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Objective: Sleep patterns in children with autism spectrum
disorder (ASD) appear to diverge from typical development
in the second or third year of life. Little is known, however,
about the occurrence of sleep problems in infants who later
develop ASD and possible effects on early brain development.
In a longitudinal neuroimaging study of infants at familial high
or low risk for ASD, parent-reported sleep onset problems
were examined in relation to subcortical brain volumes in the
first 2 years of life.

Methods: A total of 432 infants were included across three
study groups: infants at high risk who developed ASD (N=71),
infants at high risk who did not develop ASD (N=234), and
infants at low risk (N=127). Sleep onset problem scores
(derived from an infant temperament measure) were
evaluated in relation to longitudinal high-resolution T1 and
T2 structural imaging data acquired at 6, 12, and 24 months
of age.

Results: Sleep onset problems were more common at 6–
12 months among infants who later developed ASD. Infant
sleep onset problems were related to hippocampal volume
trajectories from 6 to 24 months only for infants at high risk
who developed ASD. Brain-sleep relationships were specific
to the hippocampus; no significant relationships were found
withvolumetrajectoriesofothersubcorticalstructuresexamined
(theamygdala, caudate, globuspallidus, putamen, and thalamus).

Conclusions:Thesefindingsprovide initial evidence that sleep
onset problems in the first year of life precede ASD diagnosis
and are associated with altered neurodevelopmental tra-
jectories in infants at high familial risk who go on to develop
ASD. If replicated, these findings could provide new insights
into a potential role of sleep difficulties in the development of
ASD.
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The majority of the first 12 months of life is spent asleep (1).
Critical brain maturation processes are thought to occur
during sleep in early development (2, 3)—for example, de-
velopment of the visual cortex relies on both sensory stim-
ulation duringwakefulness and endogenous stimulation during
sleep, which together guide neuronal differentiation and de-
velopmentally regulated synaptic plasticity (4). Children with
autism spectrum disorder (ASD) are 2–3 times more likely to
havedifficultieswith initiatingor sustaining sleep than typically
developingchildren(5).Theimpactof inadequatesleeponchild
cognitivedevelopment,behavior, and family functioning inASD
is evident in the behavioral literature (6–8). However, to our
knowledge,noresearchhasexaminedtheeffectofpoorsleepon
brain development in this population.

Reduced sleep duration in children with ASD compared
with typically developing children has been reported as early
as 30months of age (9) and can persist through adulthood (7).
Sleep patterns in ASD may diverge even earlier. A recent

study of more than 1,000 children found that the number of
night awakenings at 12 months of age was associated with
ASD screening scores at age 24 months (10). Emerging evi-
dencesuggests thatpreclinicalbrainandbehaviordifferences
exist during infancy in children later diagnosed with ASD.
Atypical sensorimotor development (11) and accelerated brain
growth in the first year of life have been shown to precede the
consolidation of ASD symptoms (12, 13). Given that a sub-
stantial portion of an infant’s time is spent asleep, it is possible
that some of the preclinical differences seen in early neuro-
development in ASD could be related to atypical sleep.

Our aim in this study was to characterize altered sleep
patterns and associationswith brain development in a sample
of infants athigh familial risk (i.e., having anolder siblingwith
ASD) or low familial risk for ASD (i.e., no family history of
ASD in first-degree relatives). This sample provided an op-
portunity to characterize sleep difficulties in infants who
later develop ASD and between those at high and low risk.
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Weexamined the relationship between sleep during infancy
and subcortical volumeduringearlydevelopment.Wechose
to focus on subcortical development because altered volume
in these structures (i.e., the hippocampus, amygdala, thal-
amus, and basal ganglia) has been associated with ASD in
numerous studies (reviewed in 13–15) and also with sleep
problems. Measures of insomnia severity in adults (i.e., arousal
level, sleep latency, quality, and fragmentation) have been as-
sociated with decreased hippocampal (16–18) and putamen
volumes(18).Theliteratureonbraincorrelatesofpediatricsleep
problems is limited. Sleepdurationduringweekdays in typically
developing children has been found to be positively associated
with bilateral hippocampal volume, after adjusting for age, sex,
and intracranial volume (19). A recent prospective neuro-
imaging study found that trajectories of sleep disturbance from
age 2months to 6 yearswere associatedwith smaller total brain
volumes by age 7; however, subcortical volumes were not sig-
nificantly different after correcting for total volume (20).
Therefore, whether sleep disturbance in early childhood is
associated with morphometric changes in subcortical struc-
tures remainsanopenquestion—onewell suited to investigation
in the context of ASD.

We examined associations between sleep difficulties and
developmental trajectories in six subcortical structures that
are altered in ASD: the amygdala, hippocampus, caudate,
putamen, globus pallidus, and thalamus (13–15). Based on
available evidence of early sleep differences associated with
ASD screening scores (10), we hypothesized that sleep dif-
ficulties in the first 12 months of life would occur more often
among high-risk infantswho go on to developASD (high-risk
ASD), least often among low-risk infants, and at an in-
termediate level amonghigh-risk infantswhodonotdevelop
ASD (high-risk non-ASD) (21). We further hypothesized that
poor sleep would be related to alterations in subcortical brain
morphometry, a hypothesis that was nondirectional, given the
paucity of data regarding the impact of sleep difficulties
on brain morphometry in early development. Additional
follow-up analyses were conducted to determine whether
hemispheric differences, cognitive ability, infant temper-
ament, and the timing of sleep measurement were significant
contributors to the sleep-brain relationships we observed.

METHODS

Participants
Data for 432 high- and low-risk infants collected across four
clinical sites were included for analyses. Parents provided
informed consent for their infant to participate, and all study
procedureswere approved by the institutional reviewboards
at each site. Infantswere assessed at 6, 12, and24monthswith
MRI scans, parent-report measures, and standardized mea-
sures of cognitive and adaptive functioning. The 24-month
visit also included a diagnostic assessment for ASD, which
yielded three outcome groups: infants at high risk who met
criteria for ASD (N=71), infants at high risk who did not meet
criteria for ASD (N=234), and infants at low risk who did not

meet criteria for ASD (N=127). The demographic and clinical
characteristics of the study participants are summarized by
group in Table 1. Unequal group sizes were anticipated given
previousevidence frominfant siblingstudiesofa20%conversion
rate for high-risk siblings. Our analysis approach enabled us to
accommodate unequal group variances, and thus a balanced
designwasnot required (see theStatisticalAnalysis section). Full
inclusionandexclusioncriteria,aswellasdetailsof thebehavioral
assessment, are presented in the online supplement.While there
is general consensus that ASD can be reliably diagnosed by
24 months, approximately half of the infants in this sample
participated in a second diagnostic visit at 36months; thosewho
met diagnostic criteria at either time point were included in the
ASD group (see Table S1 in the online supplement), given pre-
viousevidencethathigh-risksiblingswithhighercognitiveability
and more subtle ASD symptoms may move between diagnostic
categories throughout early childhood.

Measurement of Sleep Onset Problems in Infancy
Although the overall study did not include a standardized
assessment of sleep, infant developmentwas characterized at
6 and 12 months of age with the Infant Behavior Questionnaire–
Revised (IBQ-R) (22), a measure of temperament with five
items related to settling and sleep initiation (IBQ-R items 21–25;
see Box 1). IBQ-R items were rated for frequency on a 7-point
scale ranging from “never” to “always.”After reverse scoring, an
averagewas takenacrossallfive items togenerateanInfantSleep
OnsetProblems (ISOP) score; higher ISOPscores indicatemore
difficultywith sleep initiation and longer sleep onset latencies.

ISOP scores were available for 432 infants from 6 to 12
months old; infants included in the analyses had data from the
6-month visit only (N=46), the 12-month visit only (N=78), or
both (N=308). ISOP scores from 6 to 12 months were signifi-
cantly correlated, with the strongest stability across time
demonstrated for the high-risk ASD group (r=0.54, p,0.0001),
followedby the low-riskgroup (r=0.41, p,0.0001) and thehigh-
risk non-ASD group (r=0.33, p,0.0001). To examine the re-
lationship between sleep onset problems during infancy and
subcortical development in the full sample of children, ISOP
scores from the 6-month and 12-month assessments were av-
eraged to create a single ISOP score for each participant. Se-
lected analyses were also repeated using ISOP scores from the
6-month and 12-month assessments only.

Validation of the ISOP Score
A subgroup of participants in the studywas given the parent-
report Brief Infant SleepQuestionnaire (BISQ) (23) as part of
a substudy conducted at one of the clinical sites (Children’s
Hospital of Philadelphia). Sixty-seven participants (high-risk
ASD group, N=10; high-risk non-ASD group, N=41; low-risk
group, N=16) had both ISOP and BISQ scores available be-
tween ages 6 months and 12 months. This enabled us to
empirically evaluate the IBQ-derived ISOP score for con-
vergent validity by comparing it against a validated infant
sleep measure (23). Average sleep latency from the BISQ
(time taken to fall asleep at night, in hours) was chosen for
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comparison to the ISOP score, which measures difficulty
settling to sleep at the beginning or in the middle of the
night. The IBQ-based ISOP score was significantly cor-
relatedwith average sleep latency asmeasured on theBISQ
during the same developmental period (Pearson’s r=0.44,
p=0.0002) (Figure 1). In contrast, it was not correlated with
other aspects of sleep measured on the BISQ (e.g., average
duration of nocturnal wakefulness; Pearson’s r=0.04
p=0.72). Finally, the five IBQ-R sleep items that form the
ISOPwere internally consistent at both 6months (Cronbach’s

alpha=0.76, 95% CI=0.74, 0.78) and 12 months (Cronbach’s
alpha=0.76, 95% CI=0.74, 78). On the basis of this evidence of
high internal consistency and convergent and divergent
validitywith a previously validatedmeasure of sleep latency
in infancy, we determined that the IBQ-derived ISOP score
had sufficient construct validity for the purposes of this
study.

MRI Acquisition and Processing
Imaging datawere collected during natural sleep at 6, 12, and
24 months. High-resolution T1- and T2-weighted imaging
data (1-mm3 voxels) were acquired on identical 3-T Siemens
TIM Trio scanners equipped with standard 12-channel head
coilsacrossallsites.Geometryphantomswerescannedmonthly,
and human phantoms (two adult study subjects) were scanned
annually to monitor scanner stability at each site across the
study period.

T1- and T2-weighted images that passed visual inspection
for quality control (99% and 98% of scans, respectively) un-
derwent distortion correction, mutual registration, trans-
formation to stereotactic space, and CSF/brain tissue
segmentation. A graph-based, multi-atlas method de-
veloped by investigators in the Infant Brain Imaging Study
network was employed to segment the subcortical struc-
tures (see the online supplement). Atlas templates were
derived from 16 cases at each time point (6, 12, and
24 months), which were manually segmented by a single
experimenter, used as training images in the multi-atlas
segmentation, and then applied to all 6-, 12-, and 24-month

TABLE 1. Demographic and clinical characteristics of the study participants by diagnostic groupa

Group

Characteristic
High-Risk ASD

(71)
High-Risk Non-

ASD (234) Low-Risk (127) Group Comparison

N % N % N % x2 df p

Included scans 6.3 4 0.2
6 months 54 36 164 33 110 39
12 months 44 29 178 35 95 34
24 months 52 35 161 32 74 27

Sex 17 2 0.0002
Male 59 83 133 57 73 57
Female 12 17 101 43 54 43

Mean SD Mean SD Mean SD F df p

Age (months)
MRI

First 6.5 0.6 6.6 0.7 6.7 0.7 1.1 2, 325 0.3
Second 12.7 0.7 12.6 0.7 12.7 0.7 0.6 2, 314 0.6
Third 24.6 0.7 24.7 0.9 24.7 0.8 0.6 2, 284 0.5

Autism Diagnostic
Observation Schedule
(24 months)a

Restricted/repetitive 6.0 2.6 3.0 2.3 2.2 2.0 68.1 2, 416 ,0.0001
Social affect 5.6 2.1 1.8 1.1 1.7 1.0 251.2 2, 416 ,0.0001

Mullen scales (24 months)b 81.7 16.6 103.5 15.8 110.9 16.5 74.3 2, 418 ,0.0001

a Autism Diagnostic Observation Schedule scores shown are calibrated severity scores for restricted and repetitive behaviors and social affect domains.
b Mullen Scales of Early Learning scores shown are early learning composite scores, which are normed and standardized (mean=100, SD=15).

BOX 1. Questions from the Infant Behavior
Questionnaire–Revised (IBQ-R) used to develop the
Infant Sleep Onset Problems (ISOP) scorea

When going to sleep at night, how often did your baby:
21. Fall asleep within 10 minutes? (reverse scored)
22. Have a hard time settling down to sleep?
23. Settle down to sleep easily? (reverse scored)

When your baby awoke at night, how often did s/he:
24. Have a hard time going back to sleep?
25. Go back to sleep immediately? (reverse scored)
________________
a Items on the IBQ-R were scored for frequency on a 7-point scale
ranging from “never” to “always.” Some itemswere reversed-scored
so that a higher total score was indicative of more sleep onset
difficulties.
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data sets.All segmentationsunderwent visual quality inspection
by one of two trained experimenters (blind to diagnosis, risk
status, sex, and scan site). More than 98% of scans met quality
inspection criteria for segmentation, with no difference in the
segmentation pass rate between groups. A total of 932 scans,
across three groups and three time points, were included in the
present analysis (high-risk ASD group, N=150; high-risk non-
ASD group, N=503; low-risk group, N=279) (Table 1).

Statistical Analysis
Categorical differences in ISOP scores were tested via analysis
of variance, and Pearson correlation coefficients were calcu-
lated between ISOP scores and continuous measures of child
functioning. Linear mixed-effects models were used to predict
bilateral volume trajectories for six subcortical structures (the
hippocampus,amygdala,caudate,globuspallidus,putamen,and
thalamus). Volumes were summed across hemispheres to re-
ducethenumberofcomparisons,consistentwithpreviouswork
showing no laterality effects in subcortical volumes in this
sample (24). Individual intercepts were included as a random
effect. ISOP score, age, quadratic effect of age (age-squared),
sex, and group interactions with each were included as fixed
effects. Total cerebral volume and scan site were also included
ascovariates.All testsweretwo-tailedwithalphasetat0.05,and
a falsediscovery rateprocedurewasused tocorrect formultiple
comparisons.

Any subcortical structure associatedwith ISOPscoreswas
subjected to additional follow-up analyses to determine the
strength and specificity of the finding (see the online sup-
plement). Specifically, we tested whether sleep-brain asso-
ciations were present in both hemispheres, persisted when
controlling for cognitive ability, were specific to IBQ-R sleep
items (rather than infant temperament more broadly), and
persisted when including ISOP scores from 6 months or
12 months only.

RESULTS

ISOP Scores Across Diagnostic Groups
ISOP scores were compared across the three diagnostic
groupsanddiffered significantly (F=6.41, df=2, 429, p=0.002)
(Figure2).AposthocTukey test revealedgreater sleeponset
problems in the high-risk ASD group compared with the
high-risk non-ASD group (difference, 0.36; 95% CI=0.06,
0.66, p=0.02) and the low-risk group (difference, 20.50;
95% CI=20.83, 20.17, p=0.001). ISOP scores did not differ
significantly between the high-risk non-ASD and low-risk
groups (difference, 20.14; 95% CI=20.39, 0.10, p=0.36). A

FIGURE 1. Average Infant Sleep Onset Problems (ISOP) score at
6–12 months by outcome groupa
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a A significant difference was found across groups, with infants who
developed autism spectrum disorder (ASD; high-risk ASD group)
showing more parent-reported sleep onset problems at 6–12 months
compared with infants who did not develop ASD (with and without fa-
milial risk). Vertical bars indicate standard deviations for each group.
n.s.=not significant.

*p,0.05. **p,0.01.

FIGURE 2. Validation of the Infant Sleep Onset Problems (ISOP)
score against the Brief Infant Sleep Questionnaire (BISQ) score
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disorder-specific effect was also found when examining
ISOP scores from the 6-month time point only (high-risk
ASDgroupcomparedwithhigh-risknon-ASDgroup: t=2.72,
df=82.7, p=0.008; high-risk ASD group compared with low-
risk group: t=3.0, df=89.0, p=0.003; high-risk non-ASD
group compared with low-risk group: t=0.53, df=272.3,
p=0.60) and the 12-month time point only (high-risk ASD
group compared with high-risk non-ASD group; t=2.00,
df=90.9, p=0.04; high-risk ASD group compared with low-
risk group: t=3.0, df=108.4, p=0.004; high-risk non-ASD
group compared with low-risk group: t=1.62, df=229.4,
p=0.11). It is noteworthy that there was no difference in
ISOP scores between male and female infants in the study
sample (F=0.10, df=1, 430, p=0.75).

Given thefindingof categorical differences in ISOPscores,
weexploredassociationsbetweenISOPscoreandcontinuous
measures of cognitive and adaptive development and ASD
symptoms. Correlation results are presented in Table S2 in
the online supplement. At each time point (6 months and
12 months), ISOP score correlated significantly with expres-
sive language scores on the Mullen Scales of Early Learning
(6 months, r=20.14, p=0.01; 12 months, r=20.11, p=0.03) but
not with any of the other behavioral measures. By 24months,
average ISOP scoreswere significantly correlatedwithAutism
Diagnostic Observation Schedule social affect severity scores
(r=0.14,p=0.004),Mullenexpressive language scores (r=20.11,
p=0.03), Vineland Adaptive Behavior Scale communication
scores (r=20.13, p=0.01), and Vineland socialization scores
(r=–0.15, p=0.003). Across the entire sample, infants with
worse sleep from 6 to 12 months showed weaker social
communication skills by 24 months.

Sleep Onset Problems in Relation to Brain Volume
Trajectories From 6 to 24 Months
Separate linear mixed-effects models were conducted for
each subcortical structure (see Table S3 in the online

supplement). Only hippocampal trajectory was signifi-
cantly predicted by ISOP score (b=101.0, t=3.2, p=0.008),
and groupmoderated the association between ISOP score
and hippocampal trajectory in infancy (Figure 3). Ex-
amination of group-specific parameter estimates revealed
that sleep onset difficulties in infancy were associated
with increased hippocampal volume from 6 to 24 months
only for high-risk siblings who went on to develop ASD
(b=104.7; t=2.8, p=0.006); no relationship between sleep
and hippocampal trajectory was found in the high-risk
non-ASD group (b=211.5; t=0.6, p=0.6) and the low-risk
group (b=24.9; t=0.2, p=0.9).

Hemispheric Differences
Examining associations in the left and right hemispheres
separately revealed that ISOP score was significantly asso-
ciated with trajectories of both left and right hippocampal
volume. Specifically, there was a significant main effect of
ISOP score (left: b=47.9, t=3.0, p=0.002; right: b=53.1, t=3.1,
p=0.002) and significant group-by-ISOP interactions for each
hemisphere (left: high-risk ASD group compared with high-
risk non-ASD group: b=249.9, t=2.7, p=0.007; high-risk ASD
group comparedwith low-risk group:b=254.5, t=2.5, p=0.012;
right: high-risk ASD group comparedwith high-risk non-ASD
group: b=259.0, t=2.9, p=0.003; high-risk ASD group com-
pared with low-risk group: b=254.3, t=2.3, p=0.02).

Hippocampal Trajectory and Sleep Onset Problems,
Controlling for Cognitive Ability
The association between ISOP score and hippocampal tra-
jectory persisted after adding 24-month cognitive ability
(Mullen early learning composite) scores to the model. Spe-
cifically, there was a significant main effect of ISOP score
(b=100.0, t=3.1, p=0.002) and a significant group-by-ISOP
interaction (high-risk ASD group compared with high-risk
non-ASD group: b=2106.7, t=2.9, p=0.005; high-risk ASD

FIGURE 3. Hippocampal volume trajectories from 6 to 24 monthsa
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group compared with low-risk group: b=2111.7, t=2.5,
p=0.012). Twenty-four-month scores on the Mullen scales
did not predict additional variance in hippocampal tra-
jectory (b=20.8, t=0.9, p=0.37).

Hippocampal Trajectory and Other IBQ-R Subscales
TheIBQ-Rhas 14 subscales (see reference22).Thefive sleep
items that comprise the ISOP are part of the falling re-
activity/rate of recovery fromdistress scale. To examine the
specificity of the sleep-hippocampal finding, the same full
linear mixed model predicting bilateral hippocampal tra-
jectory was repeated, replacing the ISOP score with scores
from each IBQ-R subscale (including the full 13-item falling
reactivity/rate of recovery from distress scale, each aver-
aged from 6 to 12 months). None of the other IBQ-R sub-
scaleswere significantly related tohippocampal volume (see
Table S4 in the online supplement), including the full falling
reactivity/rate of recovery from distress scale from which
the sleep items were derived. This suggests that the re-
lationship with hippocampal trajectory may be specific to
thefive IBQ-R items comprising the ISOPscore anddoesnot
represent a more general relationship with infant behavior
or temperament.

Hippocampal Trajectory and Sleep Onset Problems
Measured at 6 and 12 Months
The final follow-up analyses investigated whether the associ-
ations between ISOP score and trajectories of hippocampal
volume from 6 to 24monthswould persist if restricted to sleep
measured at a single time point in development (either 6 or
12 months). Models were run substituting 6-month and
12-month ISOP scores for the averaged score and including
cognitive ability (Mullen early learning composite score)
measured at that same time point (6 or 12 months).

The association between hippocampal volume trajectory
and sleeppersistedwhenweused ISOPscoresmeasuredonly
at a single time point (6 or 12 months). Specifically, in the
6-month model, there was a significant main effect of
6-month ISOP score (b=75.9, t=2.3, p=0.02) and a sig-
nificant group-by-6-month ISOP score interaction (high-
risk ASD group compared with high-risk non-ASD group:
b=278.4, t=22.1, p=0.04; high-risk ASD group compared
with low-risk group: b=2109.8, t=2.6, p=0.008). Six-month
scores on theMullen scales did not predict additional variance
in hippocampal trajectory (b=0.8, t=0.6, p=0.6).

Similarly, in the 12-month model, there was a significant
main effect of 12-month ISOP score (b=74.5, t=2.4, p=0.02)
and a significant group-by-12-month ISOP score interaction
for the contrast of the high-risk ASD group compared with
the high-risk non-ASD group (b=286.9, t=22.4, p=0.02).
With the 12-month ISOP score, the contrast of the high-risk
ASD group compared with the low-risk group did not reach
statistical significance (b=243.9, t=21.1, p=0.3). Twelve-
month scores on the Mullen scales did not predict addi-
tional variance in hippocampal trajectory (b=20.22, t=0.20,
p=0.8).

DISCUSSION

In a large sample of infants at high and low familial risk for
ASD, we found that sleep onset problems were more
prevalent at 6–12 months among infants who went on to
develop ASD. Difficulties with sleep onset during infancy
were associated with weaker social communication skills by
24 months and were related to hippocampal volume tra-
jectory from 6 months to 24 months only for the high-risk
ASD group. Infants in the high-risk ASD group who had
sleep onset difficulties at 6–12 months exhibited increased
hippocampal volume trajectories compared with those in
the high-risk ASD group who had better sleep. The asso-
ciation with sleep onset problems in infancy was specific to
the hippocampus; no significant sleep-brain associations
were found for the other subcortical structures examined(the
amygdala, caudate, globus pallidus, putamen, and thalamus).
Additional analyses revealed that the observed association
between sleep onset problems andhippocampal trajectories in
the high-risk ASD group existed in each hemisphere and
persisted after controlling for cognitive ability at 24months. In
addition, the association was specific to sleep onset problems
and did not generalize to other aspects of infant temperament
measured on the IBQ-R. Finally, sleep-hippocampal trajectory
associations persisted in models that included sleep and
cognitive ability measured at a single time point (6 or
12 months).

Our finding that early sleep onset problems are specific to
ASDis inlinewithfindingsfromprevious infantsiblingstudies.
Sleep patterns in typically developing children who have a
sibling with ASD are similar to those with no family history of
ASD (21, 25). Associationswith hippocampal trajectorieswere
alsospecific to thehigh-riskASDgroup. Incontrast toprevious
studies with typically developing older children, with adults
with insomnia, and with sleep-deprived animals (18, 19, 26),
sleeponsetproblems in infantsathighriskwhodevelopedASD
were associated with increased (rather than decreased) hip-
pocampal volume across early development. The reason for
thisdisorder-specificeffect and itsdirectionality isunclear, but
it may be related to a disrupted coupling of hippocampal and
brain sizes that has beenobserved in other ASD samples (27).
Overgrowth of some structures, but not others, at different
stages of development has been frequently reported in ASD
(12, 13, 28). Indeed, in the same infant sibling sample as the
present study, early cortical overgrowthwas associatedwith
later social deficits (12), larger corpus callosum volumes
were associated with later restricted or repetitive behavior
(29), andlarger thalamus,caudate, andamygdalavolumeswere
associated with abnormal language profiles (24). In a de-
parture from this previous work, however, we show evidence
of abrain-behavior relationship during infancy that precedes
the onset of ASD symptoms. If replicated, these findings
suggest that an individual difference in infant behavior (i.e.,
sleep onset difficulties) could help predict which infants will
show abnormal trajectories of hippocampal growth before the
onset of ASD symptoms.
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The demonstration that our findings are specific to the
hippocampus is consistent with a large body of non-ASD
research linking sleep to morphometric changes (16–18) and
accumulation of metabolic by-products in the hippocampus
(e.g., beta-amyloid [30]). Sleep alsoplays a role inhippocampus-
mediated cognitive processes, including spatial and declarative
learning and consolidation (31). Adequate sleep may be required
for typical hippocampal maturation: young (but not adolescent)
mice that were deprived of REM sleep showed reduced long-
termpotentiation stability and lower expression of glutamatergic
signaling proteins, both suggestive of altered hippocampal
development (32). Thus, the hippocampus appears to be a
brain region that is particularly sensitive to the effects of
disturbed or inadequate sleep. However, it is important to
recognize that the sleep-hippocampus associations we ob-
served do not reveal a causal direction. Inadequate sleepmay
cause changes in the hippocampus that confer vulnerability
to disorders of neurodevelopment or neurodegeneration.
Alternatively, preexisting neurobiological or genetic dif-
ferences may result in both hippocampal changes and sleep
disturbance during the early stages of a disorder.

A variety of critical neurobiological processes occur during
sleep and could underlie our findings. One potential mecha-
nism involves neuroinflammatory processes that are modu-
lated during sleep. Sleep deprivation has been shown to
increase neuroinflammation, which affects synaptic plas-
ticity in the hippocampus (33). Sleep disturbance has been
associated with inflammatory responses in the hippocam-
pus, but not the cortex, in adult mice and impaired sub-
sequent performance on a hippocampus-dependent learning
and memory task (34). In humans, the data on associations
between sleep and inflammation are mixed. A recent meta-
analysis found that increased levels of inflammatory markers
wereassociatedwithsleepdisturbanceandlongsleepduration
(.8 hours per night) but not short sleep duration (,7 hours
per night [35]). However, evidence of potential involvement of
inflammatory responses in the pathogenesis of ASD (36)
suggests that investigating sleep and neuroinflammation
longitudinally in studies of early brain development (such as
the present study) is a promising direction for future research.

This study has several limitations, including the use of a
novelmeasure of sleep during infancy. Although ourmeasure
of sleep onset problems (derived from five items on the IBQ-
R) revealed strong correspondence with BISQ scores and
strong internal consistency in a subsample of infants, it was
based on parent report and has not (to our knowledge) been
validated against objective measures of sleep in infancy (i.e.,
actigraphyorpolysomnography). In addition, thesefive items
measured only one aspect of sleep (sleep onset latency) and
didnotprovide informationabout sleep fragmentation,quality,
or overall duration. It will be important in future studies to
conduct more comprehensive sleep assessments to determine
whichcharacteristics of sleepduring infancyaremost relevant
to brain and behavior development. Another important area
for future research will be to investigate associations between
infant sleep and cortical development, because altered cortical

morphometry has been associated with ASD in high-risk
siblings (12) and chronic sleep disturbance in typically de-
veloping children (20). Given the early stages of this study, and
the absence of previous work examining sleep and neuro-
development in infants at high risk for ASD, we believe these
preliminary findings are of interest and warrant extension to
other brain regions and replication with alternative measures
of sleep.

If replicated, these observations could provide new in-
sights into a potential role for disturbed sleep in the devel-
opment of ASD. The high prevalence of ASD and comorbid
sleep difficulties in some rare genetic syndromes (37) has led
to the suggestion that ASD and sleep problems may have
shared etiology (38). Impairments in circadian timing (39),
sleep-wake regulation (8), sensory processing (38), and af-
fective functioning (7) may underlie both sleep difficulties
and core symptoms of ASD. The efficacy of both pharma-
cologic (e.g., melatonin) and behavioral sleep interventions
for some children with ASD suggests that both neurobio-
logical and psychosocial factors should be considered. Our
findings provide initial evidence that sleep difficulties in the
first yearof lifemayprecedeASDdiagnosis andareassociated
with altered neurodevelopmental trajectories in high-risk
siblings who go on to develop ASD.We expect futurework to
reveal the implications of these results for understanding
neurodevelopment in ASD and for developing early, targeted
interventions for sleep difficulties in infants at high risk for
ASD.
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