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Objective: Attention deficit hyperactivity disorder (ADHD) is
a multifactorial disorder with diverse associated risk factors
and comorbidities. In this study, the authors sought to under-
stand ADHD from a dimensional perspective and to identify
neuroanatomical correlates of traits and behaviors that span
diagnostic criteria.

Methods: Multimodal neuroimaging data and multi-
informant cognitive and clinical data were collected in a
densely phenotyped pediatric cohort (N=160; 70 with ADHD;
age range, 9–12 years). Multivariate analysis identified
associations between clinical and cognitive factors and
multimodal neuroimaging markers (across tissue volume,
cortical thickness, cortical area, and white matter micro-
structure). The resulting imaging markers were validated in
an independent cohort (N=231; 132 with ADHD; age range,
7–18 years).

Results: Four novel patterns of neuroanatomical variation
that related to phenotypic variation were identified. The first
imaging pattern captured association of head size with sex,

socioeconomic status, and mathematics and reading per-
formance. The second pattern captured variation associated
with development and showed that individuals with delayed
development were more likely to be receiving ADHD med-
ication. The third pattern was associated with hyperactivity,
greater comorbidities, poorer cognition, lower parental ed-
ucation, and lower quality of life. The fourth pattern was
associated with a particular profile of poorer cognition and
irritability independent of ADHD. The authors further dem-
onstrated that these imaging patterns could predict varia-
tion in age and ADHD symptoms in an independent cohort.

Conclusions: The findings suggest that ADHD presentation
may arise from a summation of several clinical, developmen-
tal, or cognitive factors, eachwith a distinct neuroanatomical
foundation. This informs the neurobiological foundations
of ADHD and highlights the value of detailed phenotypic
data in understanding the neurobiology underlying neuro-
developmental disorders.
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Recently, there have been two conceptual shifts in neuro-
psychiatric research: the consideration of a dimensional,
symptom-based approach as an alternative to categorically
defined disorder-based analyses, and the identification of
traits across the full phenotypic range of populations (1, 2).
Consistent with the objectives of the National Institute of
Mental Health (NIMH) Research Domain Criteria, these
approaches allow the identification of subgroups in hetero-
geneous populations and the discovery of clinically infor-
mative cross-diagnostic endophenotypes.

Attention deficit hyperactivity disorder (ADHD) is a com-
mon neuropsychiatric disorder affecting 5% of school-age
children (3). In addition to the theoretically proposed in-
volvement of prefrontal and striatal regions (4), neuro-
imaging studies have identified other brain regions that
reportedly differ in ADHD, including the parietal and tem-
poral cortices, the corpus callosum, and the cerebellum(5–8).

Reduction in whole gray matter volume has been reported
in ADHD (9–11), possibly reflecting alterations to typical
development (12). A recent meta-analysis reported white
matter microstructure differences in the internal capsule,
corona radiata, and cerebellum (13) that appear to vary with
symptom severity (14). Differences in cerebral structuremay
give rise to functional alterations in ADHD, with dysfunc-
tional regions evident across multiple neuronal systems
involved in both higher-level cognitive functions and sen-
sorimotor processes (15). This has led to the characteriza-
tion of ADHD as a structural and functional disruption of
distributed brain networks (15, 16).

There is little consistency between reporteddifferences in
ADHD across studies, however, and observations have been
hampered by small sample sizes, methodological variation,
inadequate diagnostic methods, and heterogeneous cohorts
(17). A recent population-scale analysis (18) found lower
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volumes in basal ganglia structures in participants with ADHD,
although the estimated effect size (around 0.1–0.2) indicates
a large overlap between clinical and control populations.
The inconsistency in neuroimaging findings, along with the
putative small effect sizes of posited differences, has limited
both our understanding of the neurobiology underlying the dis-
order and the clinical utility of these techniques.

Although ADHD is increasingly considered a disorder
of brain networks, variations across tissue types and imag-
ing modalities are often considered in isolation. During
childhood and adolescence, gray matter volume, cortical
thickness, and white matter microstructure develop along
different trajectories (19). These changes do not occur in
isolation, and system-specific correlation patterns are ap-
parent between cortical gray matter and underlying white
matter connectivity (20). Although the neurobiological mech-
anisms of this precise interplay are not well understood (21),
recent advances in MRI analytical methods allow for the
modeling of shared variance across multiple neuroimaging
modalities to better characterize neuroanatomical variability
across tissue types and among individuals (22). By providing
multiple viewpoints of a shared physiological process, these
techniques have the potential to increase the sensitivity to
detect patterns of neuroanatomical variation in clinical pop-
ulations and aid in the interpretation of such patterns.

To date, few studies have applied these approaches in
clinical ADHD populations. Francx et al. (23) combined mea-
sures of tissue volume and microstructure in adolescents
and young adultswithADHDand foundapattern of variation
across gray and white matter that differed between groups
and demonstrated a marked improvement in sensitivity re-
lative to comparative unimodal analyses. In adults, Wolfers
et al. (24) found correlated differences in cortical thickness
and area in ADHD patients in temporal and parahippocampal
regions.Kessler et al. (25) combined functional and structural
MRI to find co-occurring structural and functional deficits in
the default mode and dorsal attention networks in ADHD.
These findings confirm a number of previous observations
and highlight the advantage of multimodal approaches in
detecting patterns of variation across populations.

ADHD is a multifactorial disorder with diverse associated
risk factors, a range of comorbidities, including both in-
ternalizing and externalizing disorders (26), and various
patterns of impairment, including poor academic perfor-
mance (27), impaired social functioning, and delayed mat-
uration relative to peers (28, 29). To disentangle the effects
of these complex and overlapping factors and to improve
our understanding of heterogeneity in ADHD presentation,
we combined a dimensional approach (across ADHD and con-
trol subjects together) with multivariate image statistics in
an extensively phenotyped pediatric cohort (30) to test the
hypothesis that phenotypic variation is linked to specific
alterations in brain structure.

By combining independent component analysis with
canonical correlation analysis, we aimed to identify inde-
pendent multimodal neuroimaging patterns, each associated

with particular clinical and cognitive profiles. Finally, we
tested the hypothesis that these markers can predict phe-
notypic variation in an independent cohort.

METHOD

Participants
Children were recruited from the Children’s Attention Proj-
ect (CAP), a longitudinal study of children with ADHD and
non-ADHD control subjects (30, 31). Of 5,922 eligible par-
ticipants from 43 primary schools, 3,734 returned parent
and teacher screening reports of the Conners 3 ADHD Index.
Diagnostic status was confirmed with the NIMH Diagnostic
InterviewSchedule forChildren–IV, resulting in 179children
with diagnostically confirmed ADHD and 212 non-ADHD
control subjects, matched on sex and school, in the age range
of 6–8 years. In a 36-month follow-up, participants were
invited to take part in a neuroimaging session, and diagnostic
status was reassessed. The data presented here represent a
subsample of the CAP sample for whom neuroimaging data
were available (referred to as the NICAP cohort) at a single
time point. Ethics approval was obtained from the Royal
Children’s Hospital Human Research Ethics Committee,
Melbourne, and written parental consent was obtained. (For
further details, see the Supplemental Methods section in the
online supplement.)

A total of 179 children underwent cognitive assessments
and neuroimaging (119 were male; 83 had ADHD; the mean
age was 10.4 years, and the age range was 9.4–11.9 years).
After image acquisition and quality control, the final cohort
comprised 160 individuals (104 male; 70 with ADHD; mean
age, 10.4 years; age range, 9.7–11.9 years; for full demographic
details, see Table S1 in the online supplement). Twenty-three
individuals with ADHD were medicated at the time of the
assessment for their behavior (21 [91%] were taking meth-
ylphenidate, and two [9%] were taking atomoxetine).

Clinical and Cognitive Assessment
Children completed a 3.5-hour assessment that included a
cognitive assessment, a self-report survey, and a parent ques-
tionnaire. Key assessment measures were broadly grouped
into individual, clinical, cognitive, familial, and perinatal
factors. In total, 44 phenotypic variables were included in
the analysis (see Table S1 and the Supplemental Methods
section in the online supplement).

Neuroimaging
T1-weighted and diffusion-weighted MRI images were ac-
quired on a 3-T Siemens MRI scanner at a single site. After
visual quality control, whole-brain tissue volume maps were
estimated using deformation-based morphometry (32).
Cortical thickness and surface area were computed using
FreeSurfer (version 5.3.0) (33). Diffusion MRI data sets were
preprocessed using FSL, version 5.0.9 (34), in preparation for
tract-based spatial statistics (TBSS) (35) (see the Supplemental
Methods section in the online supplement for further details).
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Statistical Analysis
Linked independent component
analysis (22) was performed (us-
ing data from 160 subjects for
whom tissue volume, cortical
thickness and surface area, and
fractional anisotropy [FA] and
mean diffusivity [MD] maps
were available), resulting in 25
independent components, each
reflecting patterns of shared
variance across imaging modal-
ities (see Figure S2 in the online
supplement). After projecting
participants’ phenotypic data to a set of orthogonal compo-
nents using principal component analysis, we used canonical
correlation analysis to seek multivariate associations be-
tween the imaging features and each subject’s phenotypic
data. (For further details, see reference 36 and the Supple-
mental Methods section in the online supplement.)

This resulted in a set of paired correlations between fac-
tors, or variates, constructed from respective combinations
of participants’ imaging and phenotypic data, revealing mul-
tivariate associations between the two data sets. The statistical
significance of each correlation was determined using se-
quential omnibus testing with Bartlett’s chi-square statistic
(37). We estimated the loading of each phenotypic variable
onto the phenotypic factors identifiedby canonical correlation
analysis using Spearman’s correlation. Equivalently, we cal-
culated imagemaps for eachmodalityas thevoxel/vertex-wise
correlation between imaging data and the respective imaging
factor identified by canonical correlation analysis, resulting in
spatial maps of anatomical variance for each modality asso-
ciated with the respective phenotypic factor. To estimate
confidence intervals for correlations and variable loadings,
we implemented a bootstrapping procedure, resampling our
data with replacement 10,000 times.

Validation Cohort
We validated our observations in an independent cohort,
using comparable data from the ADHD-200 cohort (38).
Specifically, we used imaging data scanned at New York
University (referred to as the NYU cohort), the largest single
site that contributed to the study. In total, 231 participants
(146 male; 132 with ADHD; mean age, 11.3 years; age range,
7.2–18.0 years) were included in the validation cohort, all
with valid MRI data and ADHD diagnostic scores on
the Conners Parent Rating Scale, Revised–Long Version).
(Available demographic data are summarized in Table S2 in
the online supplement; for additional details, see the Sup-
plemental Methods section.)

RESULTS

Canonical Correlation Analysis
We found four independent associations between the neu-
roimaging and phenotypic data (p,0.05) (Table 1). The full

structure for each phenotypic factor is presented in Table S3
in the online supplement. Below we describe, for each as-
sociation, the phenotypic factors and the related multi-
modal imaging patterns.

Head size. The first imaging pattern reflects an association
between larger head size and increased tissue volume and
cortical surface area and greater mean diffusivity through
the white matter (see Figure S3 in the online supplement).
Phenotypic loadings show that this relationship is driven
by greater intracranial volume (loading=0.94, 95% CI=0.94,
0.96), with 82% of variance in intracranial volume explained
by the imaging pattern (see Table S3), and is associated with
male sex (loading=0.49, 95% CI=0.42, 0.59) and better cog-
nitive performance, including in mathematics (loading=0.39,
95% CI=0.29, 0.50), reading (loading=0.30, 95% CI=0.20,
0.41), visuospatial reasoning (loading=0.31, 95% CI=0.20,
0.41), and, to a lesser extent, IQ (see Table S3). Other asso-
ciated variables include higher socioeconomic status and
higher birth weight.

Development. The second independent relationship reveals an
association between indices of development and an imaging
pattern comprising lower tissue volume in occipital, parietal,
and superior frontal regions, greater volume of the anterior
temporal lobe, widespread lower mean diffusivity, greater
cortical thickness inprimarymotorand sensorycortical areas
and the occipital cortex, and decreased cortical surface area
in the frontal, temporal, and parietal cortex (Figure 1). The
phenotypic factor was associated primarily with increased
body weight (loading=0.88, 95% CI=0.86, 0.93; explained
variance, 57%), age (loading=0.31, 95% CI=0.20, 0.43; ex-
plained variance, 7%), and pubertal status (loading=0.34,
95% CI=0.24, 0.44; explained variance, 9%). Clinically, the
factor is correlated with fewer hyperactive symptoms and a
lower probability of receiving medication for ADHD (see
Table S3).

ADHD symptoms. The third relationship describes an imag-
ing pattern associated with ADHD symptoms (Figure 2; see
also Table S3). The pattern comprises higher volumes in pre-
motor and temporal regions and the cerebellum and lower
volumes in dorsolateral frontal regions, the caudate, and the

TABLE 1. Significant Canonical Correlations Defining Multivariate Associations Between
Phenotypic Data and Multimodal Imaging Features Derived From Linked Independent
Component Analysis, Ordered by Strength of Association

Imaging-Phenotype
Paired Correlations Correlation 95% CI x2 df p

Redundancy
Indexa

1. Head size 0.96 0.96, 0.96 1194.7 675 ,0.001 0.046
2. Development 0.86 0.84, 0.91 855.1 624 ,0.001 0.027
3. ADHD symptoms 0.71 0.65, 0.79 680.5 575 0.002 0.025
4. Cognitive performance 0.67 0.60, 0.77 590.8 528 0.030 0.019

Total: 0.110

a The redundancy index indicates the amount of variance explained in the full phenotypic data set (all 44 variables) by
the respective imaging pattern. Explained variance for individual phenotypic variables is summarized in Table S3
in the online supplement.
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thalamus. Surface area is lower along the cingulum and pre-
frontal cortex but higher in the medial superior temporal
cortex and dorsomedial frontal cortex. Cortical thickness
is lower bilaterally in premotor regions and the anterior
cingulate. In white matter, FA is higher in the fornix and
the superior longitudinal fasciculus and lower in the genu
of the corpus callosum. The associated phenotypic factor
is positively correlated with being older (age loading=0.33,
95% CI=0.21, 0.45) but less pubertally developed (loading=
20.27, 95% CI=20.39,20.16) and being male (loading=0.45,

95%CI=0.37,0.55) (seeFigure
2B; see also Table S3 in the
online supplement). Clinically,
it is associatedwith increased
hyperactivity (loading=0.39,
95% CI=0.28, 0.50), with the
correlated imaging pattern
explaining approximately
8% of variance in hyperac-
tivity symptom count across
the cohort (see Table S3),
and, to a lesser extent, with
increased inattentiveness
(loading=0.19, 95% CI=0.08,
0.30) as well as both teacher-
and parent-rated ADHD
symptom severity indices
and an increased probability
of receiving ADHD medica-
tion. Regarding other clini-
cal features, this factor is
associated with more au-
tism spectrum symptoms
and social problems, more ex-
ternalizing but fewer in-
ternalizing symptoms, and
higher irritability. The asso-
ciated cognitive profile re-
flects lower IQ and poorer
mathematics and visuospa-
tial reasoning scores. Lower
parental education, less con-
sistent parenting style, and
lower quality of life were all
associated with this factor
(see Table S3).

Cognitive performance. The
fourth imaging pattern com-
prises increased volume in
the anterior cingulate and
cerebellum, lower volume in
the superior lateral frontal
and parietal lobes, lower ven-
tricular volume, widespread
lower FA and higher MD,

lower thickness in lateral aspects of the sensory cortex,
and greater cortical area in the medial frontal cortex
(Figure 3). The associated phenotypic factor is associated
with poorer cognitive performance, marked by lower lan-
guage scores (loading=20.31, 95% CI=20.44, 20.21; ex-
plained variance, 4%), reading ability (loading=20.18, 95%
CI=20.31, 20.05), visuospatial reasoning (loading=20.23,
95% CI=20.36, 20.13), and academic competence (loading=
20.30, 95% CI=20.44, 20.18) but not overall IQ. This factor
was also positively associated with male sex, lower parental

FIGURE 1. Spatial Maps Showing the Voxelwise Correlation Between Each Imaging Modality and the
Second Imaging Marker Representing Developmenta
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a Each imagingmarker is represented by a set of spatial maps, one per imaging modality. The weights represent the
voxel/vertex-wise correlation between the original imaging data and the respective canonical variates for each
multivariate association. Voxelwise correlations between the second canonical imaging variate (canonical pair 2)
and each imaging modality are shown. The strength and direction of the correlation is indicated by color. The
corresponding phenotypic factor structure is presented in Table S3 in the online supplement. Unthresholded
interactive maps are available to view and download onNeuroVault (https://neurovault.org/collections/2277/).
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education, and increased irritability but negatively associated
with hyperactive symptoms. There was a strong association
with maternal smoking during pregnancy (loading=0.43,
95% CI=0.35, 0.54).

Model stability and motion considerations. Overall, the factor
structure of the model was robust to different preprocessing
strategies, model parameters, and the inclusion of head mo-
tion measures (see the Supplemental Results section in the
online supplement).

Validation Data Set
Using imaging patterns derived from the NICAP cohort, we
regressed the spatial loading maps onto tissue volume data
from the NYU cohort to estimate a set of weights (one per
subject) representing the typicality of each pattern for that
subject’s imaging data (Figure 4).We found significant linear
relationships between the weight of the first three imaging

patterns and corresponding phenotypic data in the validation
cohort.

As expected, the imaging pattern reflecting head size was
strongly correlated with intracranial volume in the NYU
cohort (R2=0.86; F=1460.0, df=1, 229, p,0.001).We also found
a significant linear relationship between the second imaging
pattern (reflecting development) (Figure 1) and age (R2=0.23;
F=67.96, df=1, 229, p,0.001) in the validation cohort. This
marker did not correlate with ADHD index (p=0.31), hyper-
activity (p=0.14), inattentiveness (p=0.69), or IQ (p=0.63).

In contrast, the third imaging pattern (reflecting ADHD
symptoms) significantly predicted hyperactivity (R2=0.04,
F=9.12, p=0.003) (Figure 4) and, to a lesser extent, inattention
(R2=0.02, F=5.49, p=0.02) in the NYU cohort, but it did not
predict age (p=0.14) or IQ (p=0.31). The inclusion of sex, age,
and IQ in the model with marker strength explained almost
10% of variance in hyperactivity score in the NYU cohort
(R2=0.097; see the Supplemental Results section in the online

FIGURE 2. Spatial Maps Showing Voxelwise Correlations Between Each Imaging Modality and the Third Imaging Marker and
Associated Phenotypic Factor Loadings for the Relationship With ADHD Symptoms and Associated Risk Factorsa
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a Voxelwise correlations (color bar) between the third canonical imaging variate (canonical pair 3) and each imaging modality are shown in panel A.
Corresponding phenotypic loadings are shown in panel B for individual (blue), clinical (red), familial (cyan), and perinatal (orange) factors (bars indicate
95% confidence interval). Only factors that passed correction for multiple comparisons are shown (p,0.001). The full canonical structure is presented
in Table S3 in the online supplement. Unthresholded interactive maps are available to view and download on NeuroVault (https://neurovault.org/
collections/2277/). ASD=autistic spectrum disorder; NICU=neonatal intensive care unit; parent’s ADHD index5parent-rated Conners 3 ADHD Index
of the child’s behaviors; QoL–family5quality of life, howoften child’s behavior interrupted various everyday family activities; QoL–time5quality of life,
how often child’s behavior caused cancellation or change of plans (personal or work) at last minute.
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supplement). Secondary to themain aimof this study,we also
found that the expression of this imaging pattern was sig-
nificantly different betweenADHDdiagnostic groups in both
the NICAP and NYU cohorts.

DISCUSSION

In a data-driven analysis of multimodal imaging data and
multi-informant phenotypic data, we identified a novel set of
brain imaging patterns that reflect phenotypic variation across

a cohort of children with ADHD and non-ADHD control
subjects. Our results highlight how multiple cognitive and
clinical variables can be factored to explain observed behaviors.
Importantly, the inclusion of neuroimaging data allows the
identification and separation of the neurobiological corre-
lates of these factors. Patterns across multiple anatomical
scales were associated with developmental, clinical, and
cognitive profiles. We found that these patterns proved in-
formative to models of phenotypic variation in an indepen-
dent pediatric cohort.

FIGURE 3. Spatial Maps Showing Voxelwise Correlations Between Each Imaging Modality and the Fourth Imaging Marker and
Associated Phenotypic Factor Loadings for the Relationship With Cognitive Performancea
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a Voxelwise correlations between the fourth canonical imaging variate and each imagingmodality are shown in panel A. Phenotypic loadings are shown
in panel B for individual (blue), clinical (red), cognitive (green), and perinatal (orange) factors (bars indicate 95% confidence interval). Factor loadings are
significant at p,0.01, and factors that passed correction for multiple comparisons are highlighted with an asterisk. The full canonical structure is
presented in Table S3 in the online supplement. Unthresholded interactivemaps are available to view and downloadonNeuroVault (https://neurovault.
org/collections/2277/).
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The first imaging pattern
captured the well-known
relationship between brain
volume and cortical surface
area (39). Intracranial volume
was higher in males, and in-
dividuals with higher intra-
cranial volume scored well
in mathematics and reading,
lending support to recent re-
ports of the shared genetic
etiology between brain size,
cognitive ability, and educa-
tional attainment (40). This
pattern was positively cor-
related with socioeconomic
status, mirroring previous
reports (41). Contrary to ev-
idence that intracranial vol-
ume is reduced in ADHD (9,
18), ADHD symptoms were
not significantly associated
with this imaging marker.
However, given the relatively
small effect size of this re-
ported difference, this is
perhaps not surprising (18).

The second pattern
captured neuroanatomical
variation associated with
childhood development in-
dexed by greater body
weight, pubertal status, and
age. During puberty, longi-
tudinal studies report de-
creases in cortical thickness
with increasing circulating
testosterone (42). However,
in prepubertal cohorts, dehy-
droepiandrosterone (DHEA),
rather than testosterone, is
associated with brain growth.
DHEA levels have been
associated with increased
cortical thickness in the
dorsolateral prefrontal cor-
tex, the premotor cortex, and the temporoparietal junction in
both males and females (43). We previously showed that
pubertal onset is associated with increased fiber density in the
corpus callosum (44). In the present study, we found a pattern
of lower mean diffusivity evident in both the corpus
callosum and the ascending white matter tracts. We pos-
tulate that the changes reported here reflect a combination of
pubertal processes in addition to age-related variation.

We also observed a significant association between the
second phenotypic factor and medication status, suggesting

that younger, less pubertally mature children were more
likely to be receiving medication for ADHD. While this is
broadly consistent with epidemiological evidence showing
that younger age relative to peers increases the likelihood
of ADHD diagnosis and subsequent medication (28), we
previously reported that there is little evidence to support a
simple correlation between age and diagnosis in this cohort
(45). Indeed, Table S3 in the online supplement shows that
although a lower score for this factor is associated with a
slight increase in hyperactive symptoms (loading=20.17), it

FIGURE 4. Validation of Imaging Markers Associated With Age and Hyperactivity, Derived From the
Canonical Correlation Analysis, in an Independent Cohorta
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a Tissue volume loading maps are shown for canonical pairs 2 and 3 (top row). In the Children’s Attention Proj-
ect neuroimaging (NICAP) cohort, component weights were associated with age and hyperactive symptom
count, respectively (middle row). Using multivariate regression, expression of each imaging pattern was esti-
mated in an independent data set. Imaging marker expression was found to predict age and hyperactivity in-
dex in the New York University (NYU) cohort (bottom row).
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explains only a small amount of variance in hyperactive
symptom count (approximately 2%) and it occurs in-
dependently of other clinical factors. We propose that this
pattern instead represents a marker of lower neuroana-
tomicalmaturity—or “brain age” (46)—that is associatedwith
both age and pubertal status and may manifest as a more
immature behavioral profile characterized partly by in-
creased hyperactivity.

The third imaging pattern was correlated with a clinical
profilemarked by higher hyperactive symptom count, higher
teacher and parent ratings of ADHD behavior, and more
comorbidities. This profile was more common among male
participants, who were less pubertally developed. It also
correlated less with inattentive symptoms than with hy-
peractive symptoms, suggesting some domain specificity.

Previous studies comparing individuals with ADHD with
control subjects have reported similar neuroimaging differ-
ences inclinicalpopulations, includingvolumetricdecreases in
theanteriorcingulatecortexandincreases inthetemporal lobe
and around sensorimotor regions that covaried with hy-
peractive symptom severity (23, 24). Other univariate ap-
proaches have yielded differences in frontal, parietal, and
subcortical structures consistent with the patterns de-
scribed here (9, 10, 47). Our results also highlight the role of
the superior longitudinal fasciculus, a structure that has been
implicated in ADHD (48), particularly in relation to hyper-
activity (49).

By includinga rich scopeofphenotypicdata,we found that
this factor was also correlated with poorer academic per-
formance, lower parental education, and an increased ex-
perience of stressful life events. Symptoms of inattention
and hyperactivity have previously been shown to correlate
inversely with academic performance (27), and early life
deprivation can result in neuroanatomical alterations that
mirror those seen inADHD(50). Similarly, vanderMeer et al.
(51) identified genetic variants associated with stress expo-
sure and hypothalamic-pituitary-adrenal axis activity that
predicted ADHD severity in childhood, explaining approx-
imately 12.5% of variance in symptom severity. These find-
ings highlight possible mechanistic pathways that may lead
to altered developmental neuroanatomy in ADHD.

To demonstrate the external validity of our model, we
estimated the expression of each imaging pattern in an
independent cohort. We found a small but significant in-
dependent association between the ADHD imaging pattern
and hyperactivity index in this validation cohort. In combi-
nation with age, sex, and IQ, this model explained approxi-
mately 10%of the variance in hyperactivity score in theNYU
cohort. The imaging pattern alone explained 8% of variance
in hyperactivity in the NICAP cohort. We also observed a
measure of symptom specificity, with the imaging marker
explaining approximately twice as much variation in hy-
peractivity than in inattentiveness in both the NICAP and
NYU cohorts. The model compares well to previous reports.
Recent large-scale genetic analyses have demonstrated that
markers of genetic risk for ADHD explain around 0.1%–0.5%

of the variance in ADHD trait behavior in the general pop-
ulation (52). Furthermore, longitudinal studies find that neu-
ropsychological assessment in preschool, socioeconomic
status, and sex together explain around 8%–12% of vari-
ance in ADHD symptom severity in the same individual
in later childhood (53). With regard to MRI, Rosenberg
et al. (54) derived an imaging marker from functional MRI
(fMRI) scans acquired during an attention task and found
that this marker explained approximately 7%–9% of variance
in ADHD symptom severity in an independent population.

The fourth imaging pattern was associated with a poorer
cognitive profile but not IQ, and it highlighted the role of the
dorsal attention networks and associated white matter or-
ganization for performance in visuospatial tasks (55, 56).
Although there were no broader cognitive variables avail-
able to test in the validation cohort, IQwas alsonot associated
with expression of this marker in the NYU cohort. This sug-
gests that this factor is not reflective of a general decrease
in cognitive functioning but rather is specific to certain do-
mains. Although some aspects of this factor structure proved
less stable under model perturbation than the preceding
three (see Figure S4 in the online supplement), an envi-
ronmental component may underlie cognitive performance,
with lower parental education, maternal smoking, and a
poorer quality of life associated with the cognitive profile.
Clinically, the factor was associated with increased irritability
and fewer hyperactive symptoms. Irritability is a common
comorbid factor in ADHD, although this analysis suggests
that its underlying neural correlates may be independent of
ADHD, supporting a recent meta-analysis that suggests that
irritability is a poor predictor of ADHD (57).

In summary, these findings suggest that the presentation
of ADHD may arise from a summation of several clinical,
developmental, or cognitive factors, each with a distinct
neuroanatomical foundation. Separate from themain clinical
relationship, one factor reflected delayed development rel-
ative to peers, consistent with the theory of delayed matu-
ration in ADHD (29). Similarly, although irritability is often
present in ADHD, it also had a presentation, independent of
ADHD, associated with its own pattern of cognitive deficits
and anatomical correlates. We anticipate that our work will
inform future research into the neurobiological foundations
of ADHD, highlighting the value of neuroimaging and the
importance of leveraging detailed phenotypic data to un-
derstand the neurobiology underlying neurodevelopmental
disorders.

Our study has a number of limitations that warrant con-
sideration. The age range of the participants was relatively
narrow, and the reported brain-behavior associations may
vary across different stages of development. Future research
in this longitudinal cohort will examine whether changes in
these imaging markers predict longitudinal change in de-
velopmental, clinical, and cognitive phenotypes. Twenty-
three individuals were taking medication for their ADHD,
and the long-term effect of medication on brain structure may
constitute a confounding factor. However, as medication may

64 ajp.psychiatryonline.org Am J Psychiatry 176:1, January 2019

NEUROIMAGING MARKERS OF BRAIN DEVELOPMENT AND ADHD SYMPTOMS

http://ajp.psychiatryonline.org


normalize neuroanatomical differences in ADHD (58), such
an effect would be expected to reduce the magnitude of the
findings.

We plan in future work to incorporate functional brain
measures derived from fMRI into this analytical framework.
Co-occurring functional-structural deficits have been re-
ported in ADHD using multimodal methods (25), and fMRI
networks are able to predict variation in attention and clas-
sify DHD subtypes (54, 59). We anticipate that characteriz-
ing the functional correlates of the neuroanatomical patterns
described here will prove informative to the theoretical
modeling of the disorder.

In conclusion, this study furthers our understanding of
brain development and mental health in childhood with
evidence derived from multidimensional phenotypic and
neurobiological measures. We identified four separable
neuroanatomical patterns that are associated with unique
developmental, clinical, and cognitive factors that span di-
agnostic criteria. We further demonstrated that the markers
associated with development and an ADHD phenotype de-
rived from a community sample can predict phenotypic
variation in an independent cohort.
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