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Rare genomic disorders (RGDs) confer elevated risk for
neurodevelopmental psychiatric disorders. In this era
of intense genomics discoveries, the landscape of
RGDs is rapidly evolving. However, there has not been
comparable progress to date in scalable, harmonized
phenotyping methods. As a result, beyond associations
with categorical diagnoses, the effects on dimensional
traits remain unclear for many RGDs. The nature and
specificity of RGD effects on cognitive and behavioral
traits is an area of intense investigation: RGDs are fre-
quently associated with more than one psychiatric
condition, and those studied to date affect, to varying
degrees, a broad range of developmental and cognitive
functions. Although many RGDs have large effects,
phenotypic expression is typically influenced by addi-
tional genomic and environmental factors. There is
emerging evidence that using polygenic risk scores in
individuals with RGDs offers opportunities to refine
prediction, thus allowing for the identification of those

at greatest risk of psychiatric illness. However, transla-
tion into the clinic is hindered by roadblocks, which
include limited genetic testing in clinical psychiatry,
and the lack of guidelines for following individuals with
RGDs, who are at high risk of developing psychiatric
symptoms. The Genes to Mental Health Network
(G2MH) is a newly funded National Institute of Mental
Health initiative that will collect, share, and analyze
large-scale data sets combining genomics and dimen-
sional measures of psychopathology spanning diverse
populations and geography. The authors present here the
most recent understanding of the effects of RGDs
on dimensional behavioral traits and risk for psychiatric
conditions and discuss strategies that will be pursued
within the G2MH network, as well as how expected
results can be translated into clinical practice to
improve patient outcomes.
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Rare genomic disorders (RGDs), including structural geno-
mic variants such as copy number variants (CNVs) and
sequence-level variants such as single-nucleotide variants
(SNVs), are major contributors to neurodevelopmental
psychiatric disorders (Box 1, Table 1). In clinical samples,
RGDs are identified in 14%237% of individuals with autism
spectrum disorder (ASD), depending on ascertainment (1, 2),
and 2%–7% of individuals with schizophrenia (3). Case-
control association studies have linked 102 genes and
16 CNVs with ASD (4, 5), as well as 14 CNVs with schizo-
phrenia (6). Among the latter, seven were also linked to ASD.
However, for both disorders, a much broader landscape of
rare genomic variants is implicated, as suggested by the
greater burden of rare CNVs in individuals with ASD and

schizophrenia compared with control subjects (5–7). In fact,
statistical models trained on large samples suggest that any
deletion or duplication $1 Mb encompassing coding genes
would be associated with an increase in ASD risk and a de-
crease in cognitive functioning, albeit with a range of effect
sizes (8).

In sharp contrast to the accelerated pace of genomic
discovery, very little is known about the mechanisms by
which genomic variants increase risk for neurodevelop-
mental psychiatric disorders. In recent years, the Na-
tional Institute of Mental Health (NIMH) has invested in
the study of RGDs. The Genes to Mental Health Network
(G2MH) is a newly established NIMH-funded initiative that
collects, shares, and analyzes large-scale data sets combining
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genomics and dimensional measures of psychopathology.
Thepresent article isnot intendedas acomprehensive review
but rather a perspective on the current understanding of
the contribution of rare variants to measures of cognition,
behavior, and risk for psychiatric conditions. To advance the
field, we propose strategies that will be pursued within
the G2MH network and discuss challenges currently faced
by the field and how results from such studies can be
translated to the clinic with potential contributions to
patient care.

DO RARE VARIANTS EXERT SPECIFIC OR SHARED
EFFECTS ON PSYCHOPATHOLOGY?

The nature and specificity of RGD effects on cognitive and
behavioral traits (i.e., whether a gene function or amolecular
pathway leads to particular cognitive and behavioral profiles)

is an area of intense investigation. Multimorbid presen-
tation of neurodevelopmental and psychiatric conditions
is common (9–12). All RGDs studied to date affect cog-
nition to varying degrees and affect a broad range of
cognitive functions, including reaction time, attention,
executive functions, and social cognition (13, 14). Early
studies highlighted distinctive behavioral profiles, such as
social disinhibition, excessive empathy, and nonsocial anxiety
described in 7q11.23 deletions (Williams-Beuren syndrome
[15]), insatiable appetite in paternal 15q11.2-q13 deletions
(Prader-Willi syndrome [16]), sleep disturbances in 17p11.2
deletions (Smith-Magenis syndrome [17]), and childhood
apraxia of speech in 16p11.2 proximal deletions (18).

Recent studies have attempted to quantify distinct and
shared patterns of measurable cognitive and behavioral
traits altered by specific genotypes (19–21). A study of 258 in-
dividuals with neurodevelopmental disorders and 13 CNVs

BOX 1. Definitions relevant to genetics and neurodevelopmental disorders

Rare genomic disorders (RGDs): RGDs have an indi-
vidual prevalence of ,1/2,000 but cumulatively are a
major cause of morbidity, frequently involving neuro-
psychiatric symptoms. We focused on RGDs that have
large tomoderate effect sizes on cognitive and behavioral
dimensions. RGDs are of clinical significance because
they substantially contribute to the expression of psy-
chiatric illness in patients who carry them.

Copy number variants (CNVs):CNVs represent either a
gain (duplication) or a loss (deletion) of a stretch of
DNA .1,000 base pairs.

Neurodevelopmental psychiatric disorders: These dis-
orders refer to a broad spectrum of psychiatric, behavioral,
and cognitive symptoms observed in the first decades of
life and interferingwith daily functioning. At present, there
is no consensus regarding which disorders are included
under the umbrella term “developmental disorders”
and to what extent a distinction can be made between
phenotypes related to early brain development and
those related to later brain maturation (84, 85). Hence,
the concept of neurodevelopmental psychiatric disorder
in our review is not limited to developmental delay,
intellectual disability, learning disorders, autism spec-
trum disorder, attention deficit hyperactivity disorder,
language and motor coordination disorders, mood and
anxiety disorders, and schizophrenia and related psy-
chotic disorders.

Penetrance and effect size: Penetrance refers to the
proportion of individuals with a specific genomic variant
who present with a certain categorical diagnosis. However,
when phenotypes are examined as a quantitative trait,
there is no clear evidence thatRGDs exert effects in only a

subset of carriers. Under the assumption of additive ef-
fects, genomic variants with very large effect sizes show
high penetrance (e.g., trisomy 21, which causes Down
syndrome, decreases IQ by 3.5 standard deviations
on average, resulting in a penetrance of intellectual
disability close to 100%), because symptoms are ob-
servable irrespective of genetic and environmental
backgrounds. On the other hand, small-effect-size (low
penetrance) CNVs (e.g., 15q11.2 deletion) may appear
asymptomatic unless other genetic and/or environ-
mental background factors are conducive to pheno-
typic expression. One important focus of research is the
use of dimensional traits with the aim of replacing
penetrance with quantitative effect sizes. However,
penetrance remains relevant in clinical practice, in
which categorical diagnoses are standard and binary
decisions are required.

Additive and nonadditive genetic effects: The com-
bined effect of several genomic variants on a quantitative
trait is equal to the sum of their individual effects. The
alternative possibility is that of multiplicative effects
(nonadditive). For complex traits, such as cognition and
behavior, the genetic contribution to phenotypic variance
has thus far mainly been attributed to additive effects.
Under this assumption, the variance of a trait is ex-
pected to be the same within a group of CNV carriers
and in the general population (e.g., IQ variance is the
same in 16p11.2 deletion carriers and in unselected
populations). This is in line with existing research on
additional familial and genetic factors that have pre-
viously been associated with the variance of cognitive
and behavioral phenotypes in CNV carriers, as in the
general population.
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found that 80% of carriers met criteria for one or more psy-
chiatric disorders, but overall, the range of affected behavioral
traits was broadly similar for these CNVs, and specific geno-
typesaccountedfora lowproportionofthevariance(5%220%)
(20). Phenotypes with impairments across all CNVs included
mood, sleep, peer relationships, and sustained attention
(Figure 1). Recent studies have leveraged the shared effects of

RGDs on cognition by developing models that can predict
theeffect sizeofanyCNVonIQwithclose to80%accuracy(22).

PHENOTYPIC VARIABILITY

The variability of behavioral symptoms observed in indi-
viduals who carry the same RGD has been the subject of

TABLE 1. Recurrent copy number variants (CNVs) frequently identified in the developmental pediatric and genetic clinicsa

Chromosome
Coordinates
(Genes)

Start and Stop (Mb)
(from hg19)

Effect Size for
IQb

Frequency of
Intellectual
Disability (%)

Odds Ratio for
Autism Spectrum

Disorderc
Odds Ratio for
Schizophreniac

1q21.1 deletion
(CHD1L)

146.53–147.39 –15.15d 16.1 3.2e 6.4f

1q21.1 duplication
(CHD1L)

146.53–147.39 –25.35d 37.8 5.3e 2.9g

NRXN1 deletion 50.14–51.26 –9.0 8.1 7.9e 4.7h

3q29 deletion
(DLG1)

195.73–197.34 –31.5 54.0 19.0e 23.0h

7q11.23 duplication
(ELN)

72.7–74.1 –13.95 14.2 32.0e 16.1h

15q11.2 deletion
(CYFIP1)

22.81–23.09 –5.7 5.3 1.3i 1.9i

15q13.3, BP4-BP5
deletion
(CHRNA7)

30.92–32.51 –21.9 29.5 15.0e 18.0h

16p13.11 deletion
(MYH11)

15.51–16.29 –7.35 6.5 2.5e 2.2f

16p13.11 duplication
(MYH11)

15.51–16.29 –8.7 7.8 — 1.5g

16p11.2 distal
deletion (SH2B1)

28.82–29.05 –9.15 8.2 3.6e 4.4h

16p11.2 distal
duplication
(SH2B1)

28.82–29.05 –3.0 3.6 — 1.3f

16p11.2 deletion
(MAPK3)

29.65–30.2 –26.0j 39.4 14.3e 1.1f

16p11.2 duplication
(MAPK3)

29.65–30.2 –11.0j 10.2 10.5e 11.7h

17p11.2 duplication
(RAI1)

17–21.4 –49.2 90.0 32.0e 11.3f

17q12 deletion
(HNF1B)

34.81–36.22 –11.55 11.0 3.5k 6.6g

17q12 duplication
(HNF1B)

34.81–36.22 –6.6 6.0 — 1.9f

22q11.2 deletion
(TBX1)

19.04–21.47 –28.5 46.0 32.3e 23.0l

22q11.2 duplication
(TBX1)

19.04–21.47 –13.65 13.8 2.0e 0.2h

a Chromosome coordinates are provided with a well-known gene at each locus to help recognize the CNV. Three CNVs with small effect sizes not considered
as RGDs are included (15q11.2 deletion, 16p11.2 distal [SH2B1] duplication, and 17q11.2 [HNF1B] duplication). General-population frequencies are 2.3% for in-
tellectual disability, 1.9% for autism spectrum disorder (from reference 94), and 0.7% for schizophrenia (from reference 95).

b Data from reference 22.
c Data from reference 89.
d Data from reference 90.
e Data from references 4, 5, and 11.
f Data from reference 91.
g Data from reference 92.
h Data from reference 6.
i Data from reference 44.
j Data from reference 11.
k Data from reference 93.
l Data from reference 23.
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several studies (11, 23, 24). Because recurrent CNVs typi-
cally have the same break points and include the same genes
in unrelated individuals, they are well suited to the inves-
tigation of such questions. Hypotheses put forward to ex-
plain phenotypic variability may be broadly classified in two

categories: nonadditive interactions and additive models
(Box 1).

Under the former hypothesis, RGDs may interact with
other variants, but nonadditive effects involving variants at
different loci remain elusive. In rare cases, a deletion may

FIGURE 1. Effects of copy number variants (CNVs) on cognitive and behavioral dimensionsa
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a Rare genomic disorders and dimensional phenotyping, current knowledge, and hypotheses are illustrated in panel A. Neurodevelopmental
psychiatric disorder CNVs affect multiple cognitive and behavioral dimensions and increase the risk for autism spectrum disorder (ASD),
schizophrenia (SCZ), and intellectual disability (ID), albeit with different effect sizes. This scenario incorporates key features of the genomic
architecture of psychiatric disorders, including polygenicity, phenotypic variability (also referred to as pleiotropy), and genetic overlap between
conditions and cognitive and behavioral dimensions. In this scenario, combinations in different proportions of common dimensions lead to
different clinical manifestations classified as psychiatric diagnoses. The four dimensions described in panel A may approximately align with
Research Domain Criteria dimensions: cognitive ability→ cognitive systems; disorganized thought/perceptual abnormalities → perception (a
[sub]construct of the cognitive systems domain); social responsiveness→ systems for social processes; and anxiety-mood→ negative valence.
Effects of 1q21.1, 16p11.2, and 22q11.2 deletions (Del.) and duplications (Dup.) on neurocognitive and behavioral functioning are shown in panel
B. Measures were standardized to control the means and standard deviations. For visualization purposes, scores are converted to absolute,
positive values to highlight impairments in CNV groups compared with control subjects (Z50, vertical dashed line). Behavioral measures were
assessed using subscales from the Child Behavior Checklist. Social responsiveness was assessed with the Social Responsiveness Scale. Sample
sizes were as follows: 1q21.1 Del. (N511); 1q21.1 Dup. (N512 [22]); 16p11.2 Del. (N5137); 16p11.2 Dup. (N5127 [11]); 22q11.2 Del. (N599); 22q11.2
Dup. (N534) (21); and combined control subjects (N5214).
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uncover a second variant on the remaining allele (i.e., re-
cessive condition). For example, in five patients with 22q11.2
deletions, missense variants in the CDC45 gene on the
remaining allele in 22q11.2 deletion carriers were found to
lead to a syndrome associating craniosynostosis, cleft lip and
palate, gastrointestinal, genitourinary and skeletal anomalies,
and short stature) (25, 26). Likewise,RBM8missense variants
on the remaining allele in individuals with 1q21.1 deletions
caused thrombocytopenia-absent-radius syndrome (25, 26).
However, recent data for 22q11.2 deletion syndrome pro-
vide no evidence for such recessive effects for schizo-
phrenia expression. Larger studies are required to
investigate these challenging questions. Indeed, for traits
such as cognition and behavior, the genetic contribution to
phenotypic variance hasmainly been attributed to additive
effects (27). This is in line with studies showing that IQ
variance within groups of 16p11.2 and 22q11.2 deletion
carriers is similar to that in the general population, al-
though the mean IQ is significantly lower. Therefore,
variance in CNV groups is thought to be related to additive
effects of genetic (and nongenetic) factors that are cap-
tured by parental IQ and common variants (11, 23, 28–30)
(Figure 2).

Several conclusions can be drawn from the body of lit-
erature on RGDs. First, although many RGDs have large
effects, in most instances, phenotypic expression of neuro-
developmental psychiatric disorders occurs in the context of
additional genomic and environmental factors. Second,
similar to studies focused only on common single-nucleotide
polymorphisms, as sample sizes increase, an ever-growing
number of rare variants are associated with intellectual dis-
ability, ASD, schizophrenia, and other neurodevelopmental
psychiatric disorders. Third, RGDs are invariably associated
withmore than one psychiatric condition. Fourth, someRGDs
show preferential association with schizophrenia or ASD,
such as 22q11.2 deletions and duplications, respectively (6).
Conceptual models may be put forward to link these obser-
vations (Figure 1A). For example, in a “common dimension-
ality” scenario, we posit that each RGD alters (with different
effect sizes andproportions) the samedimensions of cognition
and psychopathology. Variable alterations across each di-
mension may lead to distinct clinical manifestations classified
as overt neurodevelopmental psychiatric diagnoses (Figure 1).
A systematic and quantitative standardized phenotyping ap-
proach across RGDs would help decompose the contribution
of these dimensions to psychiatric diagnoses.

FIGURE 2. Risk prediction in rare copy number variant (CNV) carriers with and without polygenic risk (PRS) informationa
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a Panel A is a schematic illustration of baseline risk for the general population (dark green) and a large-effect-size rare genomic disorder (RGD) (dark
red). Risk for individuals of both groupswith a top-decile PRS score (light green and light red) is also shown. Although the PRS has the same small effect
size in both groups, it results in a larger increase in the penetrance of a diagnosis in the RGD group. Panel B shows a comparison of the risk conferred
by CNVs for carriers without PRS information (baseline risk [Table 1]) with those with top-decile PRS values. For schizophrenia PRS, the odds ratio was
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An Elusive Phenome: Closing the Gap Between the Tidal
Wave of Gene Discovery and Phenotypes
In this era of rapidly evolving gene discovery, many genomic
variants conferring varying degrees of risk for neuro-
developmental and psychiatric conditions have been iden-
tified. However, there has not been comparable progress in
scalable, harmonized phenotyping measures and methods,
which generally remain more expensive and labor-intensive
than genotyping. As a result, genomic associations have
largely been established for categorical diagnoses, but the
effects of variants on multiple phenotypes and dimensional
traits havenot been investigated on a large scale.Dimensional
phenotyping across diagnostic categories is needed to
identify the underlying mechanisms that may mediate some
of the causal pathways between RGDs and diagnostic psy-
chiatric outcomes (31). A barrier to achieving this has been a
lack of cohorts providing consistent, dimensional assess-
ments across a broad spectrum of RGDs irrespective of
psychiatric diagnoses. The IMAGINE-ID (Intellectual Dis-
ability andMental Health: Assessing the Genomic Impact on
Neurodevelopment) cohort in the United Kingdom has been
one of the few studies of RGDs to employ amultidimensional
deep-phenotyping approach across a range of loci (20). It is
critical that multidimensional phenotyping methods that
capture the full breadth of the neuropsychiatric phenome be
developed and that they be scalable and culturally appro-
priate for large international multisite studies. Previous
publicly available resource efforts, such as the Simons Sim-
plex Collection (32), have focused on specific diagnoses,
providing dimensional phenotyping and exome sequencing
in probands with ASD. The latter allowed researchers to
establish general relationships between RGDs, IQ, gross
motor skills, phonological memory, and language skills (33,
34). Although these resources have been instrumental in
advancing our knowledge, they include a limited set of
RGDs, andmanymeasures used are either disorder specific
(e.g., the Autism Diagnostic Observation Schedule) or
developmentally appropriate only for a particular age
range, making cross-study harmonization of measures a
challenge.

The G2MH strategy aims to capture dimensional phe-
notypes consistently assessed across a range of clinically
ascertained and unselected populations worldwide. This
approach is optimally suited for the Research Domain Cri-
teria (RDoC) framework (35) because genetic effects are
likely to manifest along dimensions of behavior, and indi-
viduals who harbor RGDs can be assessed irrespective of
whether they present with subthreshold symptoms or meet
full criteria for psychiatric diagnoses.

RDoC is a neuroscience-based framework to guide psychiat-
ric research. It was designed to examine and link the distribution
of key behavioral domains to genetics and brain circuitry,
thereby advancing the mechanistic understanding of psy-
chiatric conditions (36). Within the RDoC framework,

RGDs provide a unique opportunity for genome-phenome
association. Such efforts may require adaptations of RDoC
measures to pediatric populations, because most neuro-
developmental psychiatric disorders present in childhood.
The establishment of normative charts for development
will contribute to early identification of risk and protective
parameters and advance precision psychiatry across the
lifespan.

Historically, an important question has been to investigate
whether clusters of dimensional measures associated with
RGDs are representative of behaviorally defined conditions,
such as ASD and schizophrenia, diagnosed in individuals
without any identified RGD (Figure 1).

A study comparing individuals with different CNVs with
autism to individuals with “idiopathic” autism found evi-
dence of a range of profile differences; however, these
differences tended to be subtle (24). Another recent study
showed that CNVs including genes intolerant to haplo-
insufficiency identified in ASD cohorts were not associated
with any differences in ASD severity (34). Individuals with
de novo SNVs (as a group) in ASD cohorts are more likely to
present with motor delay and a less severe symptom profile
with respect to social communication and language deficits
compared to those with ASD without de novo variants (33).

Studies of 22q11.2 deletion syndrome indicate that rep-
resentativeness of neurodevelopmental psychiatric disorders
by specific RGD may vary by phenotype. For example, the
phenomenology of the schizophrenia clinical phenotype in
22q11.2 deletion syndrome is similar to that of idiopathic
schizophrenia (37, 38). In contrast, current evidence suggests
that attention deficit hyperactivity disorder (ADHD) in
22q11.2 deletion syndrome has a more specific profile char-
acterized predominantly by inattention symptoms rather
than hyperactivity symptoms (39). Overall, these findings
suggest that considering idiopathic cases as most pheno-
typically representative of a condition may be questionable.
There may or may not be a clear distinction between the
phenotypic presentation of individuals with and without a
known RGD who meet standard diagnostic criteria for a
particular neurodevelopmental psychiatric disorder.

Additionally, because RGDs can be identified early in
development, there are novel opportunities to conduct
studies using accelerated longitudinal designs to uncover the
early developmental correlates of adult dimensional traits.
Pioneering work in 22q11.2 deletion syndrome has identified
longitudinal dimensional antecedents of psychotic phe-
nomenology, including verbal IQ decline (40), executive
functions, spatial working memory, sustained attention, and
early language measures (41, 42).

Biases and Challenges in the Field
Ascertainment methods. As in all research involving human
subjects, several sources of ascertainment bias may affect
studies of RGDs. Such studies havemainly been conducted in
clinically ascertained individuals (i.e., referred clinically
for genetic testing), which is expected to favor inclusion of
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more severely affected individuals. This is particularly
problematic for genomic variants that have effects that are
disproportionately milder than typical expression required
for clinical referral. The 15q11.2 deletion is a prime example
because it hasmild effects and occurs relatively frequently in
the general population and therefore is frequently identified
in neurodevelopmental disorder and genetic clinics. The
literature is extensive and confusing, with clinical series
reporting cases with mild to severe neurodevelopmental
symptoms as well as malformations, leading authors to de-
lineate a microdeletion syndrome with considerable incom-
plete penetrance (43). Yet, studies in unselected populations
and meta-analysis of case-control studies have demonstrated
that in fact this deletion, on average, confers very small risk
for major disease (odds ratio ,2 for ASD, schizophrenia,
intellectual disability, and congenital heart disease) and has
small effects on cognitive ability (a 4-point drop in IQ)
(44, 45).

Methods to limit certain ascertainment biases, especially
clinical severity biases, include family studies and the use of
unselected populations and general population cohorts.
Family studies evaluating first-degree relatives who do not
carry the variant of interest allow adjustment for genetic and
environmental background factors. Such approaches have
provided robust estimates of the effects of RGDs on cognitive
and behavioral traits (11, 28). Unselected population studies
have been successfully used to accurately estimate effect
sizes of RGDs on cognitive traits (22, 45–47). As sample
sizes rapidly increase, this approach will become rele-
vant even for very rare variants (48). However, such stud-
ies introduce other biases because “unselected” cohorts
tend to select against the inclusion of the most affected
individuals.

Genomic studies in general population cohorts (epide-
miological samples representative of the entire populations)
remain uncommon and would theoretically represent the
gold standard for unbiased estimates. The Integrative Psy-
chiatric Research Consortium (iPSYCH) case-cohort study
has examined 30,000 randomly sampled control subjects and
57,377 case subjects born between 1981 and 2005 identified
within theDanishhealth system tohave adiagnosis ofADHD,
major depressive disorder, schizophrenia, ASD, or bipolar
disorder (49). The population prevalence was 1:3672 and
1:1606 for deletions and duplications, and 60% of deletion
carriers weremissed by clinical ascertainment, as would be
expected for a cohort born before the routine use of
chromosomal microarray analysis in diagnostics. By age 32,
10% of these CNV carriers had a recorded diagnosis of
ADHD, ASD, or intellectual disability. These estimates
suggest that previously reported prevalences of ASD and
schizophrenia in clinically ascertained samples may have
been overestimated (37). However, epidemiological stud-
ies, such as iPSYCH, can potentially introduce other biases,
such as the lack of systematic standardized assessment
methods leading to underestimation of diagnoses, symp-
toms, and disabilities. In addition, expression of both

cognitive and behavioral phenotypes varies widely across
the lifespan (50).

The size and number of genomic studies in unselected
population cohorts have significantly increased in the past
decade. Because CNVs can be identified using data from
genotyping arrays, such studies have been informative on the
effects of CNVs on cognition and behavior in individuals who
were not selected for a particular condition. However, such
studies tend to recruit individuals who are, on average,
healthier than the general population, and therefore car-
riers of RGDs can be significantly underrepresented (for
example, the frequency of 16p11.2 and 22q11.2 deletion
carriers in the UK Biobank database was 1/4000 and
1/30,000, respectively—twofold and sixfold lower than ex-
pected) (22, 51, 52). Mortality effects of certain CNVs (53, 54)
may also play a role.

Cultural biases. Improving the representation of diverse
populations (i.e., cultural, geographical background, and
ancestry) inmental health and genomic research is an urgent
scientific priority. However, the majority of assessment tools
for cognition and psychiatric and developmental disorders
have been developed in high-resource contexts, with a large
proportion of validation samples being of anglophone and
European ancestry. Studies adapting or validating assess-
ment tools to account for different environments, languages,
and cultural backgrounds remain scarce. As a result, the
overall validity of phenotypic data outside of these pop-
ulations can be questioned. In particular, the interpretation
of reported or observed symptoms and comparability of data
from different contexts and populations remains a challenge
(55, 56).

Subjective methods of assessments—diagnostic criteria. In-
herent to all studies in this field is the challenge stemming
from the fact that DSM and ICD remain almost entirely
descriptive and agnostic to etiology. Consequently, even
though based on objective criteria describing symptoms and
functional impact, psychiatric nosology does not necessarily
coincide with biologically valid distinctions between phe-
notypic classes (57). While this challenge is not exclusive for
psychiatry—in other fields of medicine, there are also diag-
noses without established biological correlates—this chal-
lenge is substantiallymore prominent in psychiatry.Whereas
for many nonpsychiatric conditions a variety of laboratory
examinations are available to confirm a diagnosis, the ade-
quate identification of psychopathology depends on the
reporting ability (andwillingness) of thepatient and/orproxy
and the observational skills of the examiner. Subsequently,
the obtained behavioral data require interpretation, adding
another level of variability. For example, difficulty with eye
contact may be interpreted as social anxiety or indicative of
communication deficits, such as ASD. Ascertainment may
also vary across clinics where patients with RGDs are fol-
lowed (psychiatry, psychology, developmental pediatrics,
neurology, and clinical genetics). These difficulties are
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pertinent to any study of psychiatric diagnoses, and as a
result of these challenges, rates of psychiatric diagnoses and
symptoms in patients with RGDs are not definitively
established.

PRECISION PSYCHIATRY: TRANSLATING
KNOWLEDGE INTO THE CLINICAL SETTING

Predictive Testing
Given the substantial heritability of many psychiatric dis-
orders (Figure 3), there is increasing interest in using genetic
variants to identify individuals at high risk of developing

psychiatric symptoms. To date, polygenic risk scores (PRSs),
whichareadditivemodels aggregating theeffect of thousands
of common variants, remain poor predictors of psychiatric
disease in general medical settings (58). For example, indi-
viduals with schizophrenia PRS values in the top decile have
approximately a 2% risk of developing schizophrenia, com-
pared with a 1% risk in the rest of the population (23, 59).
While PRSswill continue to improve as sample sizes increase
for genome-wide association studies (GWASs), we are still a
longway from filling in the current “missing heritability” gap
of psychiatric conditions and cognitive traits (60). In addi-
tion, the GWASs used to compute PRSs were performed in

FIGURE 3. Heritability/single-nucleotide polymorphism (SNP) heritability for cognitive and behavioral dimensions relevant to rare
genomic disorders (RGDs)a
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individuals of European descent and do not generalize to
individuals with other ancestries.

On the other hand,while neurodevelopmental psychiatric
disorderRGDsonly explain a small proportion of population-
based liability for psychiatric risk, their large effect sizes
substantially increase baseline risk in carriers. Using PRSs in
the context of an RGD offers additional opportunities to
refine prediction. A recent study showed that applying
schizophrenia and IQ PRS information to high-risk indi-
viduals with 22q11.2 deletions provided positive predictive
values that approached levels of clinical utility (23). The
baseline prevalence of schizophrenia and intellectual dis-
ability in 22q11.2 deletion carriers was 23% and 41%, re-
spectively.However, among22q11.2 individuals in thehighest
and lowest schizophrenia PRS risk deciles, schizophrenia
prevalence was 33% and 9%, respectively. Similarly, 63% of
individuals in the lowest IQ PRS decile had intellectual
disability, compared with 24% in the highest decile (23).

These results in individuals with 22q11.2 deletions appear
to be consistent with additive models, as shown in Figure 2A
and 2B, where we estimate positive predictive values by
combining previously published data on the effect sizes of
19 CNVs on cognitive ability and risk for schizophrenia and
ASD and the effects of PRSs for IQ, ASD, and schizophrenia
on their corresponding trait and disease risk. If our as-
sumptions are correct, this approach could eventually pro-
vide clinically meaningful stratification for CNVs with large
effect sizes in the range of that observed for 22q11.2 deletions
(61). In addition, modest increases in PRS performance,
which we expect in the near future, could have a significant
impact on psychiatric risk stratification for some RGDs. On
the other hand, under additive model assumptions, RGDs
with smaller effect sizes are unlikely to benefit as much from
PRSs unless the field uncovers evidence of nonadditive in-
teractions. Additionally, CNVs with extremely large effect
sizes (e.g., the impact of trisomy21on IQ) (Figure2B)maynot
benefit from PRS stratification because most of the risk is
already conferred by the RGD itself.

Preventive Care and Interventions
Guidelines for clinical care and follow-up of individuals who
carry specific RGDs have been published for a few high-
impact variants (62–64), alongwith general recommendation
for any RGDs (65).

Relevant guidelines include multisystem assessments
beyond the initial reason for referral, taking into account
associated comorbidities, and recognizing the need for co-
ordinated multidisciplinary care over the lifespan, inclusive
of medical, psychological, and social services, as well as ge-
netic counseling (62–64). Individuals with RGDs often have
needs that transcend single specialties and can provide
challenges to existing services (62–64, 66).Manyof thehighly
penetrant risk variants for neurodevelopmental disorders
also seem to confer considerable risk for mood and anxiety
disorders (50, 52, 67), which reinforces the need for psy-
chiatric services.

Predictive testing for neuropsychiatric disorders occurs
routinely as a by-product of chromosomal microarray and
whole-exome or genome sequencing prescribed in prenatal
(68), neonatology, and developmental pediatric clinics (al-
though diagnostic practices vary widely across health sys-
tems). Although these tests are typically ordered to diagnose
malformations or nonspecific, and often transient, motor
symptoms, such as neonatal hypotonia, in many cases the
diagnosed RGD provides knowledge about increased risk for
psychiatric symptoms and disorders that may manifest years
or even decades later and about other treatable medical
conditions. Currently, however, patients are only seen by
psychiatric services if they are experiencing symptoms.

The positive predictive value of RGDs, especially when
combined with additional genetic factor PRSs (as discussed
above), has the potential to provide great clinical value and
represents opportunities to investigate the efficacy of pre-
ventive interventions. Information about underlying genetic
causes can also be beneficial for the planning of appropriate
educational support (62–64). Early involvement and close
collaboration of primary care, clinical genetics, and devel-
opmental pediatrics with child, adolescent, and adult psy-
chiatry may be beneficial for providing clinical care that can
optimize outcomes.

Lack of Routine Genetic Testing in Psychiatric Clinics
Guidelines have been established for clinical genetic testing
in patientswith developmental delay, intellectual disabilities,
ASD, andcomplex learningdisabilities, in addition topatients
with major congenital anomalies (69–71). Genetic testing for
CNVs and SNVs is primarily carried out in genetic clinics,
prenatal clinics, and some developmental pediatric and
neonatal clinics. However, knowledge about clinical appli-
cations of genetics ismodest, and diagnostic genetic testing is
still a rare practice in child and adult psychiatry and in many
resource-limited settings (72). This has led to lost opportu-
nities for patient care and training for practitioners whomay
followmany patientswith unrecognized RGDs (73). (Clinical
vignettes are provided in Box 2.)

Key challenges to implementation of diagnostic genetic
testing recommendations include inadequate medical genet-
ics training by psychiatrists, particularly related to practical
issues of test selection, results interpretation, and genetic
counseling. A recent study showed that the likelihood for
child psychiatrists to order genetic testing was related to the
clinician’s own perceived knowledge about these aspects (74).
Another challenge is the lack of a unified diagnostic approach
for patients with RGDs, whereby psychiatric symptoms and
genetic etiology are diagnosed and managed as two entirely
separate clinical realities, despite their obvious connection
(75), except where specialty clinics exist (62–64, 66).

While inconsistencies remain in recommendations for
clinical genetic testing and medical education, depending on
the professional group cited and the recency of their pub-
lished statement, initiatives for harmonization are starting to
occur. For example, the Residency Education Committee of
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the International Society of Psychiatric Genetics (ISPG)
published recommendations for the medical training of
psychiatrists and endorsed consideration of genetic testing
(76). Both the American College of Medical Genetics and
Genomics and the European College of Medical Genetics
recommend chromosomal microarray analyses as a first-tier
evaluation of all children with ASD, intellectual disability,
neurodevelopmental disorders, or congenital anomalies (71,
77). The United Kingdom’s National Institute for Health and
CareExcellence,however, suggestsdeferring toevaluationby

medical genetics specialists for decisions on genetic testing.
A separate multidisciplinary consensus statement that in-
cluded a meta-analysis by an expert consensus group cites
evidence for high diagnostic yields and recommends exome
sequencing as a first-tier clinical test in individuals with
intellectual disability orASD (78). Individual researchgroups
have also endorsed genetic testing for patients with
schizophrenia, based on evidence for clinically relevant
CNVs in this population (79, 80). However, practice guide-
lines from APA suggest “genetic testing” in the context

BOX 2. Clinical vignettes

Patient 1: In the course of her participation in a research
project, a 41-year-old woman diagnosed with idiopathic
epilepsy, learning disabilities, and an unspecified psy-
chotic disorderwas found to have a 15q13.3 deletion. This
recurrent deletion has been well described in the liter-
ature and is associatedwith variable neurodevelopmental
psychiatric disorder phenotypes that include epilepsy,
schizophrenia, and intellectual disability. On reviewing
her genetics laboratory report with a genetic counselor,
the patient expressed profound relief aboutfinally having
a tangible, medical explanation for her history. She de-
scribed the stigma of living with learning and psychiatric
disabilities, and she perceived that extended family
members, and even some doctors, blamed her past drug
use and lifestyle choices for these conditions. In recent
years, she had become disillusioned with medical spe-
cialists and was inconsistent in showing up for doctor
appointments. Subsequent communication with her
primary care and specialty providers about her genetic
diagnosis led to scheduling of long overdue follow-up
care. In addition, twoofher adolescent childrenwere also
found to have the 15q13.3 deletion through cascade
testing. Her 16-year-old daughter was receiving special
education services for autism spectrum disorder, while
her 19-year-old sonhad low-average intelligence, inactive
epilepsy, and a diagnosis of attention deficit hyperactivity
disorder,whichwasuntreated.Her twoyounger children
weredeveloping typically andwerenot genetically tested.
A medical plan was developed for her older son and
daughter,andthefamily followedthroughwithneurological
and developmental medicine appointments. During a
follow-up genetic counseling visit, the patient and her hus-
band expressed high satisfaction with finally having a uni-
fying genetic explanation for the family’s history of
neurodevelopmental psychiatric disorder. The family’s
strong interest in their genetic diagnosis led to a reen-
gagement, after many years without medical follow-up, with
specialty providers who could provide care informed by
current and future knowledge about the 15q13.3 deletion,
including the potential for targeted treatments (86–88).

Patient 2: A woman in her early 30s was admitted to an
inpatient psychiatric service for first-episode psychosis.
She experienced a gradual onset of psychotic symptoms
over 2 years, culminating in delusions, paranoid ideation,
auditory hallucinations, and inability to function. Perti-
nent medical history included an episode of cyanosis
shortly after birth, which revealed a ventricular septal
defect that spontaneously closed. At age 8, she was di-
agnosed and treated for hypothyroidism. Chronic otitis
media since childhood required tubes and eventuated
with hearing loss requiring hearing aids. The patient had
been treated for thrombocytopenia and iron deficiency
anemia, diagnosed at age 8. At age 16, she developed
seizures,whichwerewell controlled bymedications.Her
developmental history was noted for slight delay in
achieving milestones. She was a good student in ele-
mentary school, but mathematics was always a challenge
for her. She required accommodations in high school,
although her IQ assessed at age 18 revealed that she was
intellectually average. She graduated from college with
support and attained a part-time job that she maintained
for years. Her psychiatric historywas notable for anxiety,
diagnosed at age 8,which improvedwith treatment of her
hypothyroidism. Following inpatient care, her psychotic
symptoms improved significantly. She was not able to
return to her previous job but did volunteer work regu-
larly.Clinical examinationanda full reviewofhermedical
history, conducted when she presented to the outpatient
psychosis program, suggested that 22q11.2 deletion syn-
drome may underlie the range of disorders manifested.
Shehadnever beengenetically evaluated andagreed tobe
tested; the diagnosis was confirmed. The relief experi-
enced by the patient and her family was immense. The
realization that the multiple issues and challenges she
faced were not due to failure in her upbringing but to a
rare genetic disorder “took a rock off the chest.” They
expressed their wish that they had known the genetic
diagnosis much earlier, when they could have connected
with support groups and learned from the experience of
others with this condition.
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of psychotic symptoms and mention 22q11.2 deletions
without further clarification, while the Canadian Psy-
chiatric Association recommends “genetic testing based
on the history and physical examination of the patient,
especially at the time of the first episode of psychosis.” A
position statement by the ISPG opines that diagnostic
genetic testing may have value for patients with ASD or
intellectual disability, while offering no specific recom-
mendations on schizophrenia.

Lack of testing in the psychiatric clinic also has sig-
nificant impacts on scientific advances limiting the
number of clinically initiated projects and reports. As an
example, there are very few large-scale reports on the
yield of genetic testing for schizophrenia in a clinical
setting. Increasing the implementation of genetic testing
in psychiatry will require the integration of medical ge-
netics in clinical training.

G2MH ROADMAP

Given the promise of genomics approaches to neuro-
developmental psychiatric research, but recognizing the
need to tackle the knowledge gaps and challenges dis-
cussed throughout this review, the G2MH network (https://
genes2mentalhealth.com) was established in 2019 with
funding from NIMH and the Eunice Kennedy Shriver Na-
tional Institute of Child Health and Human Development.
The network currently includes researchers representing
14 institutions in North America, Europe, and Africa, all with
a shared goal of creating a robust phenotypic pipeline to
standardize and accelerate the clinical characterization of
RGDs. Conceptually, while few clinical conclusions can be
drawn by studying a single individual with a specific RGD,
aggregated data on standardizedmeasures from a substantial
sample of individuals with the same genetic disorder would
allow meaningful analyses, fuel hypotheses, and drive dis-
covery. As such, the G2MH network espouses a strong
commitment to data sharing as an essential strategy to reach
sample sizes required to power analyses. Its initial focus is
on establishing processes for the collection, sharing, and
harmonization of quantitative data from measures of cog-
nition and behavior (Figure 3) across multiple genomic
variants that confer increased risk of adverse developmental
and psychiatric outcomes. Currently, the five main activities
of the network are new data collection, leveraging archival
data, phenotypic harmonization, identifying new satellite
projects, and data sharing.

New Data Collection
Cognitive and behavioral measures investigating the di-
mensions detailed in Figure 1 will be collected in 2,300
probands who carry RGDs at five target loci (1q21.1, 15q13.3,
16p11.2, 22q11.2, and CHD8) and their family members, as
well as in a cohort of 1,000 individuals with ASD and re-
lated neurodevelopmental disorders and their parents and
a matched number of unaffected community control

children. Recruitment and assessments will take place in
very different health systems across North America,
Europe, and Africa. Additional genetic factors present in
probands and family members will be characterized via
genotyping and whole-genome sequencing. Phenomena
such as dynastic effects and assortative mating can induce
correlations between genotypes and phenotypes. By using
family data, we will investigate how familial (genetic and
environmental) factors may have affected the estimated
effect sizes of genomic variants in cognitive and behavioral
traits (81).

Leveraging Archival Data
There are many opportunities to identify rare CNVs in large
unselected and clinical populations, with cognitive and be-
havioral assessments as well as data from genotyping arrays.
Therefore, G2MHwill also coalesce data for close to 800,000
individuals across 30data sets, including individuals from5 to
80 years old. CNVs will be identified using genotyping array
data. The effect of recurrent CNVs, as well as nonrecurrent
CNVs, will be consistently measured across cognitive and
behavioral dimensions discussed above (Figure 1). Many of
these population cohorts will provide much more informa-
tionon smallerCNVs thanpathogenic large-effect-sizeCNVs
that are the focus of this review. However, the latter are
typically multigenic and inherently complex (e.g., 22q11.2
deletions include 50 genes, 10 of them being intolerant to
haploinsufficiency). Several studies have shown that
models trained on observations of small, nonpathogenic
variants in the general population can predict the effects of
large multigenic pathogenic variants (22, 34, 47). There-
fore, studying all recurrent and nonrecurrent CNVs, re-
gardless of their effect size, is a strategy to help decipher
the diversity of mechanisms that are at play in large
pathogenic CNVs.

Phenotypic Harmonization Strategy
Newphenotypicdata collectionandarchival datawill require
harmonization for joint analyses. Cohort-specific phenotypic
data (diagnostic instruments, rating scales, self-reports, and
cognitive assessments) will bemapped to the key dimensions
shown in Figure 1 and integrated into a normalized data set
in a central database. Integrative analyses will be usedwhere
factor models estimated in disparate studies are transformed
to minimize measurement invariance.

New Satellite Projects
Currently, G2MH focuses on a small proportion of neuro-
developmental psychiatric disorder-associated RGDs. On-
going and future studies targeting other genomic loci are
encouraged to join the network, including studies of
monogenic disorders or CNVs. G2MH now includes inves-
tigators studying additional loci, such as 3q29, 16p12.1, and
17q12. The harmonization strategies described above will
be applied in order to perform analyses across as many ge-
nomic loci as possible.
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Data Sharing
Data will be made available to the broader research com-
munity. The central hub for data sharing will be the
NIMH Data Archive. Individual projects will make reg-
ular deposits of genomic data. Access to data derived from
human samples will be shared using a controlled access
mechanism that complies with regulatory requirements
and governance policies regarding protection of personal
information.

The projects currently included in G2MH are limited to
prospective data collection of the most frequent recurrent
CNVs, as well as data available fromCNV carriers identified
in unselected populations. Therefore, a broad spectrum of
RGDs will remain undocumented. When fully operational,
an expanding number of G2MH member sites will con-
tinuously contribute to a central database, phenotype and
genotype data from consented families who carry RGDs at
additional genomic loci. Data will be derived from a variety
of sources, including prospectively collected and archival
RGD research. Additionally, some G2MH sites have
established processes to capture research-grade data gen-
erated as a by-product of clinical care of consented indi-
viduals with RGDs, a cost-effective strategy that is not
utilized by other large-scale phenotyping efforts. This
unique “learning health care” approach (82) capitalizes on
freely available clinical information, redirecting valuable
research funds away from data generation toward analysis
and discovery. Ultimately, the G2MH aims to fuel break-
throughs in treatment by creating a cost-effective and
continuously expanding data resource with actively en-
gaged,well-characterized familieswhowouldbepotentially
interested in participating in future drug development and
nonpharmacological interventions.

G2MH is complementary to other major psychiatric
genomics efforts, such as the PsychENCODE Consortium
(https://www.nimhgenetics.org/resources/psychencode),
which focuses on noncoding functional genomic elements
in the human brain, with the goal of elucidating their role
in the molecular pathophysiology of neurodevelopmental
psychiatric disorders. Preclinical models (both animal and
in vitro/cellular models) of these genetic defects offer
“bottom-up” insights into neurobiological mechanisms
underlying these human conditions (83).

CONCLUSIONS

With the increasing implementation of genetic testing into
clinical care,RGDsare beingmore routinely identified.While
the resolution, scope, andaccuracyofgenetic testingmethods
have advanced substantially over the past two decades
(84–97), our ability to describe associated neurodevelop-
mental and psychiatric phenotypes, both categorically and
dimensionally in a consistent and unified way, is lagging
behind. RGDs represent unique opportunities to elucidate
mechanisms underlying risk for neurodevelopmental psy-
chiatric disorders. Inorder to fully exploit these opportunities,

comprehensive and harmonized phenotyping strategies are
required.G2MHwillprovide large-scaledata to investigate the
effects of RGDs on dimensional phenotypes and additional
genetic and environmental factors thatmodulate these effects.
These results will help to refine clinical outcome predictions
anddesign future interventions that canbe implemented in the
clinic to improve patient outcomes.
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