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Objective: Alcohol use disorders are common conditions
that have enormous social and economic consequences.
Genome-wide association analyses were performed to
identify genetic variants associated with a proxy measure of
alcohol consumption and alcohol misuse and to explore the
shared genetic basis between these measures and other
substance use, psychiatric, and behavioral traits.

Method: This study used quantitative measures from the
Alcohol Use Disorders Identification Test (AUDIT) from two
population-based cohorts of European ancestry (UK Biobank
[N=121,604] and 23andMe [N=20,328]) and performed a
genome-wide association study (GWAS) meta-analysis. Two
additional GWAS analyses were performed, a GWAS for
AUDIT scores on items 1–3, which focus on consumption
(AUDIT-C), and for scores on items 4–10, which focus on
the problematic consequences of drinking (AUDIT-P).

Results: The GWAS meta-analysis of AUDIT total score
identified 10 associated risk loci. Novel associations localized
to genes including JCAD and SLC39A13; this study also repli-
cated previously identified signals in the genes ADH1B, ADH1C,
KLB, and GCKR. The dimensions of AUDIT showed positive

genetic correlations with alcohol consumption (rg=0.76–0.92)
and DSM-IV alcohol dependence (rg=0.33–0.63). AUDIT-P
and AUDIT-C scores showed significantly different patterns
of association across a number of traits, including psychi-
atric disorders. AUDIT-P score was significantly positively
genetically correlated with schizophrenia (rg=0.22), major
depressive disorder (rg=0.26), and attention deficit hyper-
activity disorder (rg=0.23), whereas AUDIT-C score was
significantly negatively genetically correlated with major de-
pressive disorder (rg=20.24) and ADHD (rg=20.10). This study
also used the AUDIT data in the UK Biobank to identify
thresholds for dichotomizing AUDIT total score that opti-
mize genetic correlations with DSM-IV alcohol dependence.
Coding individuals with AUDIT total scores #4 as control
subjects and thosewith scores$12 as case subjects produced
a significant high genetic correlation with DSM-IV alcohol
dependence (rg=0.82) while retaining most subjects.

Conclusions: AUDIT scores ascertained in population-based
cohorts can be used to explore the genetic basis of both
alcohol consumption and alcohol use disorders.

Am J Psychiatry 2019; 176:107–118; doi: 10.1176/appi.ajp.2018.18040369

Alcohol use disorders are modestly heritable, with twin
studies demonstrating that approximately 50% of the phe-
notypic variance is attributed to genetic factors (1, 2). To date,
genetic studies of alcohol use disorders have identified genes
that influencepharmacokinetic factors (e.g.,ADH1B,ADH1C,
ALDH2) (3–8) but none that influence pharmacodynamic
factors. The difficulty of assembling large, carefully diagnosed
cohorts of individuals with alcohol use disorders has stimulated
additional studies of nonclinical phenotypes, such as alcohol
consumption, in populations not ascertained for alcohol de-
pendence. This approach has allowed for the relatively rapid
collection of much larger sample sizes (e.g., .100,000

individuals) and has identified numerous loci associated
with both pharmacokinetic and pharmacodynamic factors
that influence alcohol consumption, including ADH1B/
ADH1C/ADH5 (9–11), KLB (encoding b-klotho) (9, 11, 12), and
GCKR, encoding the glucokinase regulatory protein (9, 11).
However, the genetic overlap between alcohol consumption (in
units per week) and diagnosed DSM-IV alcohol dependence is
moderate (rg=0.38) (13), which reinforces the notion that al-
cohol consumption cannot be used as a surrogate for alcohol
use disorders.

The Alcohol Use Disorders Identification Test (AUDIT)
is a screening tool designed to identify past-year hazardous
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alcohol use (14). The test consists of 10 items across three
dimensions—those pertaining to alcohol consumption (items
1–3, often termed AUDIT-C), dependence symptoms (items
4–6), and problematic or hazardous alcohol use (items 7–10).
When the AUDITwas developed, a total score$8was proposed
to be indicative of hazardous alcohol use (14) and a score$20
consistent with a diagnosis of alcohol dependence (15). How-
ever, there is no clear consensus on the threshold for alcohol
dependence, and subsequent studies have suggested that ad-
ditional factors, including sex and cultural and social contexts,
should be considered when deriving thresholds for alcohol
dependence (reviewed in Table S1 in the online supplement).

A recent population-based GWAS of AUDIT scores
in 20,328 research participants from the genetics com-
pany 23andMe identified a locus near the gene ADH1C
(rs141973904; p=4.431027) (10) that was nominally associ-
ated with AUDIT total score. AUDIT scores among 23andMe
research participants were low and predominantly driven
by alcohol consumption (AUDIT-C score). The genetic cor-
relation between AUDIT total score from the 23andMe sam-
ple and alcohol consumption was much stronger (rg=0.89,
p=9.01310210) than the genetic correlation between AUDIT
total score and alcohol dependence (rg=0.08; p=0.65) (13).

In this study, we performed a GWAS meta-analysis us-
ing the UK Biobank cohort (N=121,604) and the previously
published 23andMe cohort (N=20,328) (10), yielding the
largest GWAS meta-analysis of AUDIT total score to date
(N=141,932). Using only the UK Biobank cohort, we also
sought to determine whether the alcohol consumption com-
ponent of the AUDIT had a genetic architecture distinct
from the dependence and hazardous-use components by
performing GWASs of consumption (items 1–3, AUDIT-C)
and problems (items 4–10, AUDIT-P). Linkage disequilib-
rium score regression (16) was used to calculate genetic
correlations betweenAUDITmeasures and other substance
use, psychiatric, and behavioral traits. We also calculated
genetic correlations with obesity and blood lipid traits, as
these have previously been shown to be associated with al-
cohol consumption (9, 10). We hypothesized that AUDIT-P
score would correlate more strongly with measures of
hazardous substance use, including alcohol dependence,
and other psychiatric conditions. Finally, to determine the
thresholds for dichotomizing AUDIT total score that would
most closely approximate alcohol dependence, we used con-
tinuous AUDIT total score to categorize participants as case
and control subjects using different thresholds, performed
GWAS on each, and calculated the genetic correlation with
DSM-IV alcohol dependence (13).

METHOD

UK Biobank Sample
The UK Biobank (www.ukbiobank.ac.uk) is a population-
based sample of 502,629 individuals who were recruited
from 22 assessment centers across the United Kingdom from
2006 to 2010 (17). A total of 157,366 individuals completed a

mental health questionnaire as part of an online follow-up
over a 1-year period in 2017. TheAUDITwas administered to
assess alcohol use over the past year, using gating logic (see
Figure S1 in the online supplement). After quality control
procedures were performed to remove participants with
missing data, and keeping only white British unrelated in-
dividuals, 121,604 individuals with AUDIT total scores were
available. AUDIT total score was created by taking the sum of
items 1–10, for all participants, including those who endorsed
currently never drinking alcohol (as they could still endorse
past hazardous use on items 9 and 10). We also created AUDIT
subdomain scores by aggregating the scores from items 1–3,
which include the information pertaining to alcohol consump-
tion (AUDIT-C, N=121,604), and from items 4–10, which index
the information pertaining to alcohol problems (AUDIT-P,
N=121,604). These traits were log10-transformed to approximate
a normal distribution (see Figure S2 in the online supplement).

Genotyping, Quality Control, and Imputation
Genotype imputation was performed on 487,409 individuals
by the UK Biobank team, using IMPUTE4 (18) and the
Haplotype Reference Consortium reference panel. After
quality control, 16,213,998 single-nucleotide polymorphisms
(SNPs) remained for GWAS analyses. Additional details on
genotyping and quality control are provided in the Supple-
mentary Methods section in the online supplement.

Discovery GWASs Using the UK Biobank Sample
GWAS analyses were performed using BGENIE, version 1.1
(18), with AUDIT scores (total score, AUDIT-C score, and
AUDIT-P score, tested independently) as the outcome var-
iable and age, sex, genotyping array, and the first 20 principal
components derived from genotype data as covariates. (See
the Supplementary Methods section in the online supple-
ment for more details.) To identify independently associated
variants (“index variants”), clump-based pruning was applied
in FUMA(fuma.ctglab.nl) using an r2 of 0.1 and a 1-Mb sliding
window using the UK Biobank white British sample as the
linkage disequilibrium (LD) reference panel. A 1-Mbwindow
was used because of the regions of extended LD on chro-
mosomes 4q23 and 17q21.31, which were associated with
AUDIT scores in this study.

In addition, we performed a series of 18 case-control
GWAS analyses of AUDIT total score using different
thresholds (cases: $8, 10, 12, 15, 18, 20; compared with con-
trols:#2, 3, 4). The sample size at each threshold is listed in
Table S2 in the online supplement. The results of these
analyses were used to determine which thresholds would
produce the highest genetic correlation estimates with
DSM-IV alcohol dependence (13).

SNP Heritability Analyses
The SNP heritability of UK Biobank AUDIT scores (total,
AUDIT-C, AUDIT-P) was calculated using a genomic re-
stricted maximum likelihood (GREML) method implemented
in Genetic Complex Trait Analysis (GCTA) (19) on a subset of
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117,072unrelated individuals, usinga relatednesscutoff of0.05
and controlling for age and sex. GREML analyses were run
using genotyped SNPs with a minor allele frequency greater
than 0.01 to construct the genetic relationship matrix.

GWAS Meta-Analysis of AUDIT Total Score Using the
UK Biobank and 23andMe Samples
Because the genetic correlation of AUDIT total score be-
tween the UK Biobank and 23andMe cohorts was high
(rg=0.77, SE=0.12, p=7.15310211), we performed a sample
size–based meta-analysis of AUDIT total score from the UK
Biobank and 23andMe cohorts using METAL (version 2011-
03-25) (20). This meta-analysis comprises a total of 141,932
research participants of European ancestry and 9,519,872
genetic variants that passed quality control. We used clump-
based pruning (see the “Discovery GWASs Using the UK
Biobank” section, above) to identify independently associated
variants. For each GWAS signal, we defined a set of credible
variants using a Bayesian refinement method developed by
Maller et al. (21). These credible sets are considered to have a
99% probability of containing the “causal” variant at each
locus. Credible set analyses were performed in R (https://
github.com/hailianghuang/FM-summary) for each of the
index variants associated with AUDIT total score in the
GWASmeta-analysis using SNPswithin 1Mbwith an r2.0.4
to the index variant. All downstream genetic analyses of
AUDIT total score were performed using the GWAS meta-
analysis summary statistics. The 23andMe AUDIT GWAS
has been published previously (10), and 30,441 participants
from the UK Biobank cohort were included in a previous
GWAS of alcohol consumption (9).The GWAS of alcohol con-
sumption in the UK Biobank sample involved individuals
genotyped during the first UK Biobank data release (9). The
individuals from the UK Biobank in the present study are
those who completed the mental health questionnaire in
2017 and include those genotyped in both the first and second
UK Biobank data releases; the sample overlap between these
two data sets is 30,441 individuals.

Functional Mapping and Annotation of GWAS
Meta-Analysis
We used FUMA, version 1.2.8 (22), to study the functional
consequences of the index SNPs and of the SNPs contained
in each credible set, which included categories from the
ANNOVAR tool, combined annotation-dependent deple-
tion (CADD) scores, RegulomeDB scores (www.regulomedb.
org/), expression quantitative trait loci, and chromatin states.
We also studied the regulatory consequences of the index
SNPs using the Variant Effect Predictor tool (VEP; Ensembl
GRCh37).

Gene-Set and Pathway Analyses
We performed MAGMA (22) competitive gene-set and path-
way analyses using the summary statistics from the GWASmeta-
analysis of AUDIT total score and the AUDIT-C and AUDIT-P
score subsets. SNPs were mapped to 18,546 protein-coding genes

from Ensembl, build 85. Gene sets were obtained fromMsigdb,
version 5.2 (“Curated gene sets,” “GO terms”).

Gene-Based Association Using Transcriptomic Data
With S-PrediXcan
We used S-PrediXcan (23) to predict gene expression levels
in 10 brain tissues and to test whether the predicted gene ex-
pression correlates with AUDIT scores.We used precomputed
tissue weights from the Genotype-Tissue Expression (version
7) project database (https://www.gtexportal.org/) as the ref-
erence transcriptome data set. Further details are provided in
the Supplementary Methods section in the online supplement.

Genetic Correlation Analysis
We used LD score regression (LDSC) (github.com/bulik/
ldsc; ldsc.broadinstitute.org) to identify genetic correlations
between traits (24). This method was used to calculate ge-
netic correlations (rg) betweenAUDIT total score, AUDIT-C
score, and AUDIT-P score, and 39 other traits and diseases
(see Tables S3, S4, and S5 in the online supplement). We did
not constrain the intercepts in our analysis, as we could not
quantify the exact amount of sample overlap between cohorts.
We used false discovery rate to correct for multiple testing (25).
We also used LDSC to examine genetic correlations between
various dichotomized versions of AUDIT and DSM-IV al-
cohol dependence (13). To test for significant differences
between the genetic correlations, z-score statistics were
calculated (see Table S6 in the online supplement).

RESULTS

UK Biobank Sample Characteristics
In the UK Biobank cohort, there were 121,604 individuals
with AUDIT scores available for GWAS analysis (see Table
S7 in the online supplement). The UK Biobank sample was
56.2% female (N=68,389), and the mean age was 56.1 years
(SD=7.7). The mean AUDIT total score was 5.0 (SD=4.18,
range=0–40); a histogram showing the distribution of the
scores is provided in Figure S2 in the online supplement.
Over the previous year, 91.9% of the participants reported
drinking 1 or 2 drinks on a single drinking day. Over the
previous year, 6.3% of the participants reported that they
were not able to stop drinking once they started, and 10.7% felt
guilt or remorse after drinking (see Table S7 in the online
supplement). The mean AUDIT total score was significantly
higher for males than for females (6.09 [SD=4.45] and 4.15
[SD=3.72], respectively; b=0.47, p,231026) (see Figure S3 in
the online supplement). In addition, age was negatively cor-
related with AUDIT scores (b=20.02, p,231026) (see Table
S8 in the online supplement). Therefore, both sex and age
were used as covariates in the GWAS analyses. The mean
AUDIT-C score was 4.24 (SD=2.83) and the mean AUDIT-P
score was 0.75 (SD=2.0). As expected, there was a moderate
positive phenotypic correlation between AUDIT-C and
AUDIT-P scores (r=0.478, 95% CI=0.473–0.481, p,2310216)
(see Table S8 in the online supplement).
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SNP Heritability in the UK Biobank Sample
We estimated the SNP heritability of AUDIT total score
to be 12% (GCTA: SE=0.48%, p=4.63102273; LDSC: 8.6%,
SE=0.50%), which is similar to the previously published
AUDIT estimate (10). The SNP heritability for AUDIT-C
scorewas 11% (GCTA: SE=0.47%, p=1.53102211; LDSC: 8.4%,
SE=0.55%), and 9% for AUDIT-P score (GCTA: SE=0.46%,
p=2.03102178; LDSC: 5.9%, SE=0.48%).

GWAS of AUDIT Scores in the UK Biobank Sample
The significant results (p,531028) of the GWAS of AUDIT
total score in the UK Biobank cohort are presented in Table
S9 in the online supplement; this analysis revealed 12 in-
dependent GWAS signals located in eight loci. The UK
BiobankGWASsofAUDIT-CandAUDIT-P score subsets are
summarized in Tables S10 and S11 and Figure S4 in the online
supplement. Seven of these 12 independent GWAS signals
were also significantly associated with AUDIT-C score; the
same index variants were identified in the two analyses. An
additional GWAS signal was also identified close to FNBP4.
For AUDIT-P score, five independent GWAS signals were
significantly associated, and these loci were also associated
with the total AUDIT and AUDIT-C scores. The rs1229984
SNP in ADH1B was not available for meta-analysis in the
23andMe sample and was not in Hardy-Weinberg equilib-
rium in the UK Biobank sample used in the present study
(p=3.2310216); however, in the total UK Biobank white
British sample, there was no significant deviation from
Hardy-Weinberg equilibrium (p=0.13). The associations

between rs1229984 and AUDIT scores are presented in
Tables S9, S10, and S11 in the online supplement. The
rs1229984 SNPwas strongly associatedwith all AUDIT scores
in the UK Biobank sample (b=0.04–0.06, p#1.0310245),
but this SNP was not included for clump-based pruning and
downstream analyses.We therefore performed a conditional
analysis of the SNPs on 4q23 and 4q24 in the UK Biobank
sample to determine whether any of these associations were
significant after controlling for rs1229984 genotype. While
rs13107325 on 4q24 remained significantly associated with
AUDIT total score after controlling for rs1229984 geno-
type, the association between rs146788033, rs11733695, and
rs3114045 and AUDIT total score became nonsignificant,
suggesting that these loci are tagging the strong rs1229984
signal in this region.

GWAS Meta-Analysis of AUDIT Total Score
The GWAS meta-analysis of the UK Biobank and 23andMe
samples found 15 independent GWAS signals (see Table S12
in the online supplement) associatedwith AUDIT total score
spanning 10 genomic loci (Table 1). Figure 1 presents the
Manhattan and quantile-quantile plots of the GWAS meta-
analysis of AUDIT total score, and Figures S5–S14 in the
online supplement present the regional association plots for
the independent signals. The inflation factor of the meta-
analysis GWAS was lGC=1.22 with an LDSC intercept of
1.008 (SE=0.007), suggesting that the majority of the infla-
tion is due to polygenicity. The 15 independent SNPs show
100% sign concordance for association with AUDIT total

TABLE 1. Index SNPs Associated With AUDIT Scores in a GWAS Meta-Analysis of AUDIT Scores and Corresponding p Values in the
UK Biobank and 23andMe Cohortsa

UK Biobank (N=121,604)

Chromosome Index Variant Genes (Number of Credible SNPs) A1 Beta SE p

2p21 rs4953148 LINC01833 (17) T 0.007 0.001 2.8310–8

2p23.3 rs1260326 SNX17 (1), GCKR (3) C 0.008 0.001 2.1310–10

3q25.33 rs1920650 SMC4, TRIM59, B3GAT3P1, KPNA4, SCARNA7,
KRT8P12, RPL6P8, ARL14 (132)

C 0.006 0.001 1.0310–6

4p14 rs11940694 KLB (7) G 0.01 0.001 9.8310–20

4p14 rs4975012 KLB (6) A 0.008 0.001 1.9310–8

4q23 rs146788033 METAP1 (1) G –0.04 0.005 1.5310–22

4q23 rs11733695 RP11–696N14.1 (1) A –0.07 0.006 9.1310–26

4q23 rs3114045 ADH1C (12) C 0.01 0.002 3.4310–10

4q24 rs188514326 RP11–588P8.1 (1) C –0.04 0.009 3.0310–7

4q24 rs13135092 RN7SL728P (1), SLC39A8 (5) G –0.02 0.002 4.1310–13

8q22.1 rs35040843 RP11–700E23.3 (30) T 0.007 0.001 1.7310–7

10p11.23 rs7078436 JCAD (9) G –0.006 0.001 1.8310–6

11p11.2 rs2293576 NDUFS3 (3), SPI1 (6), SLC39A13 (3), PSMC3 (3),
RAPSN (6), CELF1 (16), RP11–750H9.5 (15),
Y_RNA (1)

A 0.007 0.001 5.0310–9

17q21.31 rs62062288 CRHR1 (142), DND1P1 (1), ENSG00000262372 (1),
ENSG00000262500 (2), ENSG00000262881 (12),
KANSL1 (376), MAPT (755), MAPT-AS1 (255),
NSF (15), PLEKHM1 (1), SPPL2C (11),
STH (1), RP11–105N13.4 (541), WNT3 (16)

A –0.009 0.001 1.6310–9

19q13.33 rs492602 FUT2 (29),MAMSTR (8), RASIP1 (23), IZUMO1 (6) G 0.006 0.001 7.0310–8

aProtein coding genes listed are those spanned by SNPs in each credible set. AUDIT=Alcohol Use Disorders Identification Test; GWAS=genome-wide associ-
ation study; SNP=single-nucleotide polymorphism.
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score across the UK Biobank and 23andMe samples
(Table 1); 11 of these SNPs were nominally associated with
AUDIT total score in the 23andMe sample (p#0.05), and all
index SNPs were associated with AUDIT total score in the
UK Biobank sample (p,1.831026).

The top hit for the GWAS meta-analysis of AUDIT total
score was a variant (rs11733695) located downstream (879
base pairs) from ADH6 (p=3.4310230), which is a member of
the alcohol dehydrogenase gene family. The rs11733695 SNP
is in low LD (r2=0.17) with the functional SNP in ADH1B,
rs1229984, which is known to alter alcohol metabolism (26). In
addition, twoother regions in 4q23were associatedwithAUDIT
total score in the meta-analysis: one of the index SNPs was lo-
cated in the ADH1C gene; however, conditional analysis of this
region in the UK Biobank sample alone suggests that these
multiple hits may in fact be tagging the rs1229984 signal. This
region has been previously associated with alcohol consump-
tion, alcohol use disorders, and AUDIT scores (6, 7, 9, 10).

Wealso replicated the associationbetweenKLB (seeTable
S12 in the online supplement), on chromosome 4q14, and
alcohol consumption (9, 11, 12); the index SNP rs11940694,
which is located in the intron of KLB, was associated with
AUDIT total score in thepresent study.Clump-basedpruning
identified rs11940694 and rs4975012 as independent hits in
theKLB region. Credible set analysis suggests that rs2046330
is the index SNP in the region represented by rs4975012
(see Table S13 in the online supplement). AUDIT total score
was also associated with SNPs that localized to GCKR on
chromosome 2p23.3, which has been previously associated
with alcohol consumption (9, 11). Five SNPs comprised the

credible set at the GCKR locus, which also spans the SNX17
gene, including the missense variant (rs1260326) in GCKR
that was identified as the index SNP.

We identified GWAS signals in several regions that have
not been previously implicated in the genetics of alcohol use
disorders, including 2p21, 17q21, 3q25, 8q22, 10p11, 11p11, and
19q13. The index SNP rs13135092 in the 4q24 region is located
in an intron of SLC39A8; the remainder of the credible set for
this locus is located in a noncoding pseudogene, RN7SL728P.
SLC39A8 is highly pleiotropic (27), but it is a novel associ-
ation in relation to alcohol. A region of association on 2p21
contains 17 SNPs that are localized to the noncoding RNA
LINC01833. A novel region of association was also detected
on chromosome 10p11.23; this region contains nine credible
SNPs that localize to the JCAD (junctional cadherin 5 asso-
ciated) gene. JCAD encodes an endothelial cell junction
protein and has previously been associated with coronary
heart disease (28).

The remaining novel associations on 3q25, 8q, 11p11, 17q21,
and 19q13.3 were more complex. The index variants on
chromosome 8q22.1 were not localized to any genes, and it is
unclear from the credible set analyses what the causal var-
iants may be at these loci. The credible SNP sets for the
3q25.33, 11p11.2, 17q21.31, and 19q13.3 regions containedmore
than 50 SNPs each, which spanned several genes. For ex-
ample, the index SNP on chromosome 17q21.31 was an
intronic SNP in MAPT, which encodes the tau protein
and has been robustly associated with Parkinson’s disease
(30, 31) (see Table S14 in the online supplement) and other
neurodegenerative tauopathies (32) and, more recently, with

23andMe (N=20,328) Meta-Analysis (N=141,932)

A1 Beta SE p A1 Z Score p Direction

T 0.03 0.036 3.5310–1 A –5.59 2.3310–8 2/2
T –0.10 0.034 2.7310–3 T –7.15 8.7310–13 2/2
T –0.07 0.037 4.2310–2 T –5.63 1.7310–8 2/2

G 0.08 0.034 2.5310–2 A –9.38 6.8310–21 2/2
G –0.006 0.003 4.9310–2 A 5.94 2.8310–9 +/+
G –0.03 0.008 1.4310–4 A 10.48 1.0310–25 +/+
G 0.05 0.012 6.7310–6 A –11.42 3.4310–30 2/2
T –0.15 0.048 1.6310–3 T –7.18 7.2310–13 2/2
G 0.03 0.013 4.9310–2 C –5.49 4.1310–8 2/2
G –0.09 0.060 1.2310–1 A 7.59 3.2310–14 +/+
T 0.09 0.038 8.9310–3 T 5.55 2.9310–8 +/+
G –0.10 0.035 3.1310–3 A 5.74 9.6310–9 +/+
G –0.06 0.035 1.2310–1 A 5.83 5.5310–9 +/+

G 0.09 0.042 2.1310–2 A –6.21 5.4310–10 2/2

G 0.05 0.033 1.7310–1 A –5.57 2.5310–8 2/2
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neuroticism (33). However, we note that the region of asso-
ciation on chromosome 17q21.31 spans the corticotropin
receptor gene (CRHR1), which has been associated with
alcohol use in animals and humans (34). Thus, because of
the extended complex LD in this region, we are unable to
determine the likely causal variant. Similarly, the index
SNP (rs2293576) at chromosome 11p11.2 is a synonymous
SNP of the zinc transporter gene SLC39A13; however, this
region includes 54 associated SNPs, which map to five
additional genes. Lastly, the index SNP on 19q13.3 is a syn-
onymous variant in FUT2. FUT2 encodes galactoside
2-alpha-L-fucosyltransferase 2, which controls the expres-
sion of ABO blood group antigens. However, 70 SNPs form
this credible set, and they span four genes in total.

We used FUMA to functionally annotate all 1,290 SNPs
in the credible sets (see Table S13 in the online supplement).
The majority of the SNPs were intronic (76.9%; N=993) or
intergenic (11.6%; N=149), and only 26 SNPs (2.0%) were
exonic. Furthermore, 38 SNPs showed CADD scores.12.37,
which is the suggested threshold to be considered deleterious
(35). The exonic SNPs (rs601338, rs17651549, rs13107325) of
FUT2, MAPT, and SLC39A8, respectively, had the highest
CADD scores (.34), suggesting potential deleterious protein
effects. Overall, 164 SNPs had RegulomeDB scores of 1a2
1f, showing evidence of potential regulatory effects; 90.1%
of the SNPs were in open chromatin regions (minimum
chromatin state, 1–7).

Gene-Based and Pathway Analyses
We used MAGMA (22) to perform a gene-based association
analysis, which identified 40 genes that were significantly
associated with AUDIT total score (p,2.7031026) (see
Table S15 and Figure S15 in the online supplement). As
expected, the majority of these genes were in the 10 GWAS
loci (i.e., KLB, GCKR); DRD2 and CRHR1 were also among
the top hits. In addition, the analysis revealed a strong bur-
den signal in CADM2 (p=1.6431029), where the index var-
iant in GWAS meta-analysis did not reach genome-wide

significance. We did not identify any canonical pathways
that were significantly associated with AUDIT score (see
Table S16 in the online supplement).

Gene-based (MAGMA) analyses for the AUDIT-C and
AUDIT-P subsets (see Figures S16 and S17 in the online
supplement) revealed evidence of overlap (see Figure S18
and Table S17 in the online supplement). Two genes (KLB,
CADM2) were associated with all three AUDIT traits
(AUDIT total score, AUDIT-C score, and AUDIT-P score).
There was considerable overlap between AUDIT total score
and AUDIT-C score, with 21 overlapping genes associated
at the gene-based level. Only one gene, DRD2, was associ-
ated with both AUDIT total score and AUDIT-P score.

S-PrediXcan
S-PrediXcan identified a positive correlation (p,1.0731026)
between AUDIT total score and the predicted expression
of 26 genes across multiple brain tissues (full results are
presented in Table S18 in the online supplement), including
MAPT (cerebellum), FUT2 (caudate and nucleus accumbens),
and CRHR1-IT1 (putamen, cerebellum, hippocampus, an-
terior cingulate cortex). SNPs in the region of MAPT and
FUT2were associatedwithAUDIT total score in theGWAS.
MAPT (cerebellum), FUT2 (nucleus accumbens), and CRHR1-
IT1 (caudate, cortex, nucleus accumbens, hypothalamus,
hippocampus) were also associated with AUDIT-C score (see
Table S19 in the online supplement). S-PrediXcan for AUDIT-C
and AUDIT-P scores (see Table S20 in the online supple-
ment) revealed that lower predicted RFC1 expression in the
cerebellum and hemisphere, respectively, was associated with
higher scores on both the AUDIT-C (p=7.8431027) and the
AUDIT-P (p=1.5431026).

Genetic Correlations
We used LDSC to evaluate evidence for genetic correla-
tions between our three primary traits (AUDIT total score,
AUDIT-C score, and AUDIT-P score) and numerous other
traits for which GWAS summary statistics were available;

FIGURE 1. Manhattan and QQ Plots for the SNP-Based GWAS Meta-Analysis of AUDIT Total Score (N=141,932)a
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these included alcohol and substance use traits, personal-
ity and behavioral traits, psychiatric disorders, blood lipid
levels, and brain structure volumes (see Figure 2; see also
Tables S3–S5 in the online supplement).

As expected, AUDIT-C and AUDIT-P scores were highly
genetically correlated (rg=0.70, p=4.1310270). AUDIT scores
(AUDIT total score, AUDIT-C score, and AUDIT-P score)
showed strong genetic correlations with alcohol consump-
tion from two other studies (rg=0.76–0.96, p,2.331029).
Many of the genetic correlations with AUDIT-P score were
significantly different from the correlations with AUDIT-C
score (see Table S6 in the online supplement). AUDIT-C
score had a significantly stronger (p=8.0231023) correlation
with alcohol consumption (rg=0.92, p=7.03102164) than did

AUDIT-P score (rg=0.76, p=2.7310252). In contrast, AUDIT
total score and AUDIT-C score were only modestly cor-
related with alcohol dependence (rg=0.39 and 0.33, re-
spectively, p,8.231025), whereas AUDIT-P score showed
a nominally stronger genetic correlation with alcohol de-
pendence (rg=0.63, p=1.831028; AUDIT-P compared with
AUDIT-C, p=0.033) (see Table S6).

We detected positive genetic correlations between AUDIT
scores (AUDIT total, AUDIT-C score, AUDIT-P score) and
other substance use phenotypes, including lifetime
smoking (rg=0.24–0.41, p,1.631025) and cannabis use
(rg=0.26–0.46, p,1.131024). We also observed a positive
genetic correlation between AUDIT-P score and cigarettes
per day (rg=0.28, p=4.031023).

FIGURE 2. Genetic Correlations Between the Three AUDIT Phenotypes (Total Score, AUDIT-C Score, AUDIT-P Score) and Several Traits
Measured in Independent Cohortsa
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Several psychiatric disorders and related traits were
positively genetically correlated with AUDIT-P score, in-
cluding schizophrenia (rg=0.22, p=3.0310210), bipolar dis-
order (rg=0.26, p=1.531024), ADHD (rg=0.23, p=1.131025),
and major depressive disorder (rg=0.26, p=50.631023). In-
triguingly, AUDIT-C score was negatively correlated with
major depressive disorder (rg=20.23, p=3.731023) and
ADHD (rg=20.10, p=1.831022), whereas AUDIT-P score
showed positive genetic correlations with these same dis-
ease traits (rg=0.26, p=5.631023; rg=0.24, p=1.131025). We
observed a positive genetic correlation between AUDIT-P
score and depressive symptoms (rg=0.30, p=3.031028)
and neuroticism (rg=0.18, p=2.631024) and a negative ge-
netic correlation with subjective well-being (rg=20.24,
p=4.031025).

We observed positive genetic correlations betweenAUDIT
total score and AUDIT-C score and education, college com-
pletion, and cognitive ability (rg=0.19–0.24, p,1.531025). The
genetic correlations between AUDIT-P and education and
college completion were near zero and were signifi-
cantly lower than AUDIT-C score and AUDIT total score
or education traits (see Table S6 in the online supplement).

There were negative genetic correlations between AUDIT
total score and AUDIT-C score and obesity (rg=20.16–0.17,
p,1.131025), similar to previous reports regarding AUDIT
total score (10) and alcohol consumption (9). In contrast,
obesity was not significantly genetically correlated with
AUDIT-P score (rg=0.01, p=0.90). Similarly, HDL choles-
terol and triglyceride levels were genetically correlated
with AUDIT total score and AUDIT-C score (rg=0.19–22,
p,9.331025, rg=20.16, p,1.031024, respectively), but this
association was not found for AUDIT-P score (rg=0.11,

p=2.231022, rg=20.03, p=6.431021). Obesity showed sig-
nificantly different correlations with both AUDIT-P and
AUDIT-C scores (see Table S6).

Dichotomizing AUDIT Total Score to More Closely
Approximate DSM-IV Alcohol Dependence
As AUDIT can be rapidly ascertained in large populations,
we explored methods for dichotomizing AUDIT total score
to optimize the genetic correlation with DSM-IV alcohol
dependence (13). Higher genetic correlations with alcohol
dependence were observed as the control threshold was in-
creased from 2 to 4, and with increasingly stringent case
cutoffs (Figure 3; see also Table S2 in the online supplement).
The highest genetic correlation was observed for cases with
AUDIT total score $20 and controls #4 (rg=0.90, SE=0.25,
p=3.031024); however, this highly stringent threshold pro-
duced very few cases (N=1,290). The standard error of the
estimate is much larger at more stringent case thresholds,
and therefore these estimates should be interpreted with
caution. Defining cases as $12 yielded an rg of 0.82
(SE=0.18, p=3.231026) while retaining more than seven
times as many cases (N=9,130); these genetic correlations
were not significantly different from those obtained using
cases $20 and controls #4 (p=0.80).

DISCUSSION

We have presented the largest GWAS meta-analysis of
AUDIT total score to date, using large population-based
cohorts from the UK Biobank and 23andMe. We identified
novel associations with AUDIT total score; the genes located

FIGURE 3. Dichotomizing AUDIT Total Score to Approximate DSM-IV Alcohol Dependencea
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in these regions include JCAD and SLC39A8. We found ev-
idence for association in several loci previously associated
with alcohol use via single-variant and gene-based analyses
(i.e., KLB, GCKR, CADM2). The SNP heritability of all AUDIT
phenotypes ranged from 9% to 12%, demonstrating that com-
mon genetic factors account for a prominent proportion of
the variation in alcohol use phenotypes. Furthermore, we
showed that there is shared genetic architecture between
AUDIT scores and other alcohol and substance use pheno-
types. AUDIT-P score showed a positive genetic correlation
with several psychiatric diseases, distinguishing AUDIT-P
score from AUDIT-C score. Finally, using LDSC, we iden-
tified thresholds for dichotomizing AUDIT total score (score
$12 to define cases and #4 to define controls) that maximize
the genetic correlation with alcohol dependence while
retaining a large number of participants.

Our top GWAS hits replicated previous association
signals for alcohol use traits. The strongest associations with
AUDIT score in this study spanned the alcohol metabolism
genes on chromosome 4q23 (10). Variants in this region were
associated with AUDIT total score, AUDIT-C score, and
AUDIT-P score, demonstrating that alcohol metabolism is a
risk factor for both alcohol consumption and problematic use.
The second strongest signal, also associated with the three
AUDIT phenotypes, is located inKLB, confirming the robust
association of this gene with alcohol consumption in both
humans (9, 11, 12) and mice (12). However, the biology of this
locus could be more complex than previously described.
Although the credible set analysis suggested that the more
probable causal variants are all located on the first intron
of KLB, one of these variants, rs11940694, is an expression
quantitative trait locus for RFC1 expression in the brain, and
S-PrediXcan analysis predicted that lower expression of
RFC1 in the brain is associated with higher predicted AUDIT
(AUDIT-C and AUDIT-P) scores. Interestingly, a gene in the
complex GWAS signal on chromosome 19, Fibroblast growth
factor 21 (FGF21), was associated with AUDIT scores
(AUDIT total score, AUDIT-C score, AUDIT-P score) at the
gene-based level (see Table S17 in the online supplement).
FGF21 regulates sweet and alcohol preference inmice as part
of a receptor complex with b-Klotho (KLB) in the central
nervous system (33). Additionally, we replicated the associ-
ation between rs1260326 in the gene GCKR and alcohol
consumption (9, 11), here associated with AUDIT total score
and AUDIT-C score. Other loci previously associated with
alcohol consumption include CADM2 (9), which was asso-
ciated at the gene-based level for all three AUDIT traits. Here,
the burden analysis suggests that multiple (rare and common)
variants are necessary to explain the association signal. In-
triguingly, several of the novel associations with AUDIT
scores were mapped to highly pleiotropic genes (MAPT,
FUT2, SLC39A8) (27).

Genetic analysis of the AUDIT subsets revealed evidence
of distinct genetic architecture between AUDIT-C and
AUDIT-P (alcohol consumption versus problem use), with
support from the gene-based (see Figures S16 and S17 in the

online supplement), S-PrediXcan (see Tables S19 and S20 in
the online supplement), and genetic correlation analyses (see
Figure 2). Furthermore, AUDIT-P score showed a strong ge-
netic correlation with alcohol dependence (13). In contrast,
AUDIT-C score had a stronger genetic correlation with al-
cohol consumption. Thus, partitioning AUDIT scores into
different subsets (alcohol consumption versus problem use)
may disentangle genetic factors that contribute to different
aspects of vulnerability to alcohol use disorders.

Genetic overlap was observed for all measures of AUDIT
and other substance use traits, including lifetime tobacco and
cannabis use, as we previously reported (10, 36, 37), dem-
onstrating that genetic risk factors for high AUDIT scores
overlap with increased consumption of multiple drug types.

We found several significant differences between the
genetic correlations with AUDIT-P and AUDIT-C scores.
These differences were particularly pronounced for psy-
chiatric and behavioral traits. AUDIT-P score was positively
genetically correlatedwith psychopathology (schizophrenia,
bipolar disorder, major depressive disorder, ADHD), per-
sonality traits (including neuroticism), and regional brain
volumes. These associations have previously been observed
at the phenotypic level; alcohol use disorders commonly
co-occur in individuals with schizophrenia (38), bipolar
disorder (39), major depressive disorder (40), and adult
ADHD(41). Intriguingly, genetic risk forhighAUDIT-Cscore
was negatively correlated with major depressive disorder and
ADHD, demonstrating that a distinct genetic component of
AUDIT-P is shared with genetic risk for psychiatric disease.
Regional volumeabnormalities in subcortical brain regions of
individuals with alcohol use disorders have been reported
(42–44), although it is unclear whether these alterations
are a result of high alcohol consumption or a preexisting
susceptibility. We identified a positive genetic correlation
between AUDIT-P score and increased caudate volume;
however, the majority of studies report reductions in regional
brain volumes associated with alcohol use disorders.

For AUDIT total score and AUDIT-C score, we showed
positive genetic correlations with educational attainment
and cognitive ability and negative genetic correlations with
obesity, consistent with earlier reports (9, 10). These asso-
ciations were not observed for AUDIT-P score. Similarly,
HDL cholesterol levels showed a significant positive corre-
lation, and triglyceride levels a negative correlation, with
AUDIT total score and AUDIT-C score, but not AUDIT-P
score. These patterns were previously observed for alcohol
consumption (9). We could speculate that these differences
may be linked to socioeconomic status. Alcohol consumption
is often higher in individuals with higher socioeconomic
status (45), whereas alcohol-related problems, such as binge
drinking (46) and alcohol-related mortality (47), are more
prevalent in individuals with lower socioeconomic status.
Furthermore, individuals with low socioeconomic status are
more likely to have alcohol use disorders with psychiatric
comorbidities (48). Consistent with this idea, we find posi-
tive genetic correlations between AUDIT-C score and
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education, a trait correlated with socioeconomic status (49),
and positive genetic correlations between AUDIT-P score
and psychopathology. Our findings provide further evidence
that different dimensions of alcohol use associate differently
with behavior and that these differences may have a biologi-
cal underpinning.

A clinical diagnosis of an alcohol use disorder is often
required to define cases for genetic studies. An alternative
strategy would be to use AUDIT to infer alcohol use disorder
case status; however, it has not been clear whether and how
toperformmeta-analysesbetweenAUDITscores andalcohol
dependence. A GWAS meta-analysis for AUDIT score and
alcohol dependence could be simplified if a threshold could
be used to define cases and controls based on AUDIT score,
an approach that was used by Mbarek et al. (50). We have
provided empirical evidence about genetic correlations be-
tween AUDIT score and alcohol dependence using di-
chotomized AUDIT scores and found thresholds for AUDIT
score that produced high genetic correlations with alcohol
use disorders (see Figure 3). Genetic correlations increased
as the upper threshold for cases was made more strin-
gent, although the standard errors for all of these estimates
were overlapping. The genetic correlation with alcohol de-
pendence appeared to become asymptotic when case status
was defined as $12; therefore, this threshold could be used
to define case status. We also considered various thresholds
for defining controls and found that a threshold of #4 pro-
duced a high genetic correlation with alcohol dependence
while also retaining the largest number of subjects.

Our study is not without limitations. The AUDIT spe-
cifically asks about the past year, and thus it may not cap-
ture information on lifetime alcohol use and misuse. This
is suboptimal for genetic studies, because it effectively
measures a recent state rather than a stable trait. Mea-
sures capturing drinking and alcohol use disorders across
the lifespan may be preferable. Also, although the mean
AUDIT-C score was 4.24, the mean AUDIT-P score was
considerably lower (0.75). Thus, wewere not able to perform
a more refined categorization (e.g., three subsets: consum-
ption [items 1–3], dependence [items 4–6], hazardous use
[items 7–10]), as fewer individuals endorsed the items
comprising the AUDIT-P (see Table S7 in the online sup-
plement). Furthermore, our study uses data from the UK
Biobank and 23andMe research participants, who were
volunteers not ascertained for alcohol use disorders, and
hence our findings may not generalize to populations that
show higher rates of alcohol use and dependence. Additional
alcohol-related phenotypes (e.g., age at first use and patterns
of alcohol drinking, including binge drinking) could be used
in subsequent genetic studies to identify additional sources
of genetic vulnerability for alcohol use disorders. Lastly, we
offered guidelines to identify cases to use in genetic studies
of alcohol use disorders (i.e., an AUDIT score$12) based on
genetic correlations; however, these recommendations are
not intended to determine thresholds for diagnosing de-
pendence in a clinical setting. Future studies will be able to

test whether using the AUDIT as a surrogate for alcohol use
disorders will be beneficial for gene discovery. In addition,
several studies have argued that lower thresholds should
be used for females, which has not been addressed in the
present study.

CONCLUSIONS

We have reported the largest GWAS of AUDIT ever un-
dertaken. We replicated previously identified signals (i.e.,
ADH1B, ADH1C; KLB; GCKR) and identified novel GWAS
signals (i.e., JACD, SLC39A8) associated with AUDIT scores.
We showed that different portions of the AUDIT (AUDIT-C,
AUDIT-P) correlate with distinct traits, which will aid in
dissecting genetic vulnerability to alcohol use and depen-
dence. The genetic factors that predispose to high alcohol
consumption inevitably overlap with those for problem
drinking, as heavy drinking is generally a prerequisite for the
development of hazardous use and dependence. However,
not everyone who consumes alcohol experiences the same
level of harmful consequences. By studying the different
subsets of AUDIT, we identified genetic factors that may be
specific to problemdrinking. Larger studies of cohorts with a
wider range ofAUDIT-P scores are required to both replicate
and expand these findings. Finally, we described an alter-
native strategy to rigorous ascertainment for genetic studies
of alcohol use disorders, namely, an AUDIT score $12 to
define cases and a score#4 todefine controls,which could be
used to achieve large sample sizes in a cost-efficient manner.
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