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Objective:Deathby suicide is a highly preventable yet growing
worldwide health crisis. To date, there has been a lack of ad-
equately powered genomic studies of suicide, with no sizable
suicide death cohorts available for analysis. To address this
limitation, the authors conducted the first comprehensive
genomic analysis of suicide death using previously un-
published genotype data from a large population-ascertained
cohort.

Methods: The analysis sample comprised 3,413 population-
ascertained case subjects of European ancestry and 14,810
ancestrally matched control subjects. Analytical methods in-
cluded principal component analysis for ancestral matching
and adjusting for population stratification, linear mixed model
genome-wide association testing (conditional on genetic-
relatedness matrix), gene and gene set-enrichment testing,
and polygenic score analyses, as well as single-nucleotide
polymorphism (SNP) heritability and genetic correlation esti-
mation using linkage disequilibrium score regression.

Results: Genome-wide association analysis identified two
genome-wide significant loci (involving six SNPs: rs34399104,

rs35518298, rs34053895, rs66828456, rs35502061, and
rs35256367). Gene-based analyses implicated 22 genes on
chromosomes 13, 15, 16, 17, and 19 (q,0.05). Suicide death
heritability was estimated at an h2SNP value of 0.25 (SE=0.04)
and a value of 0.16 (SE=0.02) when converted to a liability
scale. Notably, suicide polygenic scores were significantly
predictive across training and test sets. Polygenic scores for
several other psychiatric disorders and psychological traits
were also predictive, particularly scores for behavioral dis-
inhibition and major depressive disorder.

Conclusions: Multiple genome-wide significant loci and
genes were identified and polygenic score prediction of sui-
cide death case-control status was demonstrated, adjusting
for ancestry, in independent training and test sets. Additionally,
the suicide death samplewas found to have increased genetic
risk for behavioral disinhibition, major depressive disorder,
depressive symptoms, autism spectrum disorder, psycho-
sis, and alcohol use disorder compared with the control
sample.
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Death by suicide is a behavioral event that reflects a complex,
heritable phenotype with diverse clinical antecedents and
environmental risk factors (1). The estimated annual age-
adjusted prevalence rate of suicide death is approximately
0.014% in theUnitedStates (2), and this rate has been steadily
increasing since 2000 (3). Suicide is now ranked the second
leading cause of death among all persons 15–24 years old in
the United States (4). As such, suicide is considered a major
public health challenge (5), which has spurred research into
its etiology and clinical prediction (6, 7).

While it is established that suicide is significantly heritable
(8), well-powered genomic research on the topic has been
largely limited to the study of suicide-related behaviors rather

than the ultimate phenotype of suicide death. And although
results from well-powered genome-wide association stud-
ies (GWASs) of suicidal behavior have advanced our un-
derstanding of the process (9), the vast majority of suicidal
behavior does not result in suicide death (1, 10). Thus, suicidal
behavior represents a less severe and likely more heteroge-
neous phenotype than suicide death, characteristics that may
adverselyaffect statisticalpower todetect genetic associations.
Conversely, the unambiguous phenotype of suicide death
avoids several confounders inherent in the study of suicidal
behavior or ideation andalso focuses studyonone of the single
most critical contemporary public health outcomes. Previous
genomic studies of suicidal behavior have also been limited by
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narrow ascertainment, examining only individuals with spe-
cific diagnoses (e.g., mood disorders, psychotic disorders) in
order to maximize severity and accommodate post hoc study
designs. Here, we avoided this limitation, instead using
population-based sampling with ascertainment wholly in-
dependent of any co-occurring diagnoses, thus improving the
representativeness of cases to the corresponding population
and, consequently, the generalizability of results.

Suicide death, like its associated clinical antecedents, in-
cluding schizophrenia and depression, has a highly multi-
factorial, and likely highlypolygenic, etiology (9, 11). Currently,
the scientific literature lacks well-powered studies of suicide
death in relation to molecular genetic risk for any medical or
psychiatric diagnoses, and no robust polygenic scores have yet
beendeveloped for thecritical outcomeofsuicidedeath.There
are, however, a fewmodestlypoweredGWASsof suicidedeath
in the literature (12, 13), the largest of which combined two
independent Japanese cohorts totaling 746 deaths by suicide
(13). Additionally, a recent UK Biobank GWAS of suicidal
behavior conducted preliminary polygenic analyses of suicide
deathusingaverymodestnumberofdeathsby suicide (N=127)
(14). Of note, these smaller studies reported evidence of poly-
genicity in both suicidal behavior and suicide death but with
widely varying single-nucleotide polymorphism (SNP)-based
heritability estimates, fromanh2SNPof4.6 (15) and7.6%(14) for
suicidal behavior not including death to an h2SNP of 35%248%
for suicide death (13). The present study marks a notable ad-
vance fromearlier research, becauseweused theworld’s largest
DNAdata bank of suicide death,mergedwith amassive bank of
electronicmedical recordandsociodemographicdata (16, 17), to
model common variant genetic, and clinical phenotypic, pre-
cursors of suicide death.

This study adds to the growing body of genomic research on
suicide (13, 14),providing thefirstadequatelypoweredGWASof
suicide death. In our analyses, we integrated data on modes of
suicide death, medical and psychiatric diagnostic (ICD-10)
codes (18), and medical and psychiatric polygenic scores to
comprehensivelymodelcommonvariantgenetic risk for suicide
death. Secondary analyses of sex differenceswere conducted as
a result of the substantial sex differences in suicide death rates
and modes of suicide death (19, 20). Reliable and significant
prediction of case-control status was achieved, adjusting for
ancestry, using both a novel polygenic score for suicide death
and polygenic scores for a range of comorbid psychiatric and
medical risk factors, particularly behavioral disinhibition,major
depressive disorder, and depressive symptoms. Additionally,
gene set enrichment, SNP heritability, and genetic correlations
were examined in this unique, unpublished data resource. We
concludewith a brief discussion of the relevance of ourfindings
to the broader field and promising future research directions.

METHODS

Sample Ascertainment
Case samples. In collaborationwith the centralized statewide
Utah Office of the Medical Examiner (OME), we obtained

DNA samples from approximately 6,000 persons who died by
suicide. The centralizedOMEandconservative determination
helped to maximize the accuracy of suicide case status (21).
Suicide cause-of-death determination resulted from detailed
investigation of the scene of the death and circumstances of
death, determination of medical conditions by full autopsy,
review of medical and other public records concerning the
case, interviews with survivors, and standard toxicology
workups. Suicide determination is traditionally made quite
conservatively because of its effect on surviving relatives.

DNA from individuals who died by suicide was extracted
from whole blood using the Qiagen Autopure Cell Lysis
Solution automated DNA extractor (www.qiagen.com).
Genotyping is described below. Data collection and geno-
typing for the Utah Suicide Study is ongoing. To date, 4,381
samples have been genotyped in twowaves (waves 1 and 2) as
determined by the date of sample receipt and the availability
of genotyping funds (for further details on the sample col-
lection, see the Methods section in the online supplement).
After quality-control procedures and ancestry analysis were
performed, the data comprised 3,413 samples of individuals
whodiedby suicide inUtah.TheUtahpopulation is primarily
Northwestern European in ancestry, a relatively genetically
homogeneous groupwith low inbreeding across generations,
comparable to the rest of the United States (22).

Control samples. In the Generation Scotland database, DNA
fromcontrol subjects closelymatching the ancestry of the case
subjects was obtained from previously curated data sets in the
United Kingdom. The wave 1 analysis included 3,623 founder
control subjects from the population-based Generation Scot-
land Scottish Family Health Study (23). The Generation
ScotlandScottishFamilyHealthStudy(N.24,000)comprised
an ancestrally comparable population-based cohort for com-
parison with the suicide decedents in Utah. To eliminate
confounding arising from intra-data-set relatedness, only the
3,623 founders from the Generation Scotland data set were
used in analyses.

A total of 11,049 control samples from the UK10K Rare
Genetic Variants in Health and Disease Project (24) were
analyzed inwave 2 and in GWAS analyses of bothwaves. This
second control cohort comprised approximately 4,000 ge-
nomesalongwith6,000exomes fromindividuals in theUnited
Kingdom with selected health phenotypes. We chose these
data as a result of extensive phenotyping and characterization
of any medical conditions present and to avoid choosing a
cohort of entirely psychiatrically and medically healthy indi-
viduals. A total of 4,000 highly phenotyped “super control”
samples were supplied from the TwinsUK Registry from
King’s College London and the Avon Longitudinal Study of
Parents and Children. The UK10K Project was a collaborative
project to examine obesity, autism, schizophrenia, familial
hypercholesterolemia, thyroid disorders, learning disabil-
ities, ciliopathies, congenital heart disease, coloboma, neuro-
muscular disorders, and rare disorders, including severe
insulin resistance. Analyses of this control cohort included all
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diagnostic groups. While this inclusion may have been
conservative because of possible associations of chronic
disease with suicide risk, determination of effects of specific
disease states was beyond the scope of this study. Genotyping
and sequencing procedures for the UK10K Project (http://
www.uk10k.org) have been described elsewhere (24), and all
molecular genetic data from the project were filtered to the
hard-call variants present in our suicide death cohort before
imputation of all cohorts simultaneously.

1,000 Genomes Reference Panel. The CEU population from
the 1,000 Genomes Project (25), which includes only Utah
residents carefully screened for Northwestern European
ancestry, was utilized as a model for excluding ancestrally
discordant suicideandcontrol samples.TheseCEUdatawere
downloaded from the 1,000 Genomes Project public re-
pository. Data from unrelated individuals in the CEU pro-
vided a compelling, albeit small, ancestrally matched control
resource (N=99). A variety of candidate control sampleswere
assessed by principal component analysis for ancestral
comparability to CEU and decedent data, with the UK10K
Project and Generation Scotland founder data representing
the closest match.

Control samples from theUtah cohortwouldhave been an
ideal match for the suicide case samples from this cohort, but
as with many GWASs, local control samples were not readily
available at the sample size required forGWAS.Samples from
the Centre d’Etude du Polymorphisme Humain (CEPH)
ancestry 1,000 Genomes were a useful comparison group to
assess the likelihood that control samples from the United
Kingdomwere an appropriatematch for our case samples. In
addition (and described inmore detail below), we performed
aGeneration Scotland control-UK10KProject control GWAS
and subsequently eliminated any SNPs from the case-control
analysis that evidenced signal between the control cohorts.
This was performed to minimize the possibility of false
positives in the case-control GWAS as a result of population
and geographic stratification across cohorts.

Genotyping and Quality Control
Suicide case subjects were genotyped using the Illumina
Infinium PsychArray platform, measuring 593,260 SNPs.
Generation Scotland samples were genotyped using the Illu-
mina OmniExpress SNP GWAS and exome chip, measuring
700,000 and 250,000 SNPs, respectively (23). UK10K Project
samples were whole-genome sequenced (24), and variants
were extracted tomatch the available quality-controlled hard-
called variants in the suicide case subjects. Genotypes were
subsequently imputed in all case and control subjects. Both
case and control data sets resulted from population-based
ascertainment. Cryptic relatedness was modeled via the der-
ivation of genomic-relatedness matrices. Genotyping quality
control was performed using SNP clustering with Illumina
GenomeStudio software. SNPs were retained if the GenTrain
score was .0.5 and the cluster separation score was .0.4.
SNPs were converted to an Hg19 plus strand. SNPs with.5%

missinggenotypeswere removed.Additionally, sampleswith a
call rate ,95% were removed.

Before case-control GWAS, a control-control GWAS was
conducted (using the same methods described below) in
order to detect differences between control groups (all
variants, both pre- and postimputation, with GWAS control-
control q values,0.10). For example, chromosome 4 toll-like
receptor variants are often filtered from analyses involving
Scottish control samples as a result of population stratifi-
cation. A total of 167 variants in the control-control com-
parison were then filtered from subsequent case-control
analyses. For the purposes of future meta-GWAS analyses
and because themajor histocompatibility complex is relevant
to psychiatric risk, we included major histocompatibility
complex-associated filtered variants in a second version of
summary statistics.

Data Analysis
Principal component analysis. The 1,000 Genomes super-
populations and suicide case and control samples, both in-
cluded and excluded, are presented in Figure S1 in the online
supplement, plotted by the top two principal components.
Approximately 20% of the population-based suicide case
samples had a significant degree of non-Northwestern Eu-
ropean ancestry (chiefly of admixed ancestry) and were
excluded from analyses. The variation explained by the top
fourprincipal componentswas reduced7.2-fold.The top four
principal components explained 0.89% of variation before
sample filtering and 0.12% of variation after filtering if cal-
culated on pruned genotypes. For adequate statistical power,
we examined only case samples from individuals of Northern
European ancestry. However, the cohort comprised multiple
ancestries, and research on suicide death in samples from
individuals of non-European ancestries will reflect an im-
portant step beyond this first study.

Principal component analysis was performed in control,
suicide, and 1,000 Genomes cohorts after linkage disequi-
librium pruning at a threshold of 0.2. To maximize ancestral
homogeneity, the top four principal components (defined as
those components that accounted for.0.1% of the genotype
variance) were used to establish principal component cen-
troid limits centered around 1,000 Genomes CEU data such
that 99% of the CEU data fell within the limits. Only suicide
and control samples also falling within these limits were
considered ancestrally homogeneous and were included in
the association study. The ancestry principal component
analysis was performed using RaMWAS, a Bioconductor
package written by our analytical team, which comprises a
complete tool set for high-dimensional genomic analyses
(26, 27).

Imputation. Case and control subjects were well matched to
1,000 Genomes CEPH. The Haplotype Reference Consor-
tium comprises in part control subjects from the United
Kingdom used in this GWAS, and thus we elected to impute
genotypes on the basis of the 1,000 Genomes reference panel
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using Minimac3 (28) and Eagle (29). SNPs were imputed
jointly from a common SNP list based on variant overlap
across case and control data sets. SNPs with ambiguous
strand orientation,.5% missing calls, or a Hardy-Weinberg
equilibrium p value ,0.001 were excluded. SNPs with a
minor allele frequency ,0.01 or an imputation R2 ,0.5 or
average imputation call rate ,0.9 were excluded after im-
putation. Genomic data were handled using PLINK (30, 31).
Final GWAS analysis was performed on 7,519,308 variants
that passed quality control.

Genome-wide association testing. A linear mixed model
(LMM) algorithm tested variant association with suicide
death and provided follow-up examination of significant hits
for linkage disequilibrium and gene set enrichment. GWASs
were performed using genome-wide efficient mixed-model
analysis (32), a computationally efficient and open-source
LMM algorithm for GWASs that models population strati-
fication remaining after principal component analysis by use
of genomic-relatedness matrices. Sex was not included as a
covariate in GWAS analyses because of the association of
suicidewith sexstatusat amale:female ratioof approximately
4:1. GWASs with hard-call only and then with imputed data
were examined separately to assess potential population
stratification unique to our imputed GWAS. Before case-
control GWAS, control-control GWAS was implemented to
filter signal thatwas likely a result of population stratification
in the control samples. To assess the likelihood that observed
results may be due to chance, we assessed the false discovery
rate at 5%.

Gene and gene set enrichment and functional mapping. SNP
results from the GWAS were then mapped to genes within
1 kb of the SNP. These genes were examined for gene set
enrichment and linkage disequilibrium using functional
mapping and annotation of genetic associations (FUMA) (33)
and the Genomic Regions Enrichment of Annotations Tool
(GREAT) (34). FUMA annotates SNPs, uses MAGMA to
identify associated genes (of approximately 18,612), and pro-
vides gene and gene pathway enrichment analysis (of ap-
proximately10,649pathways).GREATanalyzes thefunctional
significance of sets of cis-regulatory regions by modeling the
genome regulatory landscape using multiple information
sources andcandetermine the functionaldomainof intergenic

variants. GREAT improves upon the identification of genes
associated with noncoding genomic regions through statisti-
cally rigorous incorporation of more distal binding sites from
20 ontologies. The GWAS Catalog (https://www.ebi.ac.uk/
gwas) includes studies and associations if they include a pri-
mary GWAS analysis from.100,000 SNPs with a SNP-trait p
value,1.0310–5 in the overall (initial GWAS plus replication)
population. The most significant SNP from each independent
locus is extracted.

Polygenic risk scores, SNP heritability (h2), and genetic cor-
relations (rG). Discovery GWAS summary statistics for
phenotypeswere compiled to score each cohort for polygenic
risk. A polygenic score for suicide death was derived using
PRSice, version 2.0 (35), and summary statisticswere derived
froma10-fold cross-validationprocedure toavoidoverfitting.
To elaborate, k-folds cross-validation is a well-established
method (36) allowing a single data set to serve asboth training
and testing data for the purpose of suicide death polygenic
score development and validation. We conservatively set the
p-value threshold for predicting case status based on the data
to 1.0. This eliminated overfitting arising from choosing the
threshold based on the phenotype.

Using relatedmethods, we calculated polygenic scores for
several psychiatric and psychological traits in the present
data set. Of hundreds of medical and psychological GWASs
now available as training weights for calculating polygenic
scores, only GWASs with .10,000 individuals and .1,000
case subjects (or for population-based studies, adequate base
rates) were selected for these analyses. These generally in-
cluded the largest medical and psychiatric GWASs. When
multiple versions of GWASs were available for the same
phenotype (for example, neuroticism or depression), we
selected themost comprehensive version (for further details,
see theGWASAtlasathttp://atlas.ctglab.nl).PRSicewasused
to calculate individual polygenic scores for 59 phenotypes
with estimated risk-allele effect sizes for each discovery
sample trait. A polygenic score is traditionally calculated as a
weighted sum score, where a score for an individual in the
target sample is calculated by the summation of each SNP
multiplied by the effect size of that SNP in the discovery
GWAS. Based on the cross-disorder psychiatric genomics
findings to date, we hypothesized significant positive
prediction of suicide with polygenic score for depressive

TABLE 1. Genome-wide significant loci from a genome-wide association study of death by suicidea

Chromosome SNP Imputation R2 Allele 1 Allele 2
Allele 1 Frequency,

Case Subjects
Allele 1 Frequency,
Control Subjects

13 rs34399104 0.75 T C 0.027 0.015
13 rs35518298 0.81 T C 0.024 0.014
13 rs34053895 0.81 A C 0.024 0.014
13 rs35502061 0.72 G A 0.024 0.014
13 rs66828456 0.74 A C 0.027 0.015
15 rs35256367 0.50 G A 0.023 0.014

a CADD=combined annotation-dependent depletion (61, 62); SNP=single-nucleotide polymorphism. For scale, a CADD score of 20 indicates that a variant is
among the top 1% of deleterious variants in the human genome. All variants presented were imputed.
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symptoms, major depressive disorder, behavioral disinhibi-
tion, schizophrenia, autism, loneliness, child IQ, alcohol use,
and neuroticism.

Linkage disequilibrium score regression (37, 38) was used
to calculate the observed scale common variant h2 using
summary statistics from a logistic regression model with five
ancestry covariates and pruning related samples at 0.05 p ̂
from identical by descent. Linkage disequilibrium score re-
gression was also used to calculate common variant molec-
ular genetic correlations (rG) with psychiatric and medical
phenotypes. Finally, we performed secondary analyses to
characterize genetic predictors and clinical antecedents of
suicide andmodeof suicidedeath (see theMethods section in
the online supplement). Specifically, in these secondary
analyses, we conducted epidemiological association tests
between four sufficiently prevalent and powered modes of
death (gunshot, drug overdose, asphyxiation, and violent
trauma) and 30 ICD-9 and ICD-10-derived clinical ante-
cedents, and we conducted association tests of the suicide
polygenic score with modes of death, adjusting for five an-
cestry covariates in multivariate regressions.

Sexdifferences.Becausesuicideratesandmodesofsuicidedeath
are characterized by substantial sex differences (19, 20), we
performed secondary epidemiological and genomic analyses to
characterize sex differences in mode of death and clinical an-
tecedents. These sex-stratified analyses mirrored the full sample
analyses described above, including sex-stratified epidemio-
logical association tests between four sufficiently prevalent and
powered modes of death and 30 ICD-9 and ICD-10-derived
clinical antecedents, as well as sex-stratified association tests of
the suicide polygenic score with modes of death, adjusting for
five ancestry covariates in multivariate regressions. We con-
strained these exploratory analyses to only those medical di-
agnoseswith frequencieshighenough ineither femalesormales
to provide decent power for testing and reporting false-
discovery-rate corrected p values. Nonetheless, it is worth not-
ing that power for these secondary analyses of sex differences
was limited by the number of subjects, which was restricted to
case subjects only and stratified by sex and mode of death.

RESULTS

Genome-Wide Association: Positional Evidence
A total of six variants from two locimet genome-wide criteria
for statistical associationwith suicide death (p,531028). An

additional 52 variants were nominally significant at a q
value ,0.1 and mapped to 22 genes (l=1.015) (Table 1,
Figure 1) (39, 40). All results on the full cohort were derived
from analyses that were adjusted for the effects of ancestry.
Genes associated with top genomic regions are presented in
Table S1 in the online supplement. The significant associa-
tions found in the chromosome 13 and chromosome 15 re-
gions were supported by additional positive results that were
suggestive of association but below the threshold. The large
number of signals in the SNP-based tests prompted quality-
control analyses varying the degree of linkage disequilibrium
pruning before principal component analysis for the pur-
poses of sensitivity analysis. Results and respective lambda
valueswere consistent across these analyses. Additional plots
of the top signals in each of eight regions are presented in
Figures S2–S8 in the online supplement.

Gene-Based Results and Pathway Functional
Enrichment Tests
Mapping top positional SNP hits to genes suggested 22 gene
associations, including chromosome 13 genes, Dachshund
family transcription factor 1 (DACH1), Ubiquitin-protein li-
gase (UBE3A), and Kelch-like family member 1 (KLHL1) on
chromosome 15 (see Table S1 in the online supplement).
Gene-based analysis usingMAGMA (FUMA [1]) identified an
additional 10 genes significantly associated (q,0.1) with
suicide death (Figure 2; see also Table S1 in the online
supplement).GeneOntology (GO;http://www.geneontology.
org) pathway results included enrichment of histone modi-
fication sites SETD6, COPR5, and GATAD2A. Full gene and
GO pathway enrichment results are presented in Tables
S2–S3 in the online supplement. Genes showing psychiatric
associations are also presented (see Table S2 in the online
supplement).

In addition to functional pathways, FUMA analyses in-
dicated significant enrichment for schizophrenia (p=1310211)
and bipolar disorder (p=1310217) in the GWAS Catalog
(https://www.ebi.ac.uk/gwas; see also Table S1 in the online
supplement). Integrative-weighted-scoring in SNP-Nexus
(41) suggested regulatory functional significance for one
SNP (chr13:71553748:C/T). Ten of the implicated genes from
positional or gene-based testing have evidenced genome-
wide significant differential gene expression in post-
mortem brain analyses of schizophrenia, autism, and bipolar
disorder (false discovery rate ,0.1; PsychENCODE Con-
sortium [42]; see also Table S4 in the online supplement).

Odds Ratio 95% CI p
False Discovery

Rate Nearest Gene Function CADD

1.769 1.48–2.11 3.54310–11 2.7310–4 LINC00348 Intergenic 19.86
1.726 1.43–2.07 1.92310–9 7.2310–3 LINC00348 Intergenic 0.33
1.718 1.42–2.06 3.51310–9 8.7310–3 LINC00348 Intergenic 0.39
1.703 1.41–2.05 5.97310–9 0.011 SOGA2P1 Intergenic 2.69
1.707 1.42–2.04 8.63310–9 0.013 LINC00348 Intergenic 4.24
1.605 1.43–2.07 1.10310–8 0.014 ATP10A Intronic 4.41
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Polygenic Scores, SNP Heritability, and
Genetic Correlations
In European ancestry training and test samples comprising
independent case and control cohorts and accounting for

20 ancestry covariates, suicide polygenic scores significantly
predicted suicide death case status. Suicide waves 1 and
2 comprised 1,321 and 2,092 suicide cases, respectively, and
werepruned for relatednesswithinwavesbefore trainingand

FIGURE 1. Genome-wide significance for suicide death on chromosomes 13 and 15 in a genome-wide association studya
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FIGURE 2. Functional mapping and annotation of genetic association gene-based test results in a genome-wide association studya
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testing analyses. These case-control predictions are plotted
across p-value thresholds in Figure 3.

The linkage disequilibrium score regression common
variant h2 estimate, based on the summary statistics from a
logistic GWAS with five ancestry covariates and pruning to
remove related samples, was 0.2463 (SE=0.0356). The h2

estimate on the liability scale was 0.1567 (SE=0.0218) when
considering the 0.2% reported population prevalence of
death by suicide in Utah. The lambda statistic in the model
was 1.20 (l1000=1.04). This lambda statistic remained stable
with follow-up testing of 20 principal components and with
increased pruning. The suicide death cases differed signifi-
cantly from the two U.K. control groups on polygenic scores
of phenotypes relevant to suicide death. These differences
were observed in the expected directions. Original discovery
GWASs for all polygenic score phenotypes were filtered to
excludeany studies that used these control cohorts (seeTable
S5 in the online supplement).

Consistent with our hypotheses, significant polygenic
score elevations included alcohol use, autism spectrum dis-
order, child IQ, depressive symptoms, disinhibition, major
depressive disorder, loneliness, and schizophrenia. The
largest effect sizes were observed for polygenic scores for
behavioral disinhibition, major depressive disorder, and
schizophrenia (Figure4).TheLDHubdatabase (37)provided
estimates of SNP-based shared genetic covariance for several
phenotypes (seeTableS6 in theonline supplement), although
none of these SNP-based genetic correlations reached sta-
tistical significance.Additionally,wedisaggregated suicideby
mode of death into four categories: gunshot, drug overdose,

asphyxiation, and violent trauma (see theMethods section in
the online supplement). We epidemiologically characterized
these groups by testing associations with 30 ICD-10-derived
clinical antecedents (see Figure S9 and Tables S7–S9 in the
online supplement). In addition, we conducted polygenic
score association testing with mode of death in all cases. No
associations met multiple-testing-adjusted significance cri-
teria (q,0.1; see also Figure S10 and Tables S10–S12 in the
online supplement).

Sex Differences
Epidemiological analyses of sex differences in electronic
medical record data indicated that suicide cases among both
sexes revealed clinical diagnostic clusters of internalizing-
trauma-cluster B psychiatric disorders and metabolic
cardiovascular-obesitymedicaldisorders (seeTablesS13–S18
in the online supplement). Females were observed to have a
higher overall number of diagnoses compared with males,
which may reflect greater severity among females, greater
severity among males, lower likelihood of males receiving a
diagnosis, or lowerhelp-seekingamongmales.This is broadly
consistentwith the observed higher relative prevalence rates
of gun-related deaths among males and overdose deaths
among females. All associations of ICD diagnoses and poly-
genic scoreswithmodeofdeatharepresented for femalesand
males separately in Figures S11–S14 in the online supplement.
All polygenic score analyses include ancestry covariates. All
corresponding statistics are presented in Tables S19–S24 in the
online supplement. No sex-stratified polygenic score findings
met multiple-testing-adjusted significance criteria (q,0.1).

FIGURE 3. Cross-validation of suicide polygenic case-control prediction in a genome-wide association studya
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a Polygenic prediction of suicide death case status across two independent cohorts of case and control samples is shown. Training genome-wide
association study (GWAS) summary statistics were used to score the test set for suicide polygenic risk. The p-value thresholds are plotted on the x-axis
from 0.1 to 1.0, reflecting the top 10%–100% of the common variants from the training GWAS. Plots present model fit when predicting case-control
status with wave 1 suicide compared with summary statistics from the Generation Scotland summary database and when predicting with wave 2
suicide compared with summary statistics from the UK10K Project database. Scores are adjusted for 20 principal components. Summary data for the
best-fitting and 1.0 p-value threshold models are presented in Table S29 in the online supplement.
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DISCUSSION

These results yield several insights and suggest important
applications for future extension. To our knowledge, this is
the first adequately powered comprehensive genomic study
of suicide death. This GWAS of suicide death identified two
genome-wide significant loci on chromosomes 13 and 15. The
significant SNP-based heritability estimate of suicide death
(25%, or 16% on the liability scale) is greater than that pre-
viously reported for suicide ideationand suicide attempt (5%)
(14, 15) and for suicide attempt within psychiatric diagnosis
(3%210%) (43) and is closer to previous estimates reported
for suicide death (35%248%) (13). Fully half of the genes
implicated by our results overlap with schizophrenia results
from the GWAS Catalog (p=1310211), and two of these
11 genes (HS3ST3B, NCAN) have previous associations with
risk of suicidal behavior (for details on the relevant literature,
see Table S25 in the online supplement; for allele frequencies
and effect sizes by cohort, see Table S26 in the online
supplement).

All but four of these schizophrenia-associated genes also
drove a significant GWAS Catalog association with bipolar
disorder (p=1310–17), supporting the hypothesis of genetic
liability to more nonspecific psychiatric illness. Of particular
interest, the region on chromosome 19p13.11 in our study is
supported by evidence from the most recent, well-powered
studies of both bipolar disorder (44) and schizophrenia (45).
In addition, our region on chromosome 16q21 is supported by
evidencenotonly fromseveral largeGWASsof schizophrenia
but also from a large meta-analysis of autism spectrum dis-
order (45–50).

Genome-wide significant SNPs on chromosome 13
(Table 1) are all intergenic and vary with respect to a com-
bined annotation-dependent depletion score, an index for
scoring the deleteriousness of single-nucleotide variants as
well as insertion and deletion variants in the human genome.
Notably, the variant with the strongest GWAS effect size,
single-nucleotide variant rs34399104, reaches a combined
annotation-dependent depletion score of almost 20, in-
dicating that it is in the top 1% of deleterious variants in the
genome.

Direct comparison of the effect sizes in our GWAS with
110 effect sizes reported in previous studies (12–15, 43, 51)
identifiedonly onenominally significant variant in the largest
GWAS of suicidal behavior (43), rs4870888, nearest to
FER1L6 and FER1l6-AS2. (See Table S27 in the online sup-
plement for a direct comparison of previously reported effect
sizes with those in our study.) The single-nucleotide variant
rs7989250 (chromosome 13) was reported for ordinal sui-
cidality in the UK Biobank GWAS and reached a p-value
threshold ,0.05 for replication in the suicide GWAS con-
ducted by Otsuka et al. (13) but did not reach the threshold in
our study (see Table S27 in the online supplement).

We were also able to cross-validate prediction of sui-
cide death case-control status with polygenic scores for
suicide death, accounting for population stratification.

FIGURE 4. Notable elevations of psychiatric polygenic risk in
suicide cases in a genome-wide association studya

a The p-value thresholds are plotted on the x-axis. Scores are adjusted for
20 principal components. The largest effect sizes and significance levels
were observed for major depressive disorder, schizophrenia, and be-
havioral disinhibition. Summary data for the best-fitting and 1.0 p-value
threshold models for all eight phenotypes—also including alcohol use,
autism spectrum disorder, child IQ, depressive symptoms, and lone-
liness—are presented in Table S29 in the online supplement.
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While within-case polygenic score validation relies on stronger
assumptions than other polygenic score case-control compar-
isons, the considerable overlapping polygenic signal across
p-value thresholds in this study (suicide deaths, N=3,413) is
consistent with the two existing smaller polygenic analyses
predicting suicidality (13, 14). In one of those studies, suicidal
behavior polygenic risk score predicted increased odds of sui-
cide death, with 127 deaths (14), and in the other, a significant
SNP-based genetic correlation of suicide death was observed
between two independent cohorts (suicide deaths, N=746) (13).

Perhaps most compellingly, suicide death was strongly
associatedwith polygenic scores formultiple psychiatric and
psychological traits. As noted above, these included alcohol
use, autism spectrum disorder, child IQ, depression, disin-
hibition, schizophrenia, and loneliness (for additional poly-
genic risk score plots, see Figure S15 in the online
supplement). These results were consistent with expecta-
tions, because strong associations in case samples compared
with both control cohorts were observed with behavioral
disinhibition and major depressive disorder—arguably the
two most critical antecedents of suicide death (52). More
generally, these results are consistent with the emerging
consensus that genetic correlations across psychiatric di-
agnoses and traits are substantial (53). Further research with
an even larger suicide death cohort will be needed to de-
termine the ultimate cause of these polygenic score associ-
ations with suicide death, with leading hypotheses arguing
for the presence of a p-factor capturing general liability to
psychopathology (54), contrasting with those arguing for
pleiotropic effects across a small set of psychiatric disorder
clusters (55).

Limitations
Several limitations to this study should be noted. First, it is
possible that population stratification or platform con-
founders stemming from convenience control samples could
lead to false positives. To address this risk, we employed very
conservative filters of both loci and study subjects to mini-
mize false positives. Values of lGC ,1.05 are generally
considered benign, although inflation in lGC is proportional
to the sample size (56). Control samples in both the Gener-
ation Scotland database and the UK10K Project cohort were
extensively assessed for ancestral comparability to samples
comprising individuals who died by suicide in both the 1,000
Genomes Utah CEU (25) and Utah European ancestry da-
tabases, andbothmatched extremelywell. Incorporating two
separate control cohorts (and formal analytical comparison of
these cohorts to the corresponding 1,000 Genomes pop-
ulations) also allowed us to detect and filter out loci related to
platform-specific technical artifacts and subtle variation in
population structure before case-control analyses. Results of
tests for differences in loadings for up to 200 principal com-
ponents by cohort and by case-control status are presented in
Table S28 in the online supplement. Before and after impu-
tation, we excluded any and all variants generating q val-
ues,0.1 in a control-control GWAS. Additionally, employing

ancestral Mahalanobis (i.e., centroid) distance pruning, we
have leveraged the fact that the CEU 1,000 Genomes Project
subjects are largely ancestrally homogeneous with our case
samples to restrict our control subjects (and case subjects) to a
highly ancestrally homogeneous group.

It is also possible that the use of a mixed control group—
both healthy subjects and those with common medical
conditions, as in the UK10K Project—could have exerted a
mild bias on effect estimates toward thenull,whichwedonot
viewashighlyproblematic, given that thedirectionof thebias
effectively reduces the risk of false positive findings. In the
suicide case cohort, rates of common medical conditions are
much higher than population base rates. However, in strat-
ified control analyses, effect sizes specific to our case sample
compared with those in the UK10K Project were elevated
relative to the case sample from the Generation Scotland
database,which is inconsistentwith potential confounding of
signal as a result of other disorders. Additionally, effect sizes
for polygenic scores for other disorders, across 1,000 p-value
thresholds, were far greater between case and control sub-
jects than between control groups, where differences were
negligible and distributions of polygenic scores often over-
lapped. None of the implicated variants were significantly
different in allele frequency between control groups in the
control-control GWAS. However, it should be noted that
allele frequencywas relatively low for the top variants across
all cohorts.

Another limitation of this study lies in the use of electronic
medical record data, in which prevalences for disorders are
always confounded with age, and in a number of ways. For
example, a missing diagnosis could be more or less likely in a
given decade duringwhich a casewas assessed. Younger ages
are more likely to have complete electronic medical record
information yet are less likely to be diagnosedwith comorbid
medical conditions, schizophrenia, or personality disorders.

Importantly, there was insufficient diversity in the case
cohort to examine effect sizes for any non-European an-
cestries. We expect a sufficient number of case samples for a
Mexican-American ancestry GWAS within 5 years, and we
will prioritize diverse ancestry groups in order to minimize
potential health disparities stemming from homogeneous
summary statistics (57).

Future Directions
A recent review of suicide prediction models has indicated
that positive predictive values for suicide attempt are quite
high (0.9), but positive predictive values for suicide death
continue to hover near zero (58, 59). In this study, we have
discovered multiple genome-wide significant loci and genes,
strong polygenic signal, and significantly increased genetic
risks for behavioral disinhibition, major depression, de-
pressive symptoms, autism spectrumdisorder, psychosis, and
alcohol use disorder among case samples. Futuremodeling of
multiple polygenic risks andphenotypic risk factorsmayhelp
isolate important moderators of risk and improve objective
risk measures of suicide death. Importantly, ethical

Am J Psychiatry 177:10, October 2020 ajp.psychiatryonline.org 925

DOCHERTY ET AL.

http://ajp.psychiatryonline.org


challenges associatedwithpredictivemodels of suicide death
are significant and must be addressed proactively across
psychiatric and medical domains (6, 60).
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