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Objective: Lower dendritic spine density on layer 3 pyramidal
cells in the dorsolateral prefrontal cortex (DLPFC) appears to
contribute to cognitive dysfunction in schizophrenia, whereas
psychosis is associated with excessive dopamine release in the
striatum. These findingsmay be related via excitatory projections
from the DLPFC to the ventral mesencephalon, the location of
dopamine cells projecting to the striatum. Consistent with this
hypothesis, deletion of the actin-related protein-2/3 (ARP2/3)
complex, which regulates the actin cytoskeleton supporting
dendriticspines,producedspinelossincorticalpyramidalcellsand
striatal hyperdopaminergia in mice. The authors sought to de-
terminewhether the ARP2/3 complex is altered in schizophrenia.

Method: In matched pairs of schizophrenia and compari-
son subjects, transcript levels of ARP2/3 complex signaling
pathway were assessed in laser-microdissected DLPFC layer
3 and 5 pyramidal cells and layer 3 parvalbumin interneurons,
and in total DLPFC gray matter.

Results: Transcript levels of ARP2/3 complex subunits and
of nucleation promotion factors that regulate the ARP2/3
complex were significantly lower in DLPFC layer 3 and
5 pyramidal cells in schizophrenia. In contrast, these
transcripts were unaltered, or only modestly changed, in
parvalbumin interneurons and DLPFC gray matter.

Conclusions: Down-regulation of the ARP2/3 complex
signaling pathway, a common final pathway for multiple
signaling cascades that regulate the actin cytoskeleton,
would compromise the structural stability of spines, lead-
ing to their loss. In concert with findings from deletion of the
ARP2/3 complex in mice, these findings support the idea
that spine deficits in the DLPFC may contribute to sub-
cortical hyperdopaminergia in schizophrenia.
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Cognitive deficits constitute a core feature of schizophrenia
(1), are persistent across the course of the illness (2), and are
the best predictor of long-term functional outcome (3). At
least some of these deficits arise during childhood and ad-
olescence, before the onset of the psychosis associatedwith a
clinical diagnosis of schizophrenia (4).

The impairments in certain cognitive processes, such as
working memory, appear to reflect alterations in specific el-
ements of dorsolateral prefrontal cortex (DLPFC) circuitry
known to be critical for working memory in primates (5). For
example, reciprocal excitatory connections among DLPFC
layer 3 pyramidal cells are thought to mediate sustained
neuronal activity during the maintenance phase of working
memory in monkeys (6); in individuals with schizophrenia,
these neurons have fewerdendritic spines, the principal site of
glutamatergic inputs (7). In contrast, the psychotic symptoms
of schizophrenia are associated with excessive dopamine re-
lease in the associative striatum (8).

These two domains of schizophrenia pathology and patho-
physiology have been hypothesized to be related via the

excitatory projections from the DLPFC to the ventral mesen-
cephalon, the location of the dopamine cells that project to the
striatum (9). That is, the deficit in dendritic spines, and the
resultingreduction inexcitatorydrive toDLPFCpyramidalcells,
is thought to lead to the hyperdopaminergic state subcortically
(10). Consistent with this hypothesis, conditional deletion in
mice of the actin-related protein-2/3 (ARP2/3) complex, which
acts as a common final pathway for multiple signaling cascades
that regulate the actin cytoskeleton required for dendritic
spine formation andmaintenance (11, 12),was shown toproduce
a loss of dendritic spines in prefrontal cortical pyramidal
cells and elevated striatal dopamine neurotransmission (13).
These changes were accompanied by cognitive deficits and
antipsychotic-responsive locomotor hyperactivity (13, 14). The
idea that a spine deficit in prefrontal cortical pyramidal neurons
was the upstream cause of increased subcortical dopamine was
supported by proof-of-concept evidence that viral re-expression
of the ARP2/3 complex in frontal cortical pyramidal neurons
lowers striatal dopamine levels and reduces locomotor hyper-
activity (13).Together, thesefindings provide amechanistic basis
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for the prior observation that diminished activity in the DLPFC
predicts subcortical hyperdopaminergia in schizophrenia (15).
However, it is not known whether expression of the ARP2/3
complex inDLPFCpyramidal cells is deficient in schizophrenia.

The goal of the present study was to examine the ARP2/3
complex signaling pathway (Figure 1A) in DLPFC deep layer
3 pyramidal cells, where dendritic spine alterations are most
pronounced in schizophrenia (16, 17). We used laser microdis-
section to capture individual pyramidal cells in DLPFC deep
layer 3 from subjects with schizophrenia and matched un-
affected comparison subjects and assessed gene expression in
pools of neurons from each subject by microarray analysis. In
order to assess the cell-type specificity of the findings, we an-
alyzed microarray data from layer 5 pyramidal cells and layer
3parvalbumin interneurons, andwemeasured expression levels
of certain transcripts in total DLPFC gray matter using quan-
titative reverse-transcriptionpolymerasechain reaction (qPCR).
In each analysis,we evaluated transcript levels for all subunits of
the ARP2/3 complex and of nucleation promotion factors that
regulate the activity of the ARP2/3 complex (Figure 1A).

METHOD

Human Subjects
Brain specimens (N=124) were obtained during routine au-
topsies conducted at the Allegheny County Office of the
Medical Examiner (Pittsburgh) after consent was obtained

from next of kin (18). Subject groups for the entire cohort
(N=62 pairs; for individual subject details, see Table S1 in the
data supplement that accompanies the online edition of this
article), as well as for the subsets of pairs used in specific
studies, did not differ significantly in mean age, postmortem
interval, RNA integrity number (Agilent Bioanalyzer, Santa
Clara, Calif.), tissue storage time at280°C, or race (Table 1).
Mean brain pH was significantly different between subject
groups for the entire cohort (t=2.6, df=122, p=0.01), but the
difference was quite small (0.1 pH unit) and of uncertain
biological significance. All procedures were approved by the
University of Pittsburgh’s Committee for the Oversight of
Research and Clinical Trials Involving the Dead and In-
stitutional Review Board for Biomedical Research.

Laser Microdissection Procedure
As described previously (19, 20), cryostat sections (12 mm)
containing DLPFC area 9 were thaw-mounted onto glass
PEN membrane slides (Leica Microsystems, Bannockburn,
Ill.) and stained for Nissl substance with thionin. Using a
Leica lasermicrodissection system, DLPFCdeep layer 3 and
layer 5 were identified in portions of the section cut per-
pendicular to the pial surface. Nissl-stained pyramidal
neurons, identified by their characteristic triangular shape
and prominent apical dendrite, were individually dissected
fromeach laminar location. Parvalbumin interneuronswere
identified by dual labeling of NeuN-positive interneurons

FIGURE 1. Schematic Illustration of the ARP2/3 Complex Signaling Pathway and Contribution to Spine Deficits in Schizophreniaa
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a Panel A depicts nucleation promotion factors (NPFs) that regulate the activity of the ARP2/3 complex in a healthy state. NPFs include Neural Wiskott-
Aldrich syndrome (N-WASP) protein encoded by WASL, WASP family Verprolin-homologous (WAVE) proteins, cytoplasmic FMR1 interacting protein I
(CYFIP1), and cortactin, which act downstream of Rho GTPases such as CDC42 and RAC. Activation of the ARP2/3 complex by multiple nucleation
promotion factors results in actin nucleation and polymerization to generate F-actin branched filaments from existing F-actin monomers. Arrows
indicateactivation.PanelB illustrates themolecularcascadesofARP2/3complexdysregulation inschizophrenia.Themarkeddecrement inmRNA levels
for CYFIP1, cortactin, andN-WASP and ARP2/3 complex subunits in dorsolateral prefrontal cortex layer 3 pyramidal cells converge to decrease F-actin
nucleation and polymerization required for spine growth and maintenance, contributing to spine deficits.
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and Vicia villosa agglutinin (VVA) labeling of perineuronal
nets in layers 3 and 4 (21).

Microarray Analyses
For pyramidal cell microarray analyses (19, 21), 200 DLPFC
pyramidal cells from deep layer 3 and from layer 5 were
dissected individually and then pooled together by layer
for each subject (N=36 pairs) (19). Array results were not
readable for layer 5 samples from twoschizophrenia subjects,
and thus two subject pairs were excluded. For parvalbumin
interneuron microarray analyses, 360 parvalbumin inter-
neurons were dissected from 14 of the 36 subject pairs (21).
The cDNA from each sample was loaded on an Affymetrix
GeneChip HT HG-U133+ PM Array plate (Affymetrix, Santa
Clara, Calif.) designed to assess transcript levels from the
human genome.

We also used microarray analyses to evaluate ARP2/3
complex signaling pathway transcripts in DLPFC deep layer
3 pyramidal cells from monkeys with chronic exposure to
olanzapine, haloperidol, or placebo (see the Supplementary
Methods section in the online data supplement).

qPCR
For each subject in the full cohort (N=62 pairs), area 9 gray
matter was collected and cDNA prepared as previously de-
scribed (18) (see theSupplementaryMethods section in thedata
supplement). Based on their stable levels of expression across
schizophrenia and comparison subjects, three reference genes
(beta-actin, cyclophilin-A, and glyceraldehyde-3-phosphate
dehydrogenase [GAPDH]) were used to normalize target
mRNA levels. The difference in cycle threshold (dCT) for each
target transcript was calculated by subtracting the geometric
meanCT of the three reference genes from the CT of the target
transcript. Since dCT represents the log2-transformed ex-
pression ratio of each target transcript to the reference genes,
the relative level of the target transcript for each subject is
reported as 22dCT.

Data Analysis
A comprehensive description of the statistical analyses used
for the microarray data is provided by Arion et al. (19).
Briefly, Affymetrix CEL files were normalized and log2-
transformed using RMA Express. After filtering to remove
uninformative probe sets, the random intercept model
with Bayesian information criterion variable selection
(RIM-BIC) was used to analyze the microarray data set. An
adaptively weighted Fisher’s method was used to combine
the differential expression information for each transcript,
and the Benjamini-Hochberg protocol was used to control
the false discovery rate (,0.05) for the meta-analyzed
p values.

In a separate analysis, themicroarray signals for all probe
sets targeting each ARP2/3 complex transcript were aver-
aged within each sample and used in two analysis of co-
variance (ANCOVA)models. ThepairedANCOVAsused the
level of each mRNA as the dependent variable, diagnostic
groupas themaineffect, subjectpair as ablocking factor, and
postmortem interval, storage time, brain pH, and RNA in-
tegrity number as covariates. However, subject pairing may
be considered an attempt to account for the parallel pro-
cessing of tissue samples from a pair and to balance di-
agnostic groups for sex and age, and thus not to be a true
statistical paired design. Consequently, we also used an
unpaired ANCOVA that included age, sex, postmortem
interval, storage time, brain pH, and RNA integrity number
as covariates. These same two models were used to analyze
the data from the qPCR analyses. Because the two models
gave the same results with regard to statistical significance,
only the results from the unpairedmodel are presented here
(for the pairedmodel results, see Table S3 in the online data
supplement).

The influence of comorbid factors on ARP2/3 complex
signaling pathway transcript expression was assessed by
ANCOVA (see the Supplementary Methods section in the
data supplement).

TABLE 1. Characteristics of Schizophrenia andUnaffected Comparison Subjects in a Study of ARP2/3 Complex Signaling PathwayGenes
in Schizophreniaa

Microarray (Pyramidal Cells) Microarray (Parvalbumin Cells) qPCR (Gray Matter)

Characteristic
Comparison
Group (N=36)

Schizophrenia
Group (N=36)

Comparison
Group (N=14)

Schizophrenia
Group (N=14)

Comparison
Group (N=62)

Schizophrenia
Group (N=62)

N % N % N % N % N % N %

Male 27 75 27 75 10 71.4 10 71.4 47 75.8 47 75.8
Race
White 30 83.3 24 66.7 12 85.7 10 71.4 52 83.9 46 74.2
Black 6 16.7 12 33.3 2 14.3 4 28.6 10 16.1 16 25.8

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Age (years) 48.1 13.0 46.9 12.4 46.7 11.3 44.3 11.2 48.7 13.8 47.7 12.7
Postmortem interval (hours) 17.6 6.1 18.0 8.8 17.1 6.6 17.7 8.4 18.8 5.5 19.2 8.5
RNA integrity number 8.3 0.6 8.2 0.6 7.8 0.5 7.8 0.5 8.2 0.6 8.1 0.6
Brain pH 6.7 0.2 6.6 0.4 6.7 0.2 6.4 0.2 6.7 0.2 6.6 0.3
Storage time (months) 122.2 49.8 125.7 53.1 91.7 22.4 85.2 9.6 152.8 56.5 149.1 60.9

a No significant differences inbetween-groupcomparisonswithin each typeof analysis, except for brain pH inparvalbumin cells (t=4.3, df=26, p,0.001) and in gray
matter (t=2.6, df=122, p=0.01). qPCR=quantitative polymerase chain reaction.
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For all ANCOVAs, reported statistics include only the
covariates that were statistically significant. As a result, the
reported degrees of freedom vary across analyses.

RESULTS

Expression Levels of ARP2/3 Complex Signaling
Pathway Genes in DLPFC Deep Layer 3 Pyramidal Cells
in Schizophrenia
Using a false discovery rate of 5%, seven of the 12 transcripts
in the ARP2/3 complex signaling pathway were signifi-
cantly down-regulated in DLPFC deep layer 3 pyramidal cells
from schizophrenia subjects, and another three tran-
scripts showed a nonsignificant (p,0.09) down-regulation
(Table 2). Because a number of transcripts were represented
on the Affymetrix array by more than one probe set, the micro-
array signal for redundant probe sets was averaged within
each sample. The resulting mRNA levels were compared
between subject groups by ANCOVA as described in the fol-
lowing paragraphs.

The ARP2/3 complex, which stimulates de novo actin nu-
cleation and polymerization to generate F-actin branched fil-
ament networks thatmodulate spinemorphogenesis, is composed
of seven subunits (11). The ACTR2 and ACTR3 transcripts en-
code the ARP2 and ARP3 subunits, which function as the ATP-
binding component of the complex. In layer 3 pyramidal cells,
mean transcript levels were significantly lower for both ACTR2
(210.9%; F=11.4, df=1, 70, p=0.001) and ACTR3 (215.2%; F=16.9,
df=1, 70, p,0.001) in the schizophrenia subjects (Figure 2). The

five ARPC subunits of the
ARP2/3complexarecritical for
actin binding and nucleation.
In subjectswithschizophrenia,
mean transcript levels were
lower for ARPC2 (214.9%;
F=12.0, df=1, 69, p=0.001),
ARPC3 (215.9%; F=9.3, df=1,
70, p=0.003), ARPC4 (211.2%;
F=17.4, df=1, 69, p,0.001), and
ARPC5 (210.2%; F=6.8, df=1,
68, p=0.011). The mean levels
of the two human isoforms of
ARPC1(ARPC1AandARPC1B)
did not differ significantly be-
tween subject groups.

The ARP2/3 complex is
regulated by nucleation pro-
motion factors, including
cortactin (CTTN), Neural
Wiskott-Aldrich syndrome
(N-WASP)proteins, andWASP
family Verprolin-homologous
(WAVE) proteins, such as
WAVE1, which is modulated
by cytoplasmic FMR1 interact-
ing protein 1 (CYFIP1) (11, 22).

In layer 3 pyramidal cells, mean CTTN transcript levels were
lower in schizophrenia subjects, although this difference did not
achieve statistical significance (216.4%; F=3.9, df=1, 70, p=0.053).
Mean transcript levels for WASL, which encodes N-WASP,
were lower inschizophrenia (210.1%;F=7.69,df=1,69,p=0.007).
For the WAVE complex, mean CYFIP1 transcript levels were
lower in schizophrenia (214.3%; F=4.7, df=1, 68, p=0.033),
whereas mean transcript levels for WAVE1 (encoded by
WASF1) were unaltered (4.6%; F=2.3, df=1, 70, p=0.134).

Effects of Comorbid Factors on ARP2/3 Complex
Signaling Pathway Transcripts
Levels of ARP2/3 complex signaling pathway mRNAs that
differed between subject groups did not differ among the
schizophrenia subjects as a function of diagnosis of schizo-
affective disorder; history of substance dependence or
abuse; use of nicotine, antipsychotics, antidepressants, or
benzodiazepines and/or sodium valproate at the time of
death; or death by suicide (see Figure S1 in the online data
supplement), with the exception that schizophrenia sub-
jects with a history of substance dependence or abuse had
significantly lower ARPC4 (F=16.74, df=1, 34, p=0.001) and
ARPC5 (F=5.96, df=1, 33, p=0.020) mRNA levels relative to
those without such a history.

Effects of Antipsychotic Exposure on ARP2/3
Transcripts in Monkeys
Transcript levels for ARP2/3 complex signaling path-
way in DLPFC layer 3 pyramidal cells did not differ

TABLE 2. Summary of ARP2/3 Complex Signaling Pathway Alterations in Dorsolateral Prefrontal
Cortex Deep Layer 3 and Layer 5 Pyramidal Cells in Schizophrenia by Microarray

ARP2/3 Complex Signaling
Pathway Transcripts Probe Sets

% Change in
Layer 3

Pyramidal Cells p

% Change in
Layer 5

Pyramidal Cells p

ACTR2 1554390_PM_s_at –11.38 0.006 –12.66 0.011
1558015_PM_s_at –10.41 0.006 –11.82 0.025
200729_PM_s_at –7.68 0.105 –8.39 0.147

ACTR3 200996_PM_at –19.50 0.001 –23.79 0.000
213101_PM_s_at –12.67 0.002 –14.32 0.014
213102_PM_at –13.12 0.001 –17.28 0.002

ARPC1A 200950_PM_at 3.67 0.478 2.66 0.701
ARPC1B 201954_PM_at –4.50 0.302 –2.29 0.539
ARPC2 207988_PM_s_at –17.63 0.002 –21.18 0.001

208679_PM_s_at –22.41 0.003 –25.41 0.011
213513_PM_x_at –3.85 0.131 –2.44 0.424

ARPC3 208736_PM_at –15.99 0.001 –16.88 0.005
ARPC4 211672_PM_s_at –11.70 0.003 –10.57 0.162

217817_PM_at –14.00 0.001 –16.57 0.001
217818_PM_s_at –7.83 0.009 –3.50 0.395

ARPC5 211963_PM_s_at –11.84 0.031 –22.40 0.008
1555797_PM_a_at –8.43 0.051 –6.43 0.190

CTTN 201059_PM_at –11.33 0.066 –14.09 0.041
214073_PM_at –21.23 0.109 –38.45 0.008

WASL 224813_PM_at –10.38 0.028 –13.11 0.051
230340_PM_s_at –12.30 0.044 –22.25 0.004
205809_PM_s_at –7.55 0.225 –18.36 0.021

CYFIP1 208923_PM_at –14.34 0.080 –17.77 0.006
WASF1 204165_PM_at 4.59 0.076 2.54 0.270
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significantly among mon-
keys chronically exposed to
olanzapine, haloperidol, or pla-
cebo (see Figure S2 in the
online data supplement).

Cellular Specificity of
AlteredExpressionARP2/3
Complex Signaling
Pathway Transcripts in
Schizophrenia
To determine whether these
transcript alterations in the
ARP2/3 complex signaling
pathway were also present in
other cell types, we conducted
similar microarray analyses in
DLPFC layer 5 pyramidal cells.
Using a false discovery rate
of 5%, each probe set in the
ARP2/3 complex signaling
pathway showed the same
pattern of down-regulation in
both layer 5 and layer 3 pyra-
midal cells in schizophrenia;
probe sets for two transcripts
(CTTN and CYFIP1) that only
approached statistical signifi-
cance in layer 3 were clearly
significantly lower in layer
5 pyramidal cells (Table 2).
Consistent with these findings,
ANCOVA analyses revealed
lower mean mRNA levels for
the ATP-binding component
of the complex (ACTR2 and
ACTR3) and for the sub-
units that mediate actin bind-
ing and nucleation (ARPC2,
ARPC3, ARPC4, and ARPC5)
(Figure 3). In addition, mean
mRNA levels of the nucle-
ation promotion factors (CTTN,
WASL, and CYFIP1) were also
lower (Figure 3).

We also evaluated ex-
pression of transcripts in
parvalbumin interneurons in
a subset of subject pairs using
data from an existing micro-
array data set (21). With the
exception of ARPC3 mRNA,
whichwas significantly lower
in parvalbumin interneurons (251.5%; F=7.4, df=1, 26,
p=0.012), mean mRNA levels of ARP2/3 complex sig-
naling pathway transcripts in layer 3 parvalbumin neurons

did not differ significantly between subject groups. These
findings do not appear to be false negatives due to a
smaller sample size, because in these same 14 subject pairs,

FIGURE 2. Microarray Analyses of ARP2/3 Complex Signaling Pathway mRNA Levels in Dorsolateral
Prefrontal Cortex Deep Layer 3 Pyramidal Cells in Matched Pairs of Schizophrenia and Unaffected
Comparison Subjectsa
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multiple transcripts were significantly down-regulated in
layer 3 pyr-amidal cells in schizophrenia: ACTR2 (212.7%;
p=0.04), ACTR3 (220.0%; p=0.002), ARPC2 (221.3%;

p=0.003), ARPC4 (213.8%;
p=0.009), andWASL(214.5%;
p=0.019); levels of two other
transcripts were also lower
but did not achieve statistical
significance: ARPC3 (218.2%;
p=0.073) and CTTN (224.6%;
p=0.062). These findings sug-
gest that within the same cor-
tical layer, most alterations in
the ARP2/3 complex signaling
pathway are specific to, or at
least enriched in, pyramidal
cells relative to parvalbumin
interneurons. However, cau-
tion is warranted in interpret-
ing these findings given the
technical caveat that the most
severely affected parvalbumin
interneurons may not have
been identifiable for capture
by laser microdissection (21).

ARP2/3 Complex
Signaling Pathway
Transcripts in DLPFC
Gray Matter in
Schizophrenia
To further test the cell-type
specificity of alterations in
the ARP2/3 complex signaling
pathway,we analyzed transcript
levels in total DLPFC gray mat-
ter by qPCR (see Table S3 in
the online data supplement) in
the same 36 pairs of subjects
used for the pyramidal cell pro-
filing. In contrast to the findings
in pyramidal cells, meanmRNA
levels in the schizophrenia sub-
jects were higher for ARPC3
(3.8%; F=3.2, df=1, 69, p=0.034),
CTTN (5.9%; F=7.6, df=1, 67,
p=0.007), and WASL (3.4%;
F=6.5, df=1, 70, p=0.013). None
of the other transcripts signifi-
cantly differed between subject
groups, with the exception of
mRNA levels forARPC5,which
were significantly lower (26.0%;
F=5.4, df=1, 68, p=0.023), but
this decrement was smaller
than in pyramidal cells.

To control for possible false negative findings due to
sample size, the transcripts in the ARP2/3 complex signaling
pathway were evaluated in DLPFC gray matter in a larger

FIGURE 3. Microarray Analyses of ARP2/3 Complex Signaling Pathway mRNA Levels in Dorsolateral
Prefrontal Cortex Layer 5 Pyramidal Cells in Matched Pairs of Schizophrenia and Unaffected
Comparison Subjectsa
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a Log2-transformed microarray signals of ACTR2, ACTR3, ARPC1A, ARPC1B, ARPC2, ARPC3, ARPC4, ARPC5,
CTTN, WASL, CYFIP1, and WASF1 mRNAs in dorsolateral prefrontal cortex layer 5 pyramidal cells, for schizo-
phrenia subjects relative to matched unaffected comparison subjects plotted for each pair. The data points
below the diagonal unity line indicate lower mRNA signal in the schizophrenia subject relative to the matched
comparison subject and vice versa. The percent difference in schizophrenia relative to unaffected comparison
subject group means and the results of primary statistical analysis are provided for each quantified mRNA.
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subject cohort (N=62 pairs). Of the nine transcripts thatwere
significantly lower in layer 3 and/or 5 pyramidal neurons in
subjects with schizophrenia, three were increased in ex-
pression, threewere not different, and threewere decreased,
but the deficits were much smaller than in pyramidal cells
(see Table S3).

DISCUSSION

Our results identify lower mRNA levels of multiple subunits
of the ARP2/3 complex, and of nucleation promotion fac-
tors that regulate the activity of the ARP2/3 complex, in
DLPFC deep layer 3 and 5 pyramidal cells in schizophrenia
(Figure 1B). These alterations appear to reflect the disease
process of schizophrenia, as they were not attributable to
chronic treatment with antipsychotic medications, other
factors frequently comorbid with schizophrenia, or poten-
tial confounders. In contrast, expression levels of ARP2/3
complex signaling pathway transcripts were up-regulated,
not altered, or only modestly lower in DLPFC parvalbumin
interneurons and DLPFC gray matter. Furthermore, the
expression deficits in ARP2/3 complex signaling pathways in
pyramidal cells donot appear to reflect nonspecific factors, as
multiple other transcripts are up-regulated in these neurons
(19, 23). Because the ARP2/3 complex signaling pathway is a
critical determinant of F-actin nucleation and polymeriza-
tion, dysregulation of theARP2/3 complex signaling pathway
in schizophrenia may contribute to actin cytoskeleton im-
pairments and spine deficits in DLPFC pyramidal cells.

Predicted Consequences of Down-Regulated ARP2/3
Complex Signaling Pathway in DLPFC Pyramidal Cells
In DLPFC pyramidal cells from schizophrenia subjects,
the down-regulation in mRNA levels for multiple ARP2/3
complex transcripts (e.g., ACTR2, ARPC2, ARPC3) would be
predicted to contribute to spine deficits by suppressing de
novo actin polymerization, which generates the branched
actin filament networks required for spine formation
(Figure 1B) (24–26). In addition, high concentrations of the
ARP2/3 complex are found in the spine head, where it is
localized proximal to F-actin filaments (27). Therefore, re-
duced gene expression of ARP2/3 complex subunits would
likely impair the actin nucleation and cross-linking of F-actin
filaments, which are critical for the activity-dependent
structural plasticity of spines, contributing to decreased
spine stability and ultimately spine loss.

The ARP2/3 complex also acts as a molecular hub down-
stream of several signaling pathways that promote the
structural stabilization of F-actin filaments necessary for
spine maintenance (28–31). For example, nucleation pro-
motion factors are required to activate the intrinsically
inactive ARP2/3 complex; specifically, the nucleation pro-
motion factors N-WASP, cortactin, and CYFIP1 bring the
ARP2/3 complex and F-actin monomers together to initiate
the synthesis of new F-actin filaments (32). Therefore, the
down-regulation of these nucleation promotion factors in

schizophrenia may further diminish ARP2/3 complex ac-
tivity in the following ways (Figure 1B).

First, activation of ARP2/3 complex by N-WASP fa-
vors branch nucleation, which allows stabilization of newly
synthesized F-actin filaments (33, 34); thus, lower levels of
both N-WASP and the ARP2/3 complex in schizophrenia
would likely result in reduced nucleation of spine precursors
such as lamellipodia and filopodia. Indeed, knockdown of
endogenous N-WASP by RNA interference has been shown
to decrease dendritic spine number in hippocampal pyra-
midal neurons (34).

Second, CYFIP1 acts through the WAVE regulatory
complex and cortactin to regulate the actin-nucleating ac-
tivity of the ARP2/3 complex (11, 22, 35); thus lower levels of
CYFIP1, cortactin, and ARP2/3 complex subunits would
further impair F-actin filament turnover and actin cyto-
skeleton dynamics, which are necessary for formation of den-
dritic spines.

Third, CYFIP1 inhibits dendritic protein translation in an
activity-dependent fashion and promotes actin cytoskeleton
remodeling (29) by acting downstream of brain-derived
neurotrophic factor (BDNF) and its postsynaptic partner
TrkB, which are crucial for spine enlargement and stabili-
zation (36). Thus, the lower levels of both BDNF and TrkB in
the DLPFC of subjects with schizophrenia (37, 38) would
likely further exacerbate the negative impact of impaired
ARP2/3 complex signaling on spine number in DLPFC pyr-
amidal cells.

Laminar-Specificity of Spine Pathology in DLPFC
Pyramidal Cells in Schizophrenia
Previous postmortem studies have revealed lower basilar
dendritic spine density on deep layer 3, but not on layer 5 or
6 pyramidal neurons, from the same subjects with schizo-
phrenia (16, 17). Given this apparent laminar specificity of
spine deficits, we expected that alterations in the ARP2/3
complex signaling pathway would be more marked in deep
layer 3 than layer 5 pyramidal cells. However, the presence of
ARP2/3 complex signaling pathway alterations in pyramidal
cells in both layers suggests that these deficits 1) are not a
secondary consequence of a reduced number of pyramidal
cell dendritic spines and 2) may be a necessary but not a
sufficient cause of reduced spine density.

Theprominence of spinedeficits in deep layer 3pyramidal
cells may be due to other factors upstream of the ARP2/3
complex, such as disturbances in certain components of the
Rho family GTPase cell division cycle 42 (CDC42) signaling
pathway (23, 39) for the following reasons. First, some of the
components of this pathway, suchasCDC42effectorproteins
(CDC42EPs), are preferentially expressed in layers 2–3 of
the DLPFC (40) and the CDC42-CDC42EP pathway is
dysregulated in DLPFC layer 3 pyramidal cells in schizo-
phrenia (23, 39). Second, another CDC42 signaling pathway
(CDC42-p21-activated serine/threonine protein kinases
[PAK]-LIM domain-containing serine/threonine protein
kinases [LIMK] signaling pathway) is also altered in DLPFC
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layer 3 pyramidal cells; these alterations could destabilize
actin dynamics by reducing F-actin turnover through cofilin,
a family of actin depolymerizing proteins (23). Third, in
addition to disrupting the spine cytoskeleton in their own
right, these impairments in CDC42 signaling could magnify
the impact of the alterations in the ARP2/3 complex sig-
naling pathway. For example, the intrinsically autoinhibited
N-WASP isdirectlyactivatedbyCDC42 (41, 42); thus, deficits
in CDC42 signaling could exacerbate the consequences of
deficits in the N-WASP-ARP2/3 complex cascade. In sum-
mary, the prominence of spine deficits in DLPFC deep layer
3 pyramidal cells in schizophreniamay reflect the convergent
effects of alterations in several different signaling pathways,
each of which could destabilize the actin cytoskeleton.

Do Actin Cytoskeleton Impairments Reflect Genetic
Liability for Schizophrenia?
The altered expression of genes in the CDC42 and ARP2/3
signaling pathways may be related to genetic risk factors
for schizophrenia. For example, the interaction of single-
nucleotide polymorphisms in CYFIP1, ARP2, and ARP3 has
been reported to be associated with an increased risk for
schizophrenia (43). Genome-wide association studies in
schizophrenia have revealed enrichment of risk variants in
genes whose products are involved in the activity-regulated
cytoskeleton-associated scaffold protein (ARC), postsynaptic
density (PSD) protein complex, and complement component
4 (C4) genes, which are heavily localized to dendritic spines
and neuronal synapses (44–47). Aberrant expression of these
gene products during postnatal developmentmay exacerbate
spine pruning and synapse loss in subjects with schizo-
phrenia. In addition, de novo mutations in schizophrenia
are overrepresented among loci encoding cytoskeleton-
associated proteins that regulate actin (48). These genetic
findings are consistent with the idea that abnormalities in-
trinsic to DLPFC deep layer 3 pyramidal cells represent an
“upstream” component in the disease process of schizo-
phrenia (49, 50). That is, variants or mutations in genes that
regulate the actin cytoskeleton, in concert with altered ex-
pression of cell type-specific gene products, may be the
pathogenic substrate for spine deficits in schizophrenia.

Implications for the Disease Process of Schizophrenia
The disease process of schizophrenia has been proposed
to involve pathology in the DLPFC, which contributes to
the pathophysiology of psychosis (9). This hypothesis is
supported from a temporal perspective by findings that
cognitive deficits, including those that depend on DLPFC
circuitry, emerge and progress years before the onset of
psychosis (51, 52). Inaddition, activationof theDLPFCduring
cognitive tasks is inversely related to measures of striatal
dopaminergic function in subjects with schizophrenia (15).
Evidence for causality in this association was recently
provided by findings that deletion of the ARP2/3 complex
in mice, resulting in cortical spine deficits, also leads to a sub-
cortical hyperdopaminergia that improves with antipsychotic

medications and is reversible with restoration of prefrontal
ARP2/3 expression (13). The findings of the present study
demonstrate that this mechanism is plausible in schizophrenia
by showing that the ARP2/3 complex signaling pathway is
altered in DLPFC pyramidal cells. The resulting loss of den-
dritic spines on layer 3 pyramidal cells in the DLPFC could
represent an upstream pathology that eventually gives rise to
excessivedopaminefunction in theassociative striatumandthe
appearance of psychosis (10).
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