures, or improved diagnostic criteria, which constitute
RDoC’s third assumption and its overriding objective (31).
But they are beginning to provide foundations for delineating
the physiological principles of brain function and dysfunction.
Understanding physiology has always been the royal road in
medicine, essentially unattainable in psychiatry until recently.
Fortunately, it appears that mesoscale indices of brain func-
tion and structure capture relevant facets of how the brain
operates.This might not have been the case. If the fundamen-
tal unit of cognitive processing (construed broadly to include
affective and social computations) was as small as a cortical
column or its subunits, then the problem would be nearly
hopeless. Instead, substantially sized brain regions seem to
function as units in sufficiently enduring ways, with substan-
tial spatial overlap across individuals.

We are not there yet, but signs abound of possible clues.
Besides Raichle, Biswal, and Greicius, consider the contribu-
tions of Vinod Menon, the senior author of the seminal
2003 paper that may have revived the field of intrinsic func-
tional connectivity (54). Among Menon’s numerous contribu-
tions, the most enduring may be his role in identifying the
salience network as a key intermediate partner of the default
mode network and the frontal parietal cognitive control net-
work (78, 79). In a prescient review presenting his triple net-
work model of psychopathology (78), Menon laid out “a
parsimonious account that may explain various clinical symp-
toms as a function of enhanced, reduced, or otherwise altered
salience detection.”This derives from the observation,master-
fully compiled in that authoritative overview, that the anterior
insula, a key salience network node, is crucial for network
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switching among the default mode network and frontoparietal
network in a broad range of tasks and clinical conditions (78).

In his group’s most recent contribution, Menon and col-
leagues implement technical and statistical innovations such
as ultrafast temporal resolution fMRI (490 ms) and a novel
Bayesian switching dynamic system unsupervised learning
algorithm (80) to identify dynamic brain states, and drift-
diffusion modeling of simple choice response time-series
data obtained in 29 children with ADHD and 23 healthy
comparison participants (culled from 90 scanned and 107
recruited children). Building on the triple-network focus,
the authors examined regions of interest within the default
mode network, salience network, and frontoparietal network
obtained from an independent study. The Bayesian algorithm
detected four brain states; their temporal properties and
behavioral correlates were examined. Two of the states were
associated with enhanced or worse (more variable) behavioral
performance.The former state was also associated with faster
and more accurate responding and exhibited stronger cou-
pling between salience network and frontoparietal network
regions of interest. The other state predicted worse inatten-
tion scores and differentiated children with ADHD from com-
parison participants. The overall approach is consonant with
RDoC, even if diagnostic categories were used during recruit-
ment. Still, the proof of this puddingwill be in replication.Will
ultrafast scanning turn out to be essential? If so, that will take
years. If not, there are myriad data sources, from ABCD to the
Healthy Brain Network (81), in which analyses of dynamic
states could be conducted in relation to performance meas-
ures such as response time. Given the energy and vitality of
the field (82, 83), such attempts may already be under way.

As I warned, I have presented a biased and selective per-
spective. I have neglected important lines of work, from the
ingenious efforts of Philip Shaw (84), the fruitful partnership
of Damien Fair and Joel Nigg addressing heterogeneity (27,
85–87), the foundational work of Katya Rubia on developing
real-time fMRI biofeedback to influence brain networks (88,
89), admirable consortia such as NeuroIMAGE (90, 91) and
the International Multicenter Persistent ADHDCollaboration
(IMpACT) (92), a longitudinal study of default mode network
development by Yong He (93), the rigorous contributions by
Susan Shur-Fen Gau (94–96), Luis Rohde and colleagues
(97, 98), and the indefatigable Edmund Sonuga-Barke (77),
the astonishingly productive Steve Faraone (5, 38), and on
and on. Beyond brain imaging, there are too many interesting
developments in ADHD research to catalog succinctly. They
can all be summarized by the words of Jerry Fodor with
which this essay opened.We will continue to pull each other
up by our bootstraps, while we celebrate and critique our
remotely plausible theories. As always, they will benefit
from technical advances, permitting greater precision as we
identify brain networks without needing to blur and distort
them to analyze them in a common space. At the other end
of spatial resolution, high-throughput ultra-low-field-strength
anatomic imaging is about to become a reality (99),with func-
tional imaging at the point of care now on the horizon. These

and the continued adoption of large-scale open data-sharing
efforts (100) will provide the next generation of interdisciplin-
ary scientists with the bases to build the royal road of physi-
ological understanding of brain function and dysfunction in
the context of lifelong development.
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